TAPS ADMIN & OPERATIONS BUILDING

TEXOMA AREA PARATRANSIT SYSTEM

6104 TEXCOMA PKWY,

SHERMAN, TX 75090

TECHNICAL SPECIFICATIONS

ISSUED FOR BID

March 25, 2024

HZ Project R315639.02

500 W. 7th Street Fort Worth, TX 76102 817-335-3000

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

SIGNED SHEET

Architecture Huitt-Zollars, Inc. 500 W. 7th Street, Suite 300 Fort Worth, TX 76102 817.335.3000

Interior Design Huitt-Zollars, Inc. 500 W. 7th Street, Suite 300 Fort Worth, TX 76102 817.335.3000

<u>Structural</u> Huitt-Zollars, Inc. 500 W. 7th Street, Suite 300 Fort Worth, TX 76102 817.335.3000

Mechanical/Plumbing Huitt-Zollars, Inc. 500 W. 7th Street, Suite 300 Fort Worth, TX 76102 817.335.3000

Electrical Huitt-Zollars, Inc. 500 W. 7th Street, Suite 300 Fort Worth, TX 76102 817.335.3000

<u>Fire Protection</u> Huitt-Zollars, Inc. 500 W. 7th Street, Suite 300 Fort Worth, TX 76102 817.335.3000 ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

<u>Civil</u>

Huitt-Zollars, Inc. 500 W. 7th Street, Suite 300 Fort Worth, TX 76102 817.335.3000

Landscape Huitt-Zollars, Inc. 500 W. 7th Street, Suite 300 Fort Worth, TX 76102 817.335.3000

Irrigation Huitt-Zollars, Inc. 500 W. 7th Street, Suite 300 Fort Worth, TX 76102 817.335.3000 ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

THIS PAGE LEFT INTENTIONALLY BLANK

TABLE OF CONTENTS

DIVISION 02 - EXISTING CONDITIONS

- 02080 PIPED UTILITIES BASIC MATERIALS AND METHODS
- 02230 SITE CLEARING
- 02300 EARTHWORK
- 02510 WATER DISTRIBUTION
- 02515 FACILITY FIRE-SUPPRESSION WATER-SERVICE PIPING
- 02530 SANITARY SEWERAGE
- 02741 ASPHALT PAVING
- 02751 CEMENT CONCRETE PAVEMENT
- 02764 PAVEMENT JOINT SEALANTS

DIVISION 03 - CONCRETE

031000	CONCRETE FORMING AND ACCESSORIES
032000	CONCRETE REINFORCING
033000	CAST-IN-PLACE CONCRETE

DIVISION 05 – METALS

054000	COLD-FORMED METAL FRAMING
055213	PIPE AND TUBE RAILINGS

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

061000	ROUGH CARPENTRY
061600	SHEATHING

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

072100	THERMAL INSULATION
072726	FLUID-APPLIED MEMBRANE AIR BARRIERS
074113.16	STANDING-SEAM METAL ROOF PANELS
074213.13	FORMED METAL WALL PANELS
074293	SOFFIT PANELS
076200	SHEET METAL FLASHING AND TRIM
077129	MANUFACTURED ROOF EXPANSION JOINTS
079200	JOINT SEALANTS
079219	ACOUSTICAL JOINT SEALANTS

- 079513.13 INTERIOR EXPANSION JOINT COVER ASSEMBLIES
- 079513.16 EXTERIOR EXPANSION JOINT COVER ASSEMBLIES

DIVISION 08 - OPENINGS

- 081113 HOLLOW METAL DOORS AND FRAMES
- 081416 FLUSH WOOD DOORS
- 083113 ACCESS DOORS AND FRAMES
- 084113 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS
- 085113 ALUMINUM WINDOWS
- 085653 SECURITY WINDOWS
- 087100 DOOR HARDWARE
- 088000 GLAZING
- 088300 MIRRORS
- 089119 FIXED LOUVERS

DIVISION 09 - FINISHES

- 092216 NON-STRUCTURAL METAL FRAMING
- 092900 GYPSUM BOARD
- 093000 TILING
- 095113 ACOUSTICAL PANEL CEILINGS
- 096513 RESILIENT BASE AND ACCESSORIES
- 096519 RESILIENT TILE FLOORING
- 096813 TILE CARPETING
- 097200 WALL COVERINGS
- 099114 EXTERIOR PAINTING (MPI STANDARDS)
- 099124 INTERIOR PAINTING (MPI STANDARDS)

DIVISION 10 - SPECIALTIES

- 101100 VISUAL DISPLAY UNITS
- 102600 WALL AND DOOR PROTECTION
- 102813 TOILET ACCESSORIES
- 104413 FIRE PROTECTION CABINETS
- 104416 FIRE EXTINGUISHERS
- 107000 METAL CANOPY

DIVISION 12 – FURNISHINGS

122113	HORIZONTAL LOUVER BLINDS
123623.13	PLASTIC-LAMINATE-CLAD COUNTERTOPS
123661.16	SOLID SURFACING COUNTERTOPS

DIVISION 21 - FIRE SUPPRESSION

210000 FIRE SUPPRESSION

DIVISION 22 - PLUMBING

220500	COMMON WORK RESULTS FOR PLUMBING
220529	HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
220593	TESTING, ADJUSTING, AND BALANCING FOR PLUMBING
220719	PLUMBING PIPING INSULATION
221116	DOMESTIC WATER PIPING
221119	DOMESTIC WATER PIPING SPECIALTIES
221123.21	INLINE, DOMESTIC-WATER PUMPS
221316	SANITARY WASTE AND VENT PIPING
221319	SANITARY WASTE PIPING SPECIALTIES
223400	FUEL-FIRED, DOMESTIC-WATER HEATERS

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

DIVISION 23 – MECHANICAL

230529	HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
230593	TESTING, ADJUSTING, AND BALANCING FOR HVAC
230700	HVAC INSULATION
230923	DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC
230923.10	INSTRUMENTATION AND CONTROL FOR HVAC
233113	METAL DUCTS
233300	AIR DUCT ACCESSORIES
233346	FLEXIBLE DUCTS
233400	HVAC GENERAL-DUTY FANS
233600	AIR TERMINAL UNITS
233713	AIR DIFFUSERS, REGISTERS AND GRILLES
233723	HVAC GRAVITY VENTILATORS
236200	PACKAGED COMPRESSOR AND CONDENSER UNITS

- 237313.13 INDOOR, BASIC AIR-HANDLING UNITS
- 238126 SPLIT-SYSTEM AIR-CONDITIONERS
- 238239.13 CABINET UNIT HEATERS

DIVISION 26 – ELECTRICAL

- 260500 COMMON WORK RESULTS FOR ELECTRICAL
- 260519 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
- 260526 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS
- 260529 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
- 260533 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS
- 260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS
- 260923 LIGHTING CONTROL DEVICES
- 262416 PANELBOARDS
- 262726 WIRING DEVICES
- 262816 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
- 265000 LIGHTING

DIVISION 27 – COMMUNICATIONS

270526	GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS
270528	PATHWAYS FOR COMMUNICATIONS SYSTEMS
270529	HANGERS AND SUPPORTS FOR COMMUNICATIONS SYSTEMS
270553	IDENTIFICATION FOR COMMUNICATIONS SYSTEMS
071116	COMMUNICATIONS DACKS EDAMES AND ENCLOSUDES

- 271116 COMMUNICATIONS RACKS, FRAMES, AND ENCLOSURES
- 271513 COMMUNICATIONS COPPER HORIZONTAL CABLING

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

284621.11 ADDRESSABLE FIRE-ALARM SYSTEMS

DIVISION 31 - EARTHWORK

316329 DRILLED CONCRETE PIERS AND SHAFTS

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

DIVISION 32 - EXTERIOR IMPROVEMENTS

- 323113 CHAIN LINK FENCES AND GATES
- 323300 SITE FURNISHINGS
- 328000 IRRIGATION
- 329000 PLANTING
- 329223 SODDING

SECTION 02080 - PIPED UTILITIES - BASIC MATERIALS AND METHODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping joining materials.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Sleeves.
 - 5. Identification devices.
 - 6. Grout.
 - 7. Flowable fill.
 - 8. Piped utility demolition.
 - 9. Piping system common requirements.
 - 10. Equipment installation common requirements.
 - 11. Painting.
 - 12. Concrete bases.
 - 13. Metal supports and anchorages.

1.3 DEFINITIONS

- A. Exposed Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions.
- B. Concealed Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- C. ABS: Acrylonitrile-butadiene-styrene plastic.
- D. CPVC: Chlorinated polyvinyl chloride plastic.
- E. PE: Polyethylene plastic.
- F. PVC: Polyvinyl chloride plastic.

1.4 ACTION SUBMITTALS

A. Product Data: For the following:1. Dielectric fittings.

- 2. Identification devices.
- 1.5 INFORMATIONAL SUBMITTALS
 - A. Welding certificates.
- 1.6 QUALITY ASSURANCE
 - A. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - B. Steel Piping Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
 - C. Comply with ASME A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.8 COORDINATION

- A. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- B. Coordinate installation of identifying devices after completing covering and painting if devices are applied to surfaces.
- C. Coordinate size and location of concrete bases. Formwork, reinforcement, and concrete requirements are specified in Section 03300 "Cast-in-Place Concrete."; Section 03301 "Miscellaneous Cast-in-Place Concrete.".

PART 2 - PRODUCTS

2.1 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness, unless otherwise indicated.

- a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
- b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. ABS Piping: ASTM D 2235.
 - 2. CPVC Piping: ASTM F 493.
 - 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - 4. PVC to ABS Piping Transition: ASTM D 3138.
- H. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.2 TRANSITION FITTINGS

- A. Transition Fittings, General: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
- B. Transition Couplings NPS 1-1/2 and Smaller:
 - 1. Underground Piping: Manufactured piping coupling or specified piping system fitting.
 - 2. Aboveground Piping: Specified piping system fitting.
- C. AWWA Transition Couplings NPS 2 and Larger:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cascade Waterworks Mfg. Co.
 - b. Dresser, Inc.; DMD Div.
 - c. Ford Meter Box Company, Inc. (The); Pipe Products Div.
 - d. JCM Industries.
 - e. Smith-Blair, Inc.
 - f. Viking Johnson.
 - 3. Description: AWWA C219, metal sleeve-type coupling for underground pressure piping.

- D. Plastic-to-Metal Transition Fittings:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Spears Manufacturing Co.
 - 3. Description: CPVC and PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint or threaded end.
- E. Plastic-to-Metal Transition Unions:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Colonial Engineering, Inc.
 - b. NIBCO INC.
 - c. Spears Manufacturing Co.
 - 3. Description: MSS SP-107, CPVC and PVC four-part union. Include brass or stainlesssteel threaded end, solvent-cement-joint or threaded plastic end, rubber O-ring, and union nut.
- F. Flexible Transition Couplings for Underground Nonpressure Drainage Piping:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cascade Waterworks Mfg. Co.
 - b. Fernco, Inc.
 - c. Mission Rubber Company.
 - d. Plastic Oddities.
 - 3. Description: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.

2.3 DIELECTRIC FITTINGS

- A. Dielectric Fittings, General: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.
- B. Dielectric Unions:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Capitol Manufacturing Co.
- b. Central Plastics Company.
- c. Epco Sales, Inc.
- d. Hart Industries, International, Inc.
- e. Watts Water Technologies, Inc.
- f. Zurn Plumbing Products Group; Wilkins Div.
- 3. Description: Factory fabricated, union, NPS 2 and smaller.
 - a. Pressure Rating: 150 psig at 180 deg.
 - b. End Connections: Solder-joint copper alloy and threaded ferrous; threaded ferrous.
- C. Dielectric Flanges:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Watts Water Technologies, Inc.
 - 3. Description: Factory-fabricated, bolted, companion-flange assembly, NPS 2-1/2 to NPS 4 and larger.
 - a. Pressure Rating: 150 psig
 - b. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solderjoint copper alloy and threaded ferrous.
- D. Dielectric-Flange Kits:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 3. Description: Nonconducting materials for field assembly of companion flanges, NPS 2-1/2 and larger.
 - a. Pressure Rating: 150 psig.
 - b. Gasket: Neoprene or phenolic.
 - c. Bolt Sleeves: Phenolic or polyethylene.
 - d. Washers: Phenolic with steel backing washers.
- E. Dielectric Couplings:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Calpico, Inc.
- b. Lochinvar Corporation.
- 3. Description: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining, NPS 3 and smaller.
 - a. Pressure Rating: 300 psig at 225 deg F.
 - b. End Connections: Threaded.
- F. Dielectric Nipples:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Perfection Corporation.
 - b. Precision Plumbing Products, Inc.
 - c. Victaulic Company.
 - 3. Description: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining.
 - a. Pressure Rating: 300 psig at 225 deg F.
 - b. End Connections: Threaded or grooved.

2.4 SLEEVES

- A. Mechanical sleeve seals for pipe penetrations are specified in Section 15092 "Sleeves and Sleeve Seals for Plumbing Piping."
- B. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- C. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized, plain ends.
- D. Cast-Iron Sleeves: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- E. Molded PVC Sleeves: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe Sleeves: ASTM D 1785, Schedule 40.
- G. Molded PE Sleeves: Reusable, PE, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

2.5 IDENTIFICATION DEVICES

- A. General: Products specified are for applications referenced in other utilities Sections. If more than single type is specified for listed applications, selection is Installer's option.
- B. Equipment Nameplates: Metal permanently fastened to equipment with data engraved or stamped.
 - 1. Data: Manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels of tested compliances, and essential data.

- 2. Location: Accessible and visible.
- C. Stencils: Standard stencils prepared with letter sizes complying with recommendations in ASME A13.1. Minimum letter height is 1-1/4 inches for ducts, and 3/4 inch for access door signs and similar operational instructions.
 - 1. Material: Fiberboard or Brass.
 - 2. Stencil Paint: Exterior, oil-based, alkyd-gloss black enamel, unless otherwise indicated. Paint may be in pressurized spray-can form.
 - 3. Identification Paint: Exterior, oil-based, alkyd enamel in colors according to ASME A13.1, unless otherwise indicated.
- D. Snap-on Plastic Pipe Markers: Manufacturer's standard preprinted, semirigid, snap-on type. Include color-coding according to ASME A13.1, unless otherwise indicated.
- E. Pressure-Sensitive Pipe Markers: Manufacturer's standard preprinted, color-coded, pressuresensitive-vinyl type with permanent adhesive.
- F. Pipes with OD, Including Insulation, Less Than 6 Inches: Full-band pipe markers, extending 360 degrees around pipe at each location.
- G. Pipes with OD, Including Insulation, 6 Inches and Larger: Either full-band or strip-type pipe markers, at least three times letter height and of length required for label.
- H. Lettering: Manufacturer's standard preprinted captions as selected by Architect.
- I. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length.
 - 1. Arrows: Either integrally with piping system service lettering to accommodate both directions of flow, or as separate unit on each pipe marker to indicate direction of flow.
- J. Plastic Tape: Manufacturer's standard color-coded, pressure-sensitive, self-adhesive vinyl tape, at least 3 mils thick.
 - 1. Width: 1-1/2 inches on pipes with OD, including insulation, less than 6 inches; 2-1/2 inches for larger pipes.
 - 2. Color: Comply with ASME A13.1, unless otherwise indicated.
- K. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2inch sequenced numbers. Include 5/32-inch hole for fastener.
 - 1. Material: 0.032-inch thick, polished brass or aluminum.
 - 2. Material: 0.0375-inch thick stainless steel.
 - 3. Material: 3/32-inch thick plastic laminate with 2 black surfaces and a white inner layer.
 - 4. Material: Valve manufacturer's standard solid plastic.
 - 5. Size: 1-1/2 inches in diameter, unless otherwise indicated.
 - 6. Shape: As indicated for each piping system.
- L. Valve Tag Fasteners: Brass, wire-link or beaded chain; or brass S-hooks.
- M. Engraved Plastic-Laminate Signs: ASTM D 709, Type I, cellulose, paper-base, phenolic-resinlaminate engraving stock; Grade ES-2, black surface, black phenolic core, with white melamine

subcore, unless otherwise indicated. Fabricate in sizes required for message. Provide holes for mechanical fastening.

- 1. Engraving: Engraver's standard letter style, of sizes and with terms to match equipment identification.
- 2. Thickness: 1/16 inch, unless otherwise indicated.
- 3. Thickness: 1/16 inch, for units up to 20 sq. in. or 8 inches in length, and 1/8 inch for larger units.
- 4. Fasteners: Self-tapping, stainless-steel screws or contact-type permanent adhesive.
- N. Plastic Equipment Markers: Manufacturer's standard laminated plastic, in the following color codes:
 - 1. Green: Cooling equipment and components.
 - 2. Yellow: Heating equipment and components.
 - 3. Brown: Energy reclamation equipment and components.
 - 4. Blue: Equipment and components that do not meet criteria above.
 - 5. Hazardous Equipment: Use colors and designs recommended by ASME A13.1.
 - 6. Terminology: Match schedules as closely as possible. Include the following:
 - a. Name and plan number.
 - b. Equipment service.
 - c. Design capacity.
 - d. Other design parameters such as pressure drop, entering and leaving conditions, and speed.
 - 7. Size: 2-1/2 by 4 inches for control devices, dampers, and valves; 4-1/2 by 6 inches for equipment.
- O. Plasticized Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with mat finish suitable for writing.
 - 1. Size: 3-1/4 by 5-5/8 inches.
 - 2. Fasteners: Brass grommets and wire.
 - 3. Nomenclature: Large-size primary caption such as DANGER, CAUTION, or DO NOT OPERATE.
- P. Lettering and Graphics: Coordinate names, abbreviations, and other designations used in piped utility identification with corresponding designations indicated. Use numbers, letters, and terms indicated for proper identification, operation, and maintenance of piped utility systems and equipment.
 - 1. Multiple Systems: Identify individual system number and service if multiple systems of same name are indicated.

2.6 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post hardening, volume adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.7 FLOWABLE FILL

- A. Description: Low-strength-concrete, flowable-slurry mix.
 - 1. Cement: ASTM C 150, Type I, portland.
 - 2. Density: 115- to 145-lb/cu. ft.
 - 3. Aggregates: ASTM C 33, natural sand, fine and crushed gravel or stone, coarse.
 - 4. Aggregates: ASTM C 33, natural sand, fine.
 - 5. Admixture: ASTM C 618, fly-ash mineral.
 - 6. Water: Comply with ASTM C 94/C 94M.
 - 7. Strength: 100 to 200 psig at 28 days.

PART 3 - EXECUTION

3.1 PIPED UTILITY DEMOLITION

- A. Refer to Section 01732 "Selective Demolition" for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove piped utility systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping. Fill abandoned piping with flowable fill, and cap or plug piping with same or compatible piping material.
 - 3. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - 4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make operational.
 - 5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 DIELECTRIC FITTING APPLICATIONS

- A. Dry Piping Systems: Connect piping of dissimilar metals with the following:
 - 1. NPS 2 and Smaller: Dielectric unions.
 - 2. NPS 2-1/2 to NPS 12: Dielectric flanges or dielectric flange kits.
- B. Wet Piping Systems: Connect piping of dissimilar metals with the following:
 - 1. NPS 2 and Smaller: Dielectric couplings or dielectric nipples.
 - 2. NPS 2-1/2 to NPS 4: Dielectric nipples.
 - 3. NPS 2-1/2 to NPS 8: Dielectric nipples or dielectric flange kits.
 - 4. NPS 10 and NPS 12: Dielectric flange kits.

3.3 PIPING INSTALLATION

- A. Install piping according to the following requirements and utilities Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on the Coordination Drawings.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping to permit valve servicing.
- E. Install piping at indicated slopes.
- F. Install piping free of sags and bends.
- G. Install fittings for changes in direction and branch connections.
- H. Select system components with pressure rating equal to or greater than system operating pressure.
- I. Sleeves are not required for core-drilled holes.
- J. Permanent sleeves are not required for holes formed by removable PE sleeves.
- K. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of equipment areas or other wet areas 2 inches above finished floor level.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - a. PVC or Steel Pipe Sleeves: For pipes smaller than NPS 6.
 - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
- L. Verify final equipment locations for roughing-in.
- M. Refer to equipment specifications in other Sections for roughing-in requirements.

3.4 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and utilities Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- E. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- G. Grooved Joints: Assemble joints with grooved-end pipe coupling with coupling housing, gasket, lubricant, and bolts according to coupling and fitting manufacturer's written instructions.
- H. Soldered Joints: Apply ASTM B 813 water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy (0.20 percent maximum lead content) complying with ASTM B 32.
- I. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- J. Pressure-Sealed Joints: Assemble joints for plain-end copper tube and mechanical pressure seal fitting with proprietary crimping tool to according to fitting manufacturer's written instructions.
- K. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 appendixes.
 - 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 - 5. PVC Nonpressure Piping: Join according to ASTM D 2855.
 - 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.
- L. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- M. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.
- N. Plastic Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End PE Pipe and Fittings: Use butt fusion.

- 2. Plain-End PE Pipe and Socket Fittings: Use socket fusion.
- O. Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.5 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Install dielectric fittings at connections of dissimilar metal pipes.

3.6 EQUIPMENT INSTALLATION

- A. Install equipment level and plumb, unless otherwise indicated.
- B. Install equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference with other installations. Extend grease fittings to an accessible location.
- C. Install equipment to allow right of way to piping systems installed at required slope.

3.7 PAINTING

- A. Painting of piped utility systems, equipment, and components is specified in Section 09911 "Exterior Painting," Section 09912 "Interior Painting," and Section 09960 "High-Performance Coatings."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.8 IDENTIFICATION

- A. Piping Systems: Install pipe markers on each system. Include arrows showing normal direction of flow.
 - 1. Stenciled Markers: According to ASME A13.1.
 - 2. Plastic markers, with application systems. Install on insulation segment if required for hot noninsulated piping.
 - 3. Locate pipe markers on exposed piping according to the following:
 - a. Near each valve and control device.
 - b. Near each branch, excluding short takeoffs for equipment and terminal units. Mark each pipe at branch if flow pattern is not obvious.
 - c. Near locations where pipes pass through walls or floors or enter inaccessible enclosures.
 - d. At manholes and similar access points that permit view of concealed piping.
 - e. Near major equipment items and other points of origination and termination.

- B. Equipment: Install engraved plastic-laminate sign or equipment marker on or near each major item of equipment.
 - 1. Lettering Size: Minimum 1/4 inch high for name of unit if viewing distance is less than 24 inches, 1/2 inch high for distances up to 72 inches, and proportionately larger lettering for greater distances. Provide secondary lettering two-thirds to three-fourths of size of principal lettering.
 - 2. Text of Signs: Provide name of identified unit. Include text to distinguish among multiple units, inform user of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.
- C. Adjusting: Relocate identifying devices that become visually blocked by work of this or other Divisions.

3.9 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - Use 3000-psi 28-day compressive-strength concrete and reinforcement as specified in Section 03300 "Cast-in-Place Concrete." And Section 03301 "Miscellaneous Cast-in-Place Concrete."

3.10 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Section 05500 "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor piped utility materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.11 GROUTING

- A. Mix and install grout for equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.

PIPED UTILITIES - BASIC MATERIALS AND METHODS

- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 02080

SECTION 02230 - SITE CLEARING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Protecting existing vegetation to remain.
 - 2. Removing existing vegetation.
 - 3. Clearing and grubbing.
 - 4. Stripping and stockpiling topsoil.
 - 5. Removing above- and below-grade site improvements.
 - 6. Disconnecting, capping or sealing, and removing or abandoning site utilities in place.
 - 7. Temporary erosion- and sedimentation-control measures.
- B. Related Sections:
 - Section 01361 "Sustainable Design Requirements LEED for New Construction and Major Renovations"; Section 01362 "Sustainable Design Requirements - LEED for Commerical Interiors"; Section 01363 "Sustainable Design Requirements - LEED for Core and Shell Development"; Section 01364 "Sustainable Design Requirements - LEED for Schools"; and Section 01524 "Construction Waste Management for additional LEED requirements.
 - 2. Section 01500 "Temporary Facilities and Controls" for temporary utility services, construction and support facilities, security and protection facilities, and temporary erosion- and sedimentation-control measures.
 - 3. Section 01700 "Execution Requirements" for field engineering and surveying.
 - 4. Section 01732 "Selective Demolition" for partial demolition of buildings or structures.
 - 5. Section 02221 "Building Demolition" for demolition of buildings, structures, and site improvements.

1.3 DEFINITIONS

- A. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.
- B. Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil; but in disturbed areas such as urban environments, the surface soil can be subsoil.
- C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing inplace surface soil and is the zone where plant roots grow.

- D. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing inplace surface soil and is the zone where plant roots grow. Its appearance is generally friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of subsoil and weeds, roots, toxic materials, or other nonsoil materials.
- E. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction, and indicated on Drawings.
- F. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction, and indicated on Drawings.
- G. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 MATERIAL OWNERSHIP

- A. Except for stripped topsoil and other materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.
- 1.5 INFORMATIONAL SUBMITTALS
 - A. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.
 - 1. Use sufficiently detailed photographs or videotape.
 - 2. Include plans and notations to indicate specific wounds and damage conditions of each tree or other plants designated to remain.
 - B. Record Drawings: Identifying and accurately showing locations of capped utilities and other subsurface structural, electrical, and mechanical conditions.

1.6 QUALITY ASSURANCE

A. Preinstallation Conference: Conduct conference at Project site.

1.7 PROJECT CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
- B. Improvements on Adjoining Property: Authority for performing site clearing indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.
 - 1. Do not proceed with work on adjoining property until directed by Architect.

- C. Salvable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises where indicated.
- D. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing.
- E. Do not commence site clearing operations until temporary erosion- and sedimentationcontrol and plant-protection measures are in place.
- F. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - 3. Foot traffic.
 - 4. Erection of sheds or structures.
 - 5. Impoundment of water.
 - 6. Excavation or other digging unless otherwise indicated.
 - 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
- G. Do not direct vehicle or equipment exhaust towards protection zones.
- H. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.
- I. Soil Stripping, Handling, and Stockpiling: Perform only when the topsoil is dry or slightly moist.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 02300 "Earthwork."
 - 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.
- B. Antirust Coating: Fast-curing, lead- and chromate-free, self-curing, universal modified-alkyd primer complying with MPI #79, Alkyd Anticorrosive Metal Primer or SSPC-Paint 20 or SSPC-Paint 29 zinc-rich coating.
 - 1. Use coating with a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect and maintain benchmarks and survey control points from disturbance during construction.

- B. Locate and clearly identify trees, shrubs, and other vegetation to remain or to be relocated. Flag or Wrap a 1-inch blue vinyl tie tape flag around each tree trunk at 54 inches above the ground.
- C. Protect existing site improvements to remain from damage during construction.
 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

- A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.
- B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
- C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
- D. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

3.3 TREE AND PLANT PROTECTION

- A. General: Protect trees and plants remaining on-site according to requirements in Section 02231 "Tree Protection and Trimming."
- B. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations, in a manner approved by Architect.

3.4 EXISTING UTILITIES

- A. Owner will arrange for disconnecting and sealing indicated utilities that serve existing structures before site clearing, when requested by Contractor.
 - 1. Verify that utilities have been disconnected and capped before proceeding with site clearing.
- B. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.
 - 1. Arrange with utility companies to shut off indicated utilities.
 - 2. Owner will arrange to shut off indicated utilities when requested by Contractor.
- C. Locate, identify, and disconnect utilities indicated to be abandoned in place.
- D. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Architect not less than 7 days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Architect's written permission.

- E. Excavate for and remove underground utilities indicated to be removed.
- F. Removal of underground utilities is included in earthwork sections and with applicable fire suppression, plumbing, HVAC, electrical, communications, electronic safety and security and utilities sections and Section 02221 "Building Demolition" and Section 01732 "Selective Demolition."

3.5 CLEARING AND GRUBBING

- A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 - 1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
 - 2. Grind down stumps and remove roots, obstructions, and debris to a depth of 18 inches (below exposed subgrade.
 - 3. Use only hand methods for grubbing within protection zones.
 - 4. Chip removed tree branches and stockpile in areas approved by Architect or dispose of off-site.
- B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 - 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.6 TOPSOIL STRIPPING

- A. Remove sod and grass before stripping topsoil.
- B. Strip topsoil to depth indicated on Drawings in a manner to prevent intermingling with underlying subsoil or other waste materials.
 - 1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects more than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.
- C. Stockpile topsoil away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.
 - 1. Limit height of topsoil stockpiles to 72 inches.
 - 2. Do not stockpile topsoil within protection zones.
 - 3. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
 - 4. Stockpile surplus topsoil to allow for respreading deeper topsoil.

3.7 SITE IMPROVEMENTS

- A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.
- B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.

- 1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut along line of existing pavement to remain before removing adjacent existing pavement. Saw-cut faces vertically.
- 2. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer's written instructions. Keep paint off surfaces that will remain exposed.

3.8 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.
- B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 02230

SECTION 02300 - EARTHWORK

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses, and plants.
 - 2. Excavating and backfilling for buildings and structures.
 - 3. Drainage course for concrete slabs-on-grade.
 - 4. Subbase course for concrete walks, pavements.
 - 5. Subbase course and base course for asphalt paving.
 - 6. Subsurface drainage backfill for walls and trenches.
 - 7. Excavating and backfilling trenches for utilities and pits for buried utility structures.
 - 8. Excavating well hole to accommodate elevator-cylinder assembly.
- B. Related Sections:
 - 1. Section 01320 "Construction Progress Documentation", and Section 01322 "Photographic Documentation" for recording pre-excavation and earth moving progress.
 - 2. Section 01500 "Temporary Facilities and Controls" for temporary controls, utilities, and support facilities; also for temporary site fencing if not in another Section.
 - 3. Section 02230 "Site Clearing" for site stripping, grubbing, stripping and stockpiling topsoil, and removal of above- and below-grade improvements and utilities.
 - 4. Section 02240 "Dewatering" for lowering and disposing of ground water during construction.
 - 5. Section 02260 "Excavation Support and Protection" for shoring, bracing, and sheet piling of excavations.
 - 6. Section 02466 "Drilled Piers" for excavation of shafts and disposal of surplus excavated material.
 - 7. Section 02620 "Subdrainage" for drainage of foundations, slabs-on-grade, walls, and landscaped areas.
 - 8. Section 02920 "Lawns and Grasses" for finish grading in turf and grass areas, including preparing and placing planting soil for turf areas.
 - 9. Section 02930 "Exterior Plants" for finish grading in planting areas and tree and shrub pit excavation and planting.
 - 10. Section 03300 "Cast-in-Place Concrete" for granular course if placed over vapor retarder and beneath the slab-on-grade.
 - 11. Section 14240 "Hydraulic Elevators", and Section 14245 "Hydraulic Freight Elevators" for excavating well hole to accommodate elevator-cylinder assembly.

1.3 UNIT PRICES

- A. Work of this Section is affected by unit prices for earth moving specified in Section 01270 "Unit Prices."
- B. Quantity allowances for earth moving are included in Section 01210 "Allowances."
- C. Rock Measurement: Volume of rock actually removed, measured in original position, but not to exceed the following. Unit prices for rock excavation include replacement with approved materials.
 - 1. 24 inches outside of concrete forms other than at footings.
 - 2. 12 inches outside of concrete forms at footings.
 - 3. 6 inches outside of minimum required dimensions of concrete cast against grade.
 - 4. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
 - 5. 6 inches beneath bottom of concrete slabs-on-grade.
 - 6. 6 inches beneath pipe in trenches, and the greater of 24 inches wider than pipe or 42 inches wide.

1.4 DEFINITIONS

- A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.
- C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.
- D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.
- F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 - 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract provisions for unit prices, changes in the Work.
 - 2. Bulk Excavation: Excavation more than 10 feet in width and more than 30 feet in length.
 - 3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.
- G. Fill: Soil materials used to raise existing grades.

- H. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material that exceed 1 cu. yd. for bulk excavation or 3/4 cu. yd. for footing, trench, and pit excavation that cannot be removed by rock excavating equipment equivalent to the following in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted:
 - 1. Excavation of Footings, Trenches, and Pits: Late-model, track-mounted hydraulic excavator; equipped with a 42-inch wide, maximum, short-tip-radius rock bucket; rated at not less than 138-hp flywheel power with bucket-curling force of not less than 28,700 lbf and stick-crowd force of not less than 18,400 lbf with extra-long reach boom; measured according to SAE J-1179.
 - 2. Bulk Excavation: Late-model, track-mounted loader; rated at not less than 230-hp flywheel power and developing a minimum of 47,992-lbf breakout force with a general-purpose bare bucket; measured according to SAE J-732.
- I. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material 3/4 cu. yd. or more in volume that exceed a standard penetration resistance of 100 blows/2 inches when tested by a geotechnical testing agency, according to ASTM D 1586.
- J. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- K. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.
- L. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.
- M. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of the following manufactured products required:
 - 1. Geotextiles.
 - 2. Controlled low-strength material, including design mixture.
 - 3. Geofoam.
 - 4. Warning tapes.
- B. Samples for Verification: For the following products, in sizes indicated below:
 - 1. Geotextile: 12 by 12 inches
 - 2. Warning Tape: 12 inches long; of each color.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- B. Material Test Reports: For each on-site, and, borrow soil material proposed for fill and backfill as follows:
 - 1. Classification according to ASTM D 2487.
 - 2. Laboratory compaction curve according to ASTM D 698, or ASTM D 1557.
- C. Blasting plan approved by authorities having jurisdiction.
- D. Seismic survey report from seismic survey agency.
- E. Pre-excavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by earth moving operations. Submit before earth moving begins.

1.7 QUALITY ASSURANCE

- A. Blasting: Comply with applicable requirements in NFPA 495, "Explosive Materials Code," and prepare a blasting plan reporting the following:
 - 1. Types of explosive and sizes of charge to be used in each area of rock removal, types of blasting mats, sequence of blasting operations, and procedures that will prevent damage to site improvements and structures on Project site and adjacent properties.
 - 2. Seismographic monitoring during blasting operations.
- B. Seismic Survey Agency: An independent testing agency, acceptable to authorities having jurisdiction, experienced in seismic surveys and blasting procedures to perform the following services:
 - 1. Report types of explosive and sizes of charge to be used in each area of rock removal, types of blasting mats, sequence of blasting operations, and procedures that will prevent damage to site improvements and structures on Project site and adjacent properties.
 - 2. Seismographic monitoring during blasting operations.
- C. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E 329 and ASTM D 3740 for testing indicated.
- D. Pre-excavation Conference: Conduct conference at Project site.

1.8 PROJECT CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth moving operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
- B. Improvements on Adjoining Property: Authority for performing earth moving indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.
 - 1. Do not proceed with work on adjoining property until directed by Architect.

- C. Utility Locator Service: Notify utility locator service for area where Project is located before beginning earth moving operations.
- D. Do not commence earth moving operations until temporary erosion- and sedimentation-control measures, specified in Section 01500 "Temporary Facilities and Controls,", Section 02230 "Site Clearing," are in place.
- E. Do not commence earth moving operations until plant-protection measures specified in Section 02231 "Tree Protection and Trimming" are in place.
- F. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - 3. Foot traffic.
 - 4. Erection of sheds or structures.
 - 5. Impoundment of water.
 - 6. Excavation or other digging unless otherwise indicated.
 - 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
- G. Do not direct vehicle or equipment exhaust towards protection zones.
- H. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D 2487, and Groups A-1, A-2-4, A-2-5, and A-3 according to AASHTO M 145, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.
- C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487, and Groups A-2-6, A-2-7, A-4, A-5, A-6, and A-7 according to AASHTO M 145, or a combination of these groups.
 - 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.
- D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- E. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 95 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 sieve.

- F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- G. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.
- H. Drainage Course: Narrowly graded mixture of washed and crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and 0 to 5 percent passing a No. 8 sieve.
- I. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D 448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch sieve and 0 to 5 percent passing a No. 4 sieve.
- J. Sand: ASTM C 33; fine aggregate.
- K. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.2 GEOTEXTILES

- A. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:
 - 1. Survivability: Class 2; AASHTO M 288.
 - 2. Grab Tensile Strength: 157 lbf; ASTM D 4632.
 - 3. Sewn Seam Strength: 142 lbf; ASTM D 4632.
 - 4. Tear Strength: 56 lbf ; ASTM D 4533.
 - 5. Puncture Strength: 56 lbf; ASTM D 4833.
 - 6. Apparent Opening Size: No. 40 sieve, maximum; ASTM D 4751.
 - 7. Permittivity: 0.5 per second, minimum; ASTM D 4491.
 - 8. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.
- B. Separation Geotextile: Woven geotextile fabric, manufactured for separation applications, made from polyolefins or polyesters; with elongation less than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:
 - 1. Survivability: Class 2; AASHTO M 288.
 - 2. Grab Tensile Strength: 247 lbf; ASTM D 4632.
 - 3. Sewn Seam Strength: 222 lbf; ASTM D 4632.
 - 4. Tear Strength: 90 lbf; ASTM D 4533.
 - 5. Puncture Strength: 90 lbf; ASTM D 4833.
 - 6. Apparent Opening Size: No. 60 sieve, maximum; ASTM D 4751.
 - 7. Permittivity: 0.02 per second, minimum; ASTM D 4491.
 - 8. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.
2.3 CONTROLLED LOW-STRENGTH MATERIAL

- A. Controlled Low-Strength Material: Self-compacting, low-density, flowable concrete material produced from the following:
 - 1. Portland Cement: ASTM C 150.
 - 2. Fly Ash: ASTM C 618, Class C or F.
 - 3. Normal-Weight Aggregate: ASTM C 33, 3/4-inch nominal maximum aggregate size.
 - 4. Foaming Agent: ASTM C 869.
 - 5. Water: ASTM C 94/C 94M.
 - 6. Air-Entraining Admixture: ASTM C 260.
- B. Produce low-density, controlled low-strength material with the following physical properties:
 - 1. As-Cast Unit Weight: 30 to 36 lb/cu. ft. at point of placement, when tested according to ASTM C 138/C 138M.
 - 2. Compressive Strength: 80 psi, when tested according to ASTM C 495.
- C. Produce conventional-weight, controlled low-strength material with 80-psi compressive strength when tested according to ASTM C 495.

2.4 ACCESSORIES

- A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility; colored as follows:
 - 1. Red: Electric.
 - 2. Yellow: Gas, oil, steam, and dangerous materials.
 - 3. Orange: Telephone and other communications.
 - 4. Blue: Water systems.
 - 5. Green: Sewer systems.
- B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:
 - 1. Red: Electric.
 - 2. Yellow: Gas, oil, steam, and dangerous materials.
 - 3. Orange: Telephone and other communications.
 - 4. Blue: Water systems.
 - 5. Green: Sewer systems.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth moving operations.

- B. Protect and maintain erosion and sedimentation controls during earth moving operations.
- C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 DEWATERING

- A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
- B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
 - 1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.3 EXPLOSIVES

- A. Explosives: Do not use explosives.
- B. Explosives: Obtain written permission from authorities having jurisdiction before bringing explosives to Project site or using explosives on Project site.
 - 1. Perform blasting without damaging adjacent structures, property, or site improvements.
 - 2. Perform blasting without weakening the bearing capacity of rock subgrade and with the least-practicable disturbance to rock to remain.

3.4 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.
 - 2. Remove rock to lines and grades indicated to permit installation of permanent construction without exceeding the following dimensions:
 - a. 24 inches outside of concrete forms other than at footings.
 - b. 12 inches outside of concrete forms at footings.
 - c. 6 inches outside of minimum required dimensions of concrete cast against grade.
 - d. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
 - e. 6 inches beneath bottom of concrete slabs-on-grade.
 - f. 6 inches beneath pipe in trenches, and the greater of 24 inches wider than pipe or 42 inches wide.
- B. Classified Excavation: Excavate to subgrade elevations. Material to be excavated will be classified as earth and rock. Do not excavate rock until it has been classified and cross sectioned by Architect. The Contract Sum will be adjusted for rock excavation according to unit prices included in the Contract Documents. Changes in the Contract Time may be authorized for rock excavation.

- 1. Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation.
 - a. Intermittent drilling; blasting, if permitted; ram hammering; or ripping of material not classified as rock excavation is earth excavation.
- 2. Rock excavation includes removal and disposal of rock. Remove rock to lines and subgrade elevations indicated to permit installation of permanent construction without exceeding the following dimensions:
 - a. 24 inches outside of concrete forms other than at footings.
 - b. 12 inches outside of concrete forms at footings.
 - c. 6 inches outside of minimum required dimensions of concrete cast against grade.
 - d. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
 - e. 6 inches beneath bottom of concrete slabs-on-grade.
 - f. 6 inches beneath pipe in trenches, and the greater of 24 inches wider than pipe or 42 inches wide.

3.5 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
 - 2. Pile Foundations: Stop excavations 6 to 12 inches above bottom of pile cap before piles are placed. After piles have been driven, remove loose and displaced material. Excavate to final grade, leaving solid base to receive concrete pile caps.
 - 3. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.
- B. Excavations at Edges of Tree- and Plant-Protection Zones:
 - 1. Excavate by hand to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 - 2. Cut and protect roots according to requirements in Section 02231 "Tree Protection and Trimming."

3.6 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.7 EXCAVATION FOR UTILITY TRENCHES

- A. Excavate trenches to indicated gradients, lines, depths, and elevations.
 - 1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.

EARTHWORK

- B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.
 - 1. Clearance: 12 inches each side of pipe or conduit as indicated.
- C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.
 - 1. For pipes and conduit less than 6 inches in nominal diameter, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
 - 2. For pipes and conduit 6 inches or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe or conduit circumference. Fill depressions with tamped sand backfill.
 - 3. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit on an undisturbed subgrade.
 - 4. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.
- D. Trench Bottoms: Excavate trenches 4 inches deeper than bottom of pipe and conduit elevations to allow for bedding course. Hand-excavate deeper for bells of pipe.
 - 1. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.
- E. Trenches in Tree- and Plant-Protection Zones:
 - 1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrowtine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 - 2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.
 - 3. Cut and protect roots according to requirements in Section 02231 "Tree Protection and Trimming."

3.8 EXCAVATION FOR ELEVATOR CYLINDER

- A. Drill well hole plumb in elevator pit to accommodate installation of elevator-cylinder assembly. Coordinate with applicable requirements for diameter and tolerances in Section 14240 "Hydraulic Elevators.", and Section 14245 "Hydraulic Freight Elevators."
- B. Provide well casing as necessary to retain walls of well hole.

3.9 SUBGRADE INSPECTION

- A. Notify Architect when excavations have reached required subgrade.
- B. If Architect determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.

- C. Proof-roll subgrade below the building slabs and pavements with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 - 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
 - 2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.
- D. Authorized additional excavation and replacement material will be paid for according to Contract provisions.
- E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.10 UNAUTHORIZED EXCAVATION

- A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi, may be used when approved by Architect.
 - 1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Architect.

3.11 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.12 BACKFILL

- A. Place and compact backfill in excavations promptly, but not before completing the following:
 - 1. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
 - 2. Surveying locations of underground utilities for Record Documents.
 - 3. Testing and inspecting underground utilities.
 - 4. Removing concrete formwork.
 - 5. Removing trash and debris.
 - 6. Removing temporary shoring and bracing, and sheeting.
 - 7. Installing permanent or temporary horizontal bracing on horizontally supported walls.
- B. Place backfill on subgrades free of mud, frost, snow, or ice.

3.13 UTILITY TRENCH BACKFILL

A. Place backfill on subgrades free of mud, frost, snow, or ice.

- B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 03300 "Cast-in-Place Concrete", and Section 03301 "Miscellaneous Cast-in-Place Concrete."
- D. Trenches under Roadways: Provide 4-inch thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase course. Concrete is specified in Section 03300 "Cast-in-Place Concrete" and Section 03301 "Miscellaneous Cast-in-Place Concrete."
- E. Backfill voids with satisfactory soil while removing shoring and bracing.
- F. Place and compact initial backfill of subbase material, satisfactory soil, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.
 - 1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
- G. Controlled Low-Strength Material: Place initial backfill of controlled low-strength material to a height of 12 inches over the pipe or conduit. Coordinate backfilling with utilities testing.
- H. Place and compact final backfill of satisfactory soil to final subgrade elevation.
- I. Controlled Low-Strength Material: Place final backfill of controlled low-strength material to final subgrade elevation.
- J. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.14 SOIL FILL

- A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
- B. Place and compact fill material in layers to required elevations as follows:
 - 1. Under grass and planted areas, use satisfactory soil material.
 - 2. Under walks and pavements, use satisfactory soil material.
 - 3. Under steps and ramps, use engineered fill.
 - 4. Under building slabs, use engineered fill.
 - 5. Under footings and foundations, use engineered fill.
- C. Place soil fill on subgrades free of mud, frost, snow, or ice.

3.15 GEOFOAM FILL

- A. Place a leveling course of sand, 2 inches thick, over subgrade. Finish leveling course to a tolerance of 1/2 inch when tested with a 10-foot straightedge.
 - 1. Place leveling course on subgrades free of mud, frost, snow, or ice.
- B. Install geofoam blocks in layers with abutting edges and ends and with the long dimension of each block at right angles to blocks in each subsequent layer. Offset joints of blocks in successive layers.
- C. Install geofoam connectors at each layer of geofoam to resist horizontal displacement according to geofoam manufacturer's written instructions.
- D. Cover geofoam with subdrainage geotextile before placing overlying soil materials.

3.16 SOIL MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
 - 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.17 COMPACTION OF SOIL BACKFILLS AND FILLS

- A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.
- C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 698, or ASTM D 1557:
 - 1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill soil material at 95 percent.
 - 2. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 92 percent.
 - 3. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 - 4. For utility trenches, compact each layer of initial and final backfill soil material at 85 percent.

3.18 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.

- 1. Provide a smooth transition between adjacent existing grades and new grades.
- 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
 - 1. Turf or Unpaved Areas: Plus or minus 1 inch
 - 2. Walks: Plus or minus 1 inch
 - 3. Pavements: Plus or minus 1/2 inch
- C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.

3.19 SUBSURFACE DRAINAGE

- A. Subdrainage Pipe: Specified in Section 02620 "Subdrainage."
- B. Subsurface Drain: Place subsurface drainage geotextile around perimeter of subdrainage trench. Place a 6-inch course of filter material on subsurface drainage geotextile to support subdrainage pipe. Encase subdrainage pipe in a minimum of 12 inches of filter material, placed in compacted layers 6 inches thick, and wrap in subsurface drainage geotextile, overlapping sides and ends at least 6 inches.
 - 1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698 with a minimum of two passes of a plate-type vibratory compactor.
- C. Drainage Backfill: Place and compact filter material over subsurface drain, in width indicated, to within 12 inches of final subgrade, in compacted layers 6 inches thick. Overlay drainage backfill with one layer of subsurface drainage geotextile, overlapping sides and ends at least 6 inches.
 - 1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698 with a minimum of two passes of a plate-type vibratory compactor.
 - 2. Place and compact impervious fill over drainage backfill in 6-inch thick compacted layers to final subgrade.

3.20 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

- A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:
 - 1. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 - 2. Place base course material over subbase course under hot-mix asphalt pavement.
 - 3. Shape subbase course and base course to required crown elevations and cross-slope grades.
 - 4. Place subbase course and base course 6 inches or less in compacted thickness in a single layer.

- 5. Place subbase course and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
- 6. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 698 and ASTM D 1557.
- C. Pavement Shoulders: Place shoulders along edges of subbase course and base course to prevent lateral movement. Construct shoulders, at least 12 inches wide, of satisfactory soil materials and compact simultaneously with each subbase and base layer to not less than 95 percent of maximum dry unit weight according to ASTM D 698, and ASTM D 1557.

3.21 DRAINAGE COURSE UNDER CONCRETE SLABS-ON-GRADE

- A. Place drainage course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabson-grade as follows:
 - 1. Install subdrainage geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 - 2. Place drainage course 6 inches or less in compacted thickness in a single layer.
 - 3. Place drainage course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
 - 4. Compact each layer of drainage course to required cross sections and thicknesses to not less than **95** percent of maximum dry unit weight according to ASTM D 698.

3.22 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:
 - 1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
 - 2. Determine that fill material and maximum lift thickness comply with requirements.
 - 3. Determine, at the required frequency, that in-place density of compacted fill complies with requirements.
- B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.
- C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
- D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Architect.

- E. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:
 - 1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. or less of paved area or building slab, but in no case fewer than three tests.
 - 2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet or less of wall length, but no fewer than two tests.
 - 3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 150 feet or less of trench length, but no fewer than two tests.
- F. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.23 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 - 1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.24 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.
- B. Transport surplus satisfactory soil to designated storage areas on Owner's property. Stockpile or spread soil as directed by Architect.
 - 1. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 02300

SECTION 02510 - WATER DISTRIBUTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes water-distribution piping and related components outside the building for water service, fire-service mains, combined water service and fire-service mains.
- B. Utility-furnished products include water meters that will be furnished to the site, ready for installation.

1.3 DEFINITIONS

- A. EPDM: Ethylene propylene diene terpolymer rubber.
- B. LLDPE: Linear, low-density polyethylene plastic.
- C. PA: Polyamide (nylon) plastic.
- D. PE: Polyethylene plastic.
- E. PP: Polypropylene plastic.
- F. PVC: Polyvinyl chloride plastic.
- G. RTRF: Reinforced thermosetting resin (fiberglass) fittings.
- H. RTRP: Reinforced thermosetting resin (fiberglass) pipe.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.
 - 1. Wiring Diagrams: Power, signal, and control wiring for alarms.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.
- B. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For water valves and specialties to include in emergency, operation, and maintenance manuals.
- 1.7 QUALITY ASSURANCE
 - A. Regulatory Requirements:
 - 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 - 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 - 3. Comply with standards of authorities having jurisdiction for fire-suppression waterservice piping, including materials, hose threads, installation, and testing.
 - B. Piping materials shall bear label, stamp, or other markings of specified testing agency.
 - C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - D. Comply with ASTM F 645 for selection, design, and installation of thermoplastic water piping.
 - E. Comply with FMG's "Approval Guide" or UL's "Fire Protection Equipment Directory" for fireservice-main products.
 - F. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.
 - G. NSF Compliance:
 - 1. Comply with NSF 14 for plastic potable-water-service piping.
 - 2. Comply with NSF 61 for materials for water-service piping and specialties for domestic water.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 - 1. Ensure that valves are dry and internally protected against rust and corrosion.
 - 2. Protect valves against damage to threaded ends and flange faces.
 - 3. Set valves in best position for handling. Set valves closed to prevent rattling.

- B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
 - 1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 - 2. Protect from weather. Store indoors and maintain temperature higher than ambient dewpoint temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.
- C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
- D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.
- E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.
- F. Protect flanges, fittings, and specialties from moisture and dirt.
- G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

1.9 PROJECT CONDITIONS

- A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:
 - 1. Notify **Architect**, Construction Manager, or Owner no fewer than 7 days in advance of proposed interruption of service.
 - 2. Do not proceed with interruption of water-distribution service without Architect's Construction Manager's, or Owner's written permission.

1.10 COORDINATION

A. Coordinate connection to water main with utility company.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L, water tube, annealed temper.
 - 1. Copper, Solder-Joint Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint pressure type. Furnish only wrought-copper fittings if indicated.
 - 2. Copper, Pressure-Seal Fittings:
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Viega; Plumbing & Heating Systems.
- c. NPS 2 and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
- d. NPS 2-1/2 to NPS 4: Bronze fitting with stainless-steel grip ring and EPDM Oring seal in each end.
- B. Hard Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L, water tube, drawn temper.
 - 1. Copper, Solder-Joint Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint pressure type. Furnish only wrought-copper fittings if indicated.
 - 2. Copper, Pressure-Seal Fittings:
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Viega; Plumbing & Heating Systems.
 - c. NPS 2 and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 - d. NPS 2-1/2 to NPS 4: Bronze fitting with stainless-steel grip ring and EPDM Oring seal in each end.
- C. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.
- D. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

2.2 DUCTILE-IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Gaskets: AWWA C111, rubber.
- C. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, rounded-grooved ends.
 - 1. Grooved-End, Ductile-Iron Pipe Appurtenances:
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Anvil International, Inc.
 - 2) Victaulic Company of America.
- c. Grooved-End, Ductile-Iron Fittings: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron castings with dimensions matching pipe.
- d. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.
- D. Flanges: ASME 16.1, Class 125, cast iron.

2.3 PE PIPE AND FITTINGS

- A. PE, ASTM Pipe: ASTM D 2239, SIDR No. 5.3, 7, or 9; with PE compound number required to give pressure rating not less than 160 psig.
 - 1. Insert Fittings for PE Pipe: ASTM D 2609, made of PA, PP, or PVC with serrated male insert ends matching inside of pipe. Include bands or crimp rings.
 - 2. Molded PE Fittings: ASTM D 3350, PE resin, socket- or butt-fusion type, made to match PE pipe dimensions and class.
- B. PE, AWWA Pipe: AWWA C906, DR No. 7.3, 9, or 9.3; with PE compound number required to give pressure rating not less than 160 psig.
 - 1. PE, AWWA Fittings: AWWA C906, socket- or butt-fusion type, with DR number matching pipe and PE compound number required to give pressure rating not less than 160 psig.
- C. PE, Fire-Service Pipe: ASTM F 714, AWWA C906, or equivalent for PE water pipe; FMG approved, with minimum thickness equivalent to FMG [Class 150] [and] [Class 200].
 - 1. Molded PE Fittings: ASTM D 3350, PE resin, socket- or butt-fusion type, made to match PE pipe dimensions and class.

2.4 PVC PIPE AND FITTINGS

- A. PVC, Schedule 40 Pipe: ASTM D 1785.
 1. PVC, Schedule 40 Socket Fittings: ASTM D 2466.
- B. PVC, Schedule 80 Pipe: ASTM D 1785.
 - 1. PVC, Schedule 80 Socket Fittings: ASTM D 2467.
 - 2. PVC, Schedule 80 Threaded Fittings: ASTM D 2464.
- C. PVC, AWWA Pipe: AWWA C900, Class 150 and Class 200, with bell end with gasket, and with spigot end.
 - 1. Comply with UL 1285 for fire-service mains if indicated.
 - 2. PVC Fabricated Fittings: AWWA C900, Class 150 and Class 200, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 - 3. PVC Molded Fittings: AWWA C907, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.

- 4. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - a. Gaskets: AWWA C111, rubber.
- 5. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - a. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.5 FIBERGLASS PIPE AND FITTINGS

A. AWWA RTRP: AWWA C950, Class 150, Class 200 and Class 250, Type I or II, Grade 1, epoxy or Grade 2, polyester, with bell-and-spigot ends for bonded, with gasket or seal for gasketed joints. Liner is optional, unless otherwise indicated.

1. RTRF: AWWA C950, similar to pipe in material, pressure class, and joining method.

- B. UL RTRP: UL 1713, Class 150, Class 200 and Class 250, with bell-and-spigot ends with gasket or seal for gasketed joints. Liner is optional, unless otherwise indicated.
 - 1. RTRF: Similar to pipe in material, pressure class, and joining method.

2.6 SPECIAL PIPE FITTINGS

- A. Ductile-Iron Rigid Expansion Joints:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. EBAA Iron, Inc.
 - b. U.S. Pipe and Foundry Company.
 - Description: Three-piece, ductile-iron assembly consisting of telescoping sleeve with gaskets and restrained-type, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Select and assemble components for expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: 250 psig minimum.

Ductile-Iron Flexible Expansion Joints:

- 4. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 5. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. EBAA Iron, Inc.
 - b. Hays Fluid Controls; a division of ROMAC Industries Inc.
 - c. Star Pipe Products.
- 6. Description: Compound, ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.

- a. Pressure Rating: 250 psig minimum.
- B. Ductile-Iron Deflection Fittings:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. EBAA Iron, Inc.

- 3. Description: Compound, ductile-iron coupling fitting with sleeve and 1 or 2 flexing sections for up to 15-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 - a. Pressure Rating: 250 psig minimum.

2.7 JOINING MATERIALS

- A. Refer to Section 02080 "Piped Utilities Basic Materials and Methods" for commonly used joining materials.
- B. Brazing Filler Metals: AWS A5.8, BCuP Series.
- C. Bonding Adhesive for Fiberglass Piping: As recommended by fiberglass piping manufacturer.
- D. Plastic Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

2.8 PIPING SPECIALTIES

- A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.
- B. Tubular-Sleeve Pipe Couplings:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cascade Waterworks Manufacturing.
 - b. Dresser, Inc.; Dresser Piping Specialties.
 - c. Ford Meter Box Company, Inc. (The); Pipe Products Div.
 - d. Hays Fluid Controls; a division of ROMAC Industries Inc.
 - e. JCM Industries.
 - f. Smith-Blair, Inc.
 - g. Viking Johnson.
 - 3. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners and with ends of same sizes as piping to be joined.
 - a. Standard: AWWA C219.

- b. Center-Sleeve Material: Manufacturer's standard.
- c. Gasket Material: Natural or synthetic rubber.
- d. Pressure Rating: 150 psig minimum.
- e. Metal Component Finish: Corrosion-resistant coating or material.
- C. Split-Sleeve Pipe Couplings:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Victaulic Depend-O-Lok.
 - 3. Description: Metal, bolted, split-sleeve-type, reducing or transition coupling with sealing pad and closure plates, O-ring gaskets, and bolt fasteners.
 - a. Standard: AWWA C219.
 - b. Sleeve Material: Manufacturer's standard.
 - c. Sleeve Dimensions: Of thickness and width required to provide pressure rating.
 - d. Gasket Material: O-rings made of EPDM rubber, unless otherwise indicated.
 - e. Pressure Rating: 150 psig minimum.
 - f. Metal Component Finish: Corrosion-resistant coating or material.
- D. Flexible Connectors:
 - 1. Nonferrous-Metal Piping: Bronze hose covered with bronze wire braid; with coppertube, pressure-type, solder-joint ends or bronze flanged ends brazed to hose.
 - 2. Ferrous-Metal Piping: Stainless-steel hose covered with stainless-steel wire braid; with ASME B1.20.1, threaded steel pipe nipples or ASME B16.5, steel pipe flanges welded to hose.
- E. Dielectric Fittings:
 - 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
 - 2. Dielectric Unions:
 - a. Description:
 - 1) Standard: ASSE 1079.
 - 2) Pressure Rating: 125 psig minimum at 180 deg F
 - 3) End Connections: Solder-joint copper alloy and threaded ferrous.
 - 3. Dielectric Flanges:
 - a. Description:
 - 1) Standard: ASSE 1079.
 - 2) Factory-fabricated, bolted, companion-flange assembly.
 - 3) Pressure Rating: 125 psig minimum at 180 deg F.
 - 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
 - 4. Dielectric-Flange Insulating Kits:
 - a. Description:
 - 1) Nonconducting materials for field assembly of companion flanges.
 - 2) Pressure Rating: 150 psig.
 - 3) Gasket: Neoprene or phenolic.
 - 4) Bolt Sleeves: Phenolic or polyethylene.

- 5) Washers: Phenolic with steel backing washers.
- 5. Dielectric Nipples:
 - a. Description:
 - 1) Standard: IAPMO PS 66
 - 2) Electroplated steel nipple. complying with ASTM F 1545.
 - 3) Pressure Rating: 300 psig at 225 deg F
 - 4) End Connections: Male threaded or grooved.
 - 5) Lining: Inert and noncorrosive, propylene.

2.9 CORROSION-PROTECTION PIPING ENCASEMENT

- A. Encasement for Underground Metal Piping:
 - 1. Standards: ASTM A 674 or AWWA C105.
 - 2. Form: Sheet or tube
 - 3. Material: LLDPE film of 0.008-inch minimum thickness.
 - 4. Material: LLDPE film of 0.008-inch minimum thickness, or high-density, crosslaminated PE film of 0.004-inch minimum thickness.
 - 5. Material: High-density, crosslaminated PE film of 0.004-inch minimum thickness.

2.10 GATE VALVES

- A. AWWA, Cast-Iron Gate Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American AVK Co.; Valves & Fittings Div.
 - b. American Cast Iron Pipe Co.; American Flow Control Div.
 - c. American Cast Iron Pipe Co.; Waterous Co. Subsidiary.
 - d. Crane Co.; Crane Valve Group; Stockham Div.
 - e. East Jordan Iron Works, Inc.
 - f. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 - g. McWane, Inc.; Kennedy Valve Div.
 - h. McWane, Inc.; M & H Valve Company Div.
 - i. McWane, Inc.; Tyler Pipe Div.; Utilities Div.
 - j. Mueller Co.; Water Products Div.
 - k. NIBCO INC.
 - 1. U.S. Pipe and Foundry Company.
 - 4. Nonrising-Stem, Metal-Seated Gate Valves:
 - a. Description: Gray- or ductile-iron body and bonnet; with cast-iron or bronze double-disc gate, bronze gate rings, bronze stem, and stem nut.
 - 1) Standard: AWWA C500.
 - 2) Minimum Pressure Rating: 200 psig.
 - 3) End Connections: Mechanical joint.
 - 4) Interior Coating: Complying with AWWA C550.
 - 5. Nonrising-Stem, Resilient-Seated Gate Valves:

- a. Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 - 1) Standard: AWWA C509.
 - 2) Minimum Pressure Rating: 200 psig.
 - 3) End Connections: Mechanical joint.
 - 4) Interior Coating: Complying with AWWA C550.
- 6. Nonrising-Stem, High-Pressure, Resilient-Seated Gate Valves:
 - a. Description: Ductile-iron body and bonnet; with bronze or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 - 1) Standard: AWWA C509.
 - 2) Minimum Pressure Rating: 250 psig.
 - 3) End Connections: Push on or mechanical joint.
 - 4) Interior Coating: Complying with AWWA C550.
- 7. OS&Y, Rising-Stem, Metal-Seated Gate Valves:
 - a. Description: Cast- or ductile-iron body and bonnet, with cast-iron double disc, bronze disc and seat rings, and bronze stem.
 - 1) Standard: AWWA C500.
 - 2) Minimum Pressure Rating: 200 psig.
 - 3) End Connections: Flanged.
- 8. OS&Y, Rising-Stem, Resilient-Seated Gate Valves:
 - a. Description: Cast- or ductile-iron body and bonnet, with bronze or gray- or ductile-iron gate, resilient seats, and bronze stem.
 - 1) Standard: AWWA C509.
 - 2) Minimum Pressure Rating: 200 psig.
 - 3) End Connections: Flanged.
- B. UL/FMG, Cast-Iron Gate Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American Cast Iron Pipe Co.; American Flow Control Div.
 - b. American Cast Iron Pipe Co.; Waterous Co. Subsidiary.
 - c. Crane Co.; Crane Valve Group; Stockham Div.
 - d. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 - e. McWane, Inc.; Kennedy Valve Div.
 - f. McWane, Inc.; M & H Valve Company Div.
 - g. Mueller Co.; Water Products Div.
 - h. NIBCO INC.
 - i. U.S. Pipe and Foundry Company.
 - 4. UL/FMG, Nonrising-Stem Gate Valves:
 - a. Description: Iron body and bonnet with flange for indicator post, bronze seating material, and inside screw.
 - 1) Standards: UL 262 and FMG approved.
 - 2) Minimum Pressure Rating: 175 psig.
 - 3) End Connections: Flanged.
 - 5. OS&Y, Rising-Stem Gate Valves:

- a. Description: Iron body and bonnet and bronze seating material.
 - 1) Standards: UL 262 and FMG approved.
 - 2) Minimum Pressure Rating: 175 psig.
 - 3) End Connections: Flanged.
- C. Bronze Gate Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Div.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Red-White Valve Corporation.
 - 4. OS&Y, Rising-Stem Gate Valves:
 - a. Description: Bronze body and bonnet and bronze stem.
 - 1) Standards: UL 262 and FMG approved.
 - 2) Minimum Pressure Rating: 175 psig.
 - 3) End Connections: Threaded.
 - 5. Nonrising-Stem Gate Valves:
 - a. Description: Class 125, Type 1, bronze with solid wedge, threaded ends, and malleable-iron handwheel.
 - 1) Standard: MSS SP-80.

2.11 GATE VALVE ACCESSORIES AND SPECIALTIES

- A. Tapping-Sleeve Assemblies:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American Cast Iron Pipe Co.; Waterous Co. Subsidiary.
 - b. East Jordan Iron Works, Inc.
 - c. Flowserve.
 - d. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 - e. McWane, Inc.; Kennedy Valve Div.
 - f. McWane, Inc.; M & H Valve Company Div.
 - g. Mueller Co.; Water Products Div.
 - h. U.S. Pipe and Foundry Company.
 - 4. Description: Sleeve and valve compatible with drilling machine.

- a. Standard: MSS SP-60.
- b. Tapping Sleeve: Cast- or ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
- c. Valve: AWWA, cast-iron, nonrising-stem, metal or resilient-seated gate valve with one raised face flange mating tapping-sleeve flange.
- B. Valve Boxes: Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches in diameter.
 - 1. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.
- C. Indicator Posts: UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.

2.12 CHECK VALVES

- A. AWWA Check Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American AVK Co.; Valves & Fittings Div.
 - b. American Cast Iron Pipe Co.; American Flow Control Div.
 - c. APCO Williamette; Valve and Primer Corporation.
 - d. Crane Co.; Crane Valve Group; Crane Valves.
 - e. Crane Co.; Crane Valve Group; Stockham Div.
 - f. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 - g. McWane, Inc.; Kennedy Valve Div.
 - h. McWane, Inc.; M & H Valve Company Div.
 - i. Mueller Co.; Water Products Div.
 - j. NIBCO INC.
 - k. Watts Water Technologies, Inc.
 - 4. Description: Swing-check type with resilient seat. Include interior coating according to AWWA C550 and ends to match piping.
 - a. Standard: AWWA C508.
 - b. Pressure Rating: 175 psig.
- B. UL/FMG, Check Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American Cast Iron Pipe Co.; Waterous Co. Subsidiary.
 - b. Crane Co.; Crane Valve Group; Stockham Div.
 - c. Globe Fire Sprinkler Corporation.
 - d. Kidde Fire Fighting.
 - e. MATCO-NORCA, Inc.
 - f. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 - g. McWane, Inc.; Kennedy Valve Div.
 - h. Mueller Co.; Water Products Div.
 - i. NIBCO INC.
 - j. Reliable Automatic Sprinkler Co., Inc.
 - k. Tyco Fire & Building Products.
 - 1. United Brass Works, Inc.
 - m. Victaulic Company of America.
 - n. Viking Corporation.
 - o. Watts Water Technologies, Inc.
- 4. Description: Swing-check type with pressure rating; rubber-face checks, unless otherwise indicated; and ends matching piping.
 - a. Standards: UL 312 and FMG approved.
 - b. Pressure Rating: 75 psig to 250 psig.

2.13 DETECTOR CHECK VALVES

- A. Detector Check Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Regulator Co.
 - b. Badger Meter, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Globe Fire Sprinkler Corporation.
 - e. McWane, Inc.; Kennedy Valve Div.
 - f. Mueller Co.; Hersey Meters.
 - g. Victaulic Company of America.
 - h. Viking Corporation.
 - i. Watts Water Technologies, Inc.
 - 4. Description: Galvanized cast-iron body, bolted cover with air-bleed device for access to internal parts, and flanged ends. Include one-piece bronze disc with bronze bushings, pivot, and replaceable seat. Include threaded bypass taps in inlet and outlet for bypass meter connection. Set valve to allow minimal water flow through bypass meter when major water flow is required.
 - a. Standards: UL 312 and FMG approved.
 - b. Pressure Rating: 175 psig.

- c. Water Meter: AWWA C700, disc type, at least one-fourth size of detector check valve. Include meter, bypass piping, gate valves, check valve, and connections to detector check valve.
- 5. Description: Iron body, corrosion-resistant clapper ring and seat ring material, flanged ends, with connections for bypass and installation of water meter.
 - a. Standards: UL 312 and FMG approved.
 - b. Pressure Rating: 175 psig.

2.14 BUTTERFLY VALVES

- A. AWWA Butterfly Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. DeZURIK/Copes-Vulcan; a unit of SPX Corporation.
 - b. Milliken Valve Company.
 - c. Mosser Valve; a division of Olson Technologies, Inc.
 - d. Mueller Co.; Water Products Div.
 - e. Pratt, Henry Company.
 - f. Val-Matic Valve & Manufacturing Corp.
 - 4. Description: Rubber seated.
 - a. Standard: AWWA C504.
 - b. Body: Cast or ductile iron.
 - c. Body Type: Wafer or flanged.
 - d. Pressure Rating: 150 psig.
- B. UL Butterfly Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. McWane, Inc.; Kennedy Valve Div.
 - b. Milwaukee Valve Company.
 - c. Mueller Co.; Water Products Div.
 - d. NIBCO INC.
 - e. Pratt, Henry Company.
 - 4. Description: Metal on resilient material seating.
 - a. Standards: UL 1091 and FMG approved.
 - b. Body: Cast or ductile iron.
 - c. Body Type: Wafer or flanged.
 - d. Pressure Rating: 175 psig.

2.15 PLUG VALVES

- A. Plug Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. DeZURIK/Copes-Vulcan; a unit of SPX Corporation.
 - b. Homestead Valve; a division of Olson Technologies, Inc.
 - c. Milliken Valve Company.
 - d. McWane, Inc.; M & H Valve Company Div.
 - e. Pratt, Henry Company.
 - f. Val-Matic Valve & Manufacturing Corp.
 - Description: Resilient-seated eccentric.
 - a. Standard: MSS SP-108.
 - b. Body: Cast iron.
 - c. Pressure Rating: 175-psig minimum CWP.
 - d. Seat Material: Suitable for potable-water service.

2.16 WATER METERS

4.

- A. Water meters will be furnished by utility company.
- B. Manufacturers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. AMCO Water Metering Systems.
 - b. Badger Meter, Inc.
 - c. Carlon Meter.
 - d. Hays Fluid Controls; a division of ROMAC Industries Inc.
 - e. McCrometer.
 - f. Mueller Co.; Hersey Meters.
 - g. Neptune Technology Group Inc.
 - h. Sensus Metering Systems.
- C. Displacement-Type Water Meters:
 - 1. Description: With bronze main case.
 - a. Standard: AWWA C700.
- D. Turbine-Type Water Meters: 1. Description:

- a. Standard: AWWA C701.
- E. Compound-Type Water Meters:
 - 1. Description:
 - a. Standard: AWWA C702.
- F. Remote Registration System:
 - 1. Description: Utility company standard; direct-reading type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 - a. Standard: AWWA C706.
- G. Remote Registration System:
 - 1. Description: Utility company standard; encoder type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 - a. Standard: AWWA C707.
 - b. Data-Acquisition Units: Comply with utility company requirements for type and quantity.
 - c. Visible Display Units: Comply with utility company requirements for type and quantity.

2.17 DETECTOR-TYPE WATER METERS

- A. Detector-Type Water Meters:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Badger Meter, Inc.
 - b. Mueller Co.; Hersey Meters.
 - c. Neptune Technology Group Inc.
 - d. Sensus Metering Systems.
- B. Description: Main line, proportional meter with second meter on bypass.
 - 1. Standards: AWWA C703, UL listed, and FMG approved.
 - 2. Pressure Rating: 150 psig.
 - 3. Bypass Meter: AWWA C701, turbine or AWWA C702, compound-type, bronze case. a. Size: At least one-half nominal size of main-line meter.
- C. Description: Main-line turbine meter with strainer and second meter on bypass.
 - 1. Standards: AWWA C703, UL listed, and FMG approved.
 - 2. Pressure Rating: 175 psig.
 - 3. Bypass Meter: AWWA C701, turbine-type, bronze case.
 - a. Size: At least NPS 2.
- D. Remote Registration System:

- 1. Description: Utility company standard; direct-reading type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 - a. Standard: AWWA C706.
- E. Remote Registration System:
 - 1. Description: Utility company standard; encoder type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 - a. Standard: AWWA C707.
 - b. Data-Acquisition Units: Comply with utility company requirements for type and quantity.
 - c. Visible Display Units: Comply with utility company requirements for type and quantity.

2.18 PRESSURE-REDUCING VALVES

- A. Water Regulators:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Cash Acme; a division of The Reliance Worldwide Corporation.
 - b. Conbraco Industries, Inc.
 - c. Honeywell Water Controls.
 - d. Watts Water Technologies, Inc.
 - e. Wilkins; a Zurn company.
 - 4. Standard: ASSE 1003.
 - 5. Pressure Rating: Initial pressure of 150 psig.
 - 6. Body: Bronze with chrome-plated finish] for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3
 - 7. Valves for Booster Heater Water Supply: Include integral bypass.
 - 8. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.
- B. Water Control Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. CLA-VAL Automatic Control Valves.
 - b. Flomatic Corporation.
 - c. OCV Control Valves.
 - d. Watts Regulator Co.; Ames Fluid Control Systems.

- e. Watts Regulator Co.; Watts ACV Division.
- f. Wilkins; a Zurn company.
- 4. Description: Pilot-operation, diaphragm-type, single-seated main water control valve with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot control valve, restrictor device, specialty fittings, and sensor piping.
 - a. Pressure Rating: Initial pressure of 150 psig minimum.
 - b. Main Valve Body: Cast- or ductile-iron body with AWWA C550 or FDAapproved, interior epoxy coating; or stainless-steel body.
 - 1) Pattern: Angle or Globe-valve design.
 - 2) Trim: Stainless steel.
 - c. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

2.19 RELIEF VALVES

- A. Air-Release Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Crispin-Multiplex Manufacturing Co.
 - b. GA Industries, Inc.
 - c. Val-Matic Valve & Manufacturing Corp.
 - 4. Description: Hydromechanical device to automatically release accumulated air.
 - a. Standard: AWWA C512.
 - b. Pressure Rating: 300 psig.
 - c. Body Material: Cast iron.
 - d. Trim Material: Stainless steel
- B. Air/Vacuum Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Crispin-Multiplex Manufacturing Co.
 - b. GA Industries, Inc.
 - c. Val-Matic Valve & Manufacturing Corp.
 - 4. Description: Direct-acting, float-operated, hydromechanical device with large orifice to automatically release accumulated air or to admit air during filling of piping.
 - a. Standard: AWWA C512.
 - b. Pressure Rating: 300 psig.
 - c. Body Material: Cast iron.
 - d. Trim Material: Stainless steel

C. Combination Air Valves:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Crispin-Multiplex Manufacturing Co.
 - b. GA Industries, Inc.
 - c. Val-Matic Valve & Manufacturing Corp.
- 4. Description: Float-operated, hydromechanical device to automatically release accumulated air or to admit air.
 - a. Standard: AWWA C512.
 - b. Pressure Rating: 300 psig
 - c. Body Material: Cast iron
 - d. Trim Material: Stainless steel

2.20 VACUUM BREAKERS

- A. Pressure Vacuum Breaker Assembly:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Regulator Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Flomatic Corporation.
 - e. Toro Co. (The); Irrigation Division.
 - f. Watts Water Technologies, Inc.
 - g. Wilkins; a Zurn company.
 - 4. Standard: ASSE 1020.
 - 5. Operation: Continuous-pressure applications.
 - 6. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
 - 7. Accessories: Ball valves on inlet and outlet.

2.21 BACKFLOW PREVENTERS

- A. Reduced-Pressure-Principle Backflow Preventers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Regulator Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Flomatic Corporation.
 - e. Watts Water Technologies, Inc.
 - f. Wilkins; a Zurn company.
- 4. Standard: ASSE 1013 or AWWA C511.
- 5. Operation: Continuous-pressure applications.
- 6. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
- 7. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved or steel with interior lining complying with AWWA C550 or that is FDA approved.
- 8. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
- 9. Accessories:
 - a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; OS&Y gate type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow preventer connection.
- B. Double-Check, Backflow-Prevention Assemblies:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Regulator Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Flomatic Corporation.
 - e. Watts Water Technologies, Inc.
 - f. Wilkins; a Zurn company.
 - 4. Standard: ASSE 1015 or AWWA C510.
 - 5. Operation: Continuous-pressure applications, unless otherwise indicated.
 - 6. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
 - 7. Body: Bronze for NPS 2and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved or steel with interior lining complying with AWWA C550 or that is FDA approved
 - 8. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 9. Accessories: Ball valves with threaded ends on inlet and outlet of NPS 2 and smaller; OS&Y gate valves with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
- C. Reduced-Pressure-Detector, Fire-Protection Backflow Preventer Assemblies:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Regulator Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Watts Water Technologies, Inc.
 - e. Wilkins; a Zurn company.
- 4. Standards: ASSE 1047 and UL listed or FMG approved.
- 5. Operation: Continuous-pressure applications.
- 6. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
- 7. Body: Cast iron with interior lining complying with AWWA C550 or that is FDA approved, or Steel with interior lining complying with AWWA C550 or that is FDA approved.
- 8. End Connections: Flanged.
- 9. Accessories:
 - a. Valves: UL 262, FMG-approved, OS&Y gate type with flanged ends on inlet and outlet.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow preventer connection.
 - c. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.
- D. Double-Check, Detector-Assembly Backflow Preventers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Regulator Co.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; SPX Valves & Controls.
 - d. Watts Water Technologies, Inc.
 - e. Wilkins; a Zurn company.
 - 4. Standards: ASSE 1048 and UL listed or FMG approved.
 - 5. Operation: Continuous-pressure applications.
 - 6. Pressure Loss: 5 psig maximum, through middle 1/3 of flow range.
 - 7. Body: Cast iron with interior lining complying with AWWA C550 or that is FDA approved, or Steel with interior lining complying with AWWA C550 or that is FDA approved.
 - 8. End Connections: Flanged.
 - 9. Accessories:
 - a. Valves: UL 262, FMG-approved, OS&Y gate type with flanged ends on inlet and outlet.
 - b. Bypass: With displacement-type water meter, shutoff valves, and reduced-pressure backflow preventer.
- E. Backflow Preventer Test Kits:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Conbraco Industries, Inc.
 - b. FEBCO; SPX Valves & Controls.
 - c. Flomatic Corporation.
 - d. Watts Water Technologies, Inc.
 - e. Wilkins; a Zurn company.
- 4. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with testprocedure instructions.

2.22 WATER METER BOXES

- A. Description: Cast-iron body and cover for disc-type water meter, with lettering "WATER METER" in cover; and with slotted, open-bottom base section of length to fit over service piping.
 - 1. Option: Base section may be cast-iron, PVC, clay, or other pipe.
- B. Description: Cast-iron body and double cover for disc-type water meter, with lettering "WATER METER" in top cover; and with separate inner cover; air space between covers; and slotted, open-bottom base section of length to fit over service piping.
- C. Description: Polymer-concrete body and cover for disc-type water meter, with lettering "WATER" in cover; and with slotted, open-bottom base section of length to fit over service piping. Include vertical and lateral design loadings of 15,000 lb minimum over 10 by 10 inches square.

2.23 CONCRETE VAULTS

- A. Description: Precast, reinforced-concrete vault, designed for A-16 load designation according to ASTM C 857 and made according to ASTM C 858.
 - 1. Ladder: ASTM A 36/A 36M, steel or polyethylene-encased steel steps.
 - 2. Manhole: ASTM A 48/A 48M Class No. 35A minimum tensile strength, gray-iron traffic frame and cover.
 - a. Dimension: 24-inch minimum diameter, unless otherwise indicated.
 - 3. Manhole: ASTM A 536, Grade 60-40-18, ductile-iron traffic frame and cover. a. Dimension: 24-inch minimum diameter, unless otherwise indicated.
 - 4. Drain: ASME A112.6.3, cast-iron floor drain with outlet of size indicated. Include body anchor flange, light-duty cast-iron grate, bottom outlet, and integral or field-installed bronze ball or clapper-type backwater valve.

2.24 PROTECTIVE ENCLOSURES

A. Freeze-Protection Enclosures:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Aqua Shield.
 - b. BF Products, Inc.
 - c. DekoRRa Products.
 - d. Dunco Manufacturing, Inc.
 - e. G&C Enclosures.
 - f. Hot Box, Inc.
 - g. HydroCowl, Inc.
 - h. Watts Water Technologies, Inc.
- 4. Description: Insulated enclosure designed to protect aboveground water piping, equipment, or specialties from freezing and damage, with heat source to maintain minimum internal temperature of 40 deg F when external temperatures reach as low as minus 34 deg F.
 - a. Standard: ASSE 1060.
 - b. Class I: For equipment or devices other than pressure or atmospheric vacuum breakers.
 - c. Class I-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.
 - 1) Housing: Reinforced-aluminum or fiberglass construction.
 - a) Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 - b) Drain opening for units with drain connection.
 - c) Access doors with locking devices.
 - d) Insulation inside housing.
 - e) Anchoring devices for attaching housing to concrete base.
 - 2) Electric heating cable or heater with self-limiting temperature control.
- B. Weather-Resistant Enclosures:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Aqua Shield.
 - b. BF Products, Inc.
 - c. DekoRRa Products.
 - d. Dunco Manufacturing, Inc.
 - e. G&C Enclosures.
 - f. Hot Box, Inc.
 - g. HydroCowl, Inc.
 - h. Watts Water Technologies, Inc.

- 4. Description: Uninsulated enclosure designed to protect aboveground water piping, equipment, or specialties from weather and damage.
 - a. Standard: ASSE 1060.
 - b. Class III: For equipment or devices other than pressure or atmospheric vacuum breakers.
 - c. Class III-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.
 - 1) Housing: Reinforced aluminum or fiberglass construction.
 - a) Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 - b) Drain opening for units with drain connection.
 - c) Access doors with locking devices.
 - d) Anchoring devices for attaching housing to concrete base.
- C. Expanded-Metal Enclosures:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Backflow Prevention Device InnClosures, Inc.
 - b. BF Products, Inc.
 - c. Cross Brothers, Inc.
 - d. Le Meur Welding & Manufacturing Co.
 - 4. Description: Enclosure designed to protect aboveground water piping, equipment, or specialties from damage.
 - a. Material: ASTM F 1267, expanded metal side and top panels, of weight and with reinforcement of same metal at edges as required for rigidity.
 - b. Finish: Manufacturer's enamel paint.
 - c. Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 - d. Locking device.
 - e. Lugs or devices for securing enclosure to base.
- D. Enclosure Bases:
 - 1. Description: 4-inch 6-inch minimum thickness precast concrete, of dimensions required to extend at least 6 inches beyond edges of enclosure housings. Include openings for piping.

2.25 FIRE HYDRANTS

- A. Dry-Barrel Fire Hydrants:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American AVK Co.; Valves & Fittings Div.
 - b. American Cast Iron Pipe Co.; American Flow Control Div.
 - c. American Cast Iron Pipe Co.; Waterous Co. Subsidiary.
 - d. American Foundry Group, Inc.
 - e. East Jordan Iron Works, Inc.
 - f. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 - g. McWane, Inc.; Kennedy Valve Div.
 - h. McWane, Inc.; M & H Valve Company Div.
 - i. Mueller Co.; Water Products Div.
 - j. Troy Valve; a division of Penn-Troy Manufacturing, Inc.
 - k. U.S. Pipe and Foundry Company.
- 4. Description: Freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets, 5-1/4-inch main valve, drain valve, and NPS 6 mechanical-joint inlet. Include interior coating according to AWWA C550. Hydrant shall have cast-iron body, compression-type valve opening against pressure and closing with pressure.
 - a. Standard: AWWA C502.
 - b. Pressure Rating: 150 psig minimum.
- 5. Description: Freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets, 5-1/4-inch main valve, drain valve, and NPS 6 mechanical-joint inlet. Hydrant shall have cast-iron body, compression-type valve opening against pressure and closing with pressure.
 - a. Standards: UL 246, FMG approved.
 - b. Pressure Rating: 150 psig minimum.
 - c. Outlet Threads: NFPA 1963, with external hose thread used by local fire department. Include cast-iron caps with steel chains.
 - d. Operating and Cap Nuts: Pentagon, 1-1/2 inches point to flat.
 - e. Direction of Opening: Open hydrant valve by turning operating nut to left or counterclockwise.
 - f. Exterior Finish: Red alkyd-gloss enamel paint, unless otherwise indicated.
- B. Wet-Barrel Fire Hydrants:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. American AVK Co.; Valves & Fittings Div.
 - b. Jones, James Company.
 - c. McWane, Inc.; Clow Valve Co. Div. (Corona).
 - d. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 - e. Mueller Co.; Water Products Div.
 - 4. Description: Freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets, NPS 6 (DN 150) threaded or flanged inlet, and base section with NPS 6 mechanical-joint inlet. Include interior coating according to AWWA C550.
 - a. Standard: AWWA C503.
 - b. Pressure Rating: 150 psig minimum.

- 5. Description: Freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets, NPS 6 threaded or flanged inlet, and base section with NPS 6 mechanical-joint inlet.
 - a. Standards: UL 246 and FMG approved.
 - b. Pressure Rating: 150 psig minimum.
 - c. Outlet Threads: NFPA 1963, with external hose thread used by local fire department. Include cast-iron caps with steel chains.
 - d. Operating and Cap Nuts: Pentagon, 1-1/2 inches point to flat.
 - e. Direction of Opening: Open hydrant valves by turning operating nut to left or counterclockwise.
 - f. Exterior Finish: Red alkyd-gloss enamel paint, unless otherwise indicated.

2.26 FLUSHING HYDRANTS

- A. Post-Type Flushing Hydrants:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. GIL Industries, Inc.
 - b. Kupferle Foundry Co. (The).
 - c. Mueller Co.; Water Products Div.
 - 4. Description: Nonfreeze and drainable, of length required for shutoff valve installation below frost line.
 - a. Pressure Rating: 150 psig minimum.
 - b. Outlet: One, with horizontal discharge.
 - c. Hose Thread: NPS 2-1/2, with NFPA 1963 external hose thread for use by local fire department, and with cast-iron cap with brass chain.
 - d. Barrel: Cast-iron or steel pipe with breakaway feature.
 - e. Valve: Bronze body with bronze-ball or plunger closure, and automatic draining.
 - f. Security: Locking device for padlock.
 - g. Exterior Finish: Red alkyd-gloss enamel paint, unless otherwise indicated.
 - h. Inlet: NPS 2 minimum.
 - i. Operating Wrench: One for each unit.
- B. Ground-Type Flushing Hydrants:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Kupferle Foundry Co. (The).
 - b. Mueller Co.; Water Products Div.
 - 4. Description: Nonfreeze and drainable, of length required for shutoff valve installation below frost line.
- a. Pressure Rating: 150 psig minimum.
- b. Outlet: One, with vertical or angled discharge.
- c. Hose Thread: NPS 2-1/2, with NFPA 1963 external hose thread for use by local fire department, and with cast-iron cap with brass chain.
- d. Barrel: Cast-iron or steel pipe.
- e. Valve: Bronze body with bronze-ball or plunger closure, and automatic draining.
- f. Inlet: NPS 2 minimum.
- g. Hydrant Box: Cast iron with cover, for ground mounting.
- h. Operating Wrench: One for each unit.
- C. Post-Type Sampling Station:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. GIL Industries, Inc.
 - b. Kupferle Foundry Co. (The).
 - 4. Description: Nonfreeze and drainable, of length required for shutoff valve installation below frost line.
 - a. Pressure Rating: 100 psig minimum.
 - b. Sampling Outlet: One unthreaded nozzle with handle.
 - c. Valve: Bronze body with bronze-ball or plunger closure. Include operating handle.
 - d. Drain: Tubing with separate manual vacuum pump.
 - e. Inlet: NPS 3/4 minimum.
 - f. Housing: Weatherproof material with locking device. Include anchor device.
 - g. Operating Wrench: One for each unit.

2.27 FIRE DEPARTMENT CONNECTIONS

- A. Fire Department Connections:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Elkhart Brass Mfg. Co., Inc.
 - b. Fire End & Croker Corporation.
 - c. Guardian Fire Equipment, Inc.
 - d. Kidde Fire Fighting.
 - e. Potter Roemer.
 - f. Reliable Automatic Sprinkler Co., Inc.
 - 4. Description: Freestanding, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, and threaded bottom outlet. Include

lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18-inch high brass sleeve; and round escutcheon plate.

- a. Standard: UL 405.
- b. Connections: Two NPS 2-1/2 inlets and one NPS 4 or NPS 6 outlet.
- c. Connections: NPS 2-1/2 inlets and one NPS 6 outlet.
- d. Connections: Six NPS 2-1/2 inlets and one NPS 6 or NPS 8 outlet.
- e. Escutcheon Plate Marking: "AUTO SPKR & STANDPIPE."

2.28 ALARM DEVICES

- A. Alarm Devices, General: UL 753 and FMG approved, of types and sizes to mate and match piping and equipment.
- B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psig working pressure; designed for horizontal or vertical installation; with 2 single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.
- C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.
- D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to Section 02300 "Earthwork" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

- A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.
- B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.
- C. Do not use flanges or unions for underground piping.
- D. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.
- E. Underground water-service piping NPS 3/4 to NPS 3 shall be any of the following:
 - 1. Soft copper tube, ASTM B 88, Type K or ASTM B 88, Type L; copper, pressure-seal fittings; and pressure-sealed] joints.
 - 2. PE, ASTM pipe; insert fittings for PE pipe; and clamped or molded PE fittings; and heatfusion joints.

- 3. PVC, Schedule 40 pipe; PVC, Schedule 40 socket fittings; and solvent-cemented joints.
- 4. NPS 1 to NPS 3 (DN 25 to DN 80) fiberglass, AWWA RTRP, Class [150] [200] [250]; RTRF; and bonded joints.
- 5. Fiberglass, AWWA RTRP; RTRF; and bonded joints.
- F. Underground water-service piping NPS 4 to NPS 8 shall be any of the following:
 - 1. Soft copper tube, ASTM B 88, Type K or ASTM B 88, Type L; wrought-copper, solderjoint fittings; and brazed joints.
 - 2. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed; mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical; grooved-end pipe; ductile-iron-pipe appurtenances; and grooved joints.
 - 3. PE, AWWA pipe; PE, AWWA fittings; and heat-fusion joints.
 - 4. PVC, Schedule 40 pipe; PVC, Schedule 40 socket fittings; and solvent-cemented joints.
 - 5. NPS 4 and NPS 6: NPS 6 PVC, AWWA Class 150 pipe; PVC, AWWA Class 150 fabricated or molded fittings; and gasketed joints.
 - 6. NPS 8: PVC, AWWA Class 200 pipe; PVC, AWWA Class 200 fabricated, push-onjoint, ductile-iron or mechanical-joint, ductile-iron fittings; and gasketed joints.
 - 7. Fiberglass, AWWA RTRP; RTRF; and bonded joints.
- G. Water Meter Box Water-Service Piping NPS 3/4 to NPS 2 shall be same as underground waterservice piping.
- H. Aboveground and Vault Water-Service Piping NPS 3/4 to NPS 3 shall be any of the following:
 - 1. Hard copper tube, ASTM B 88, Type K or ASTM B 88, Type L; wrought-copper, solderjoint fittings; and brazed; copper, pressure-seal fittings; and pressure-sealed joints.
 - 2. PVC, Schedule 80 pipe; PVC, Schedule 80 socket fittings; and solvent-cemented threaded fittings; and threaded joints.
 - 3. NPS 1 to NPS 2 fiberglass, AWWA RTRP; RTRF; and bonded joints.
- I. Aboveground and vault water-service piping NPS 4 to NPS 8 shall be any of the following:
 - 1. Hard copper tube, ASTM B 88, Type K or ASTM B 88, Type L; wrought-copper, solderjoint fittings; and brazed joints.
 - 2. Ductile-iron, grooved-end pipe; ductile-iron, grooved-end appurtenances; and grooved joints.
 - 3. PVC, Schedule 80 pipe; PVC, Schedule 80 socket fittings; and solvent-cemented or threaded fittings; and threaded joints.
 - 4. Fiberglass, AWWA RTRP; RTRF; and bonded joints.
- J. Underground Fire-Service-Main Piping NPS 4 to NPS 12 shall be any of the following:
 - 1. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed; mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical; grooved-end pipe; ductile-iron-pipe appurtenances; and grooved joints.
 - 2. PE, fire-service pipe; molded PE fittings; and heat-fusion joints.
 - 3. PVC, AWWA Class 150 pipe listed for fire-protection service; PVC Class 150 fabricated or molded fittings; and gasketed joints.
 - 4. PVC, AWWA Class 200 pipe listed for fire-protection service; PVC Class 200 fabricated fittings; and gasketed joints.
 - 5. Fiberglass, AWWA, FMG-approved RTRP; RTRF; and gasketed joints.
 - 6. Fiberglass, UL RTRP; RTRF; and gasketed joints.

- K. Aboveground and Vault Fire-Service-Main Piping NPS 4 to NPS 12 shall be ductile-iron, grooved-end pipe; ductile-iron-pipe appurtenances; and grooved joints.
- L. Underground Combined Water-Service and Fire-Service-Main Piping NPS 6 to NPS 12 shall be any of the following:
 - 1. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed; mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical; grooved-end pipe; ductile-iron-pipe appurtenances; and grooved joints.
 - 2. PVC, AWWA pipe listed for fire-protection service; PVC fabricated or molded fittings of same class as pipe; and gasketed joints.
 - 3. Fiberglass, AWWA, FMG-approved RTRP, Class [150] [200]; RTRF; and gasketed joints.
- M. Aboveground and Vault Combined Water Service and Fire-Service-Main Piping NPS 6 to NPS 12 shall be ductile-iron, grooved-end pipe; ductile-iron-pipe appurtenances; and grooved joints.

3.3 VALVE APPLICATIONS

- A. General Application: Use mechanical-joint-end valves for NPS 3 and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, nonrising-stem gate valves for installation with indicator posts. Use corporation valves and curb valves with ends compatible with piping, for NPS 2 and smaller installation.
- B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Underground Valves, NPS 3 and Larger: AWWA, cast-iron, nonrising-stem, metal, resilient or high-pressure, resilient-seated gate valves with valve box.
 - 2. Underground Valves, NPS 4 and Larger, for Indicator Posts: UL/FMG, cast-iron, nonrising-stem gate valves with indicator post.
 - 3. Use the following for valves in vaults and aboveground:
 - a. Gate Valves, NPS 2 and Smaller: Bronze, nonrising or rising stem.
 - b. Gate Valves, NPS 3 and Larger: AWWA, cast iron, OS&Y rising stem, metal seated; AWWA, cast iron, OS&Y rising stem, resilient seated; UL/FMG, cast iron, OS&Y rising stem.
 - c. Check Valves: AWWA C508; UL/FMG, swing type.
 - 4. Pressure-Reducing Valves: Use for water-service piping in vaults and aboveground to control water pressure.
 - 5. Relief Valves: Use for water-service piping in vaults and aboveground.
 - a. Air-Release Valves: To release accumulated air.
 - b. Air/Vacuum Valves: To release or admit large volume of air during filling of piping.
 - c. Combination Air Valves: To release or admit air.
 - 6. Detector Check Valves: Use for water-service piping in vaults and aboveground to detect unauthorized use of water.

3.4 PIPING SYSTEMS - COMMON REQUIREMENTS

A. See Section 02080 "Piped Utilities - Basic Materials and Methods" for piping-system common requirements.

3.5 PIPING INSTALLATION

- A. Water-Main Connection: Arrange with utility company for tap of size and in location indicated in water main.
- B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.
- C. Make connections larger than NPS 2 with tapping machine according to the following:
 - 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 - 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 - 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
 - 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.
- D. Make connections NPS 2 and smaller with drilling machine according to the following:
 - 1. Install service-saddle assemblies and corporation valves in size, quantity, and arrangement required by utility company standards.
 - 2. Install service-saddle assemblies on water-service pipe to be tapped. Position outlets for corporation valves.
 - 3. Use drilling machine compatible with service-saddle assemblies and corporation valves. Drill hole in main. Remove drilling machine and connect water-service piping.
 - 4. Install corporation valves into service-saddle assemblies.
 - 5. Install manifold for multiple taps in water main.
 - 6. Install curb valve in water-service piping with head pointing up and with service box.
- E. Comply with NFPA 24 for fire-service-main piping materials and installation.
 - 1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.
 - 2. Install copper tube and fittings according to CDA's "Copper Tube Handbook."
- F. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
 1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.
- G. Install PE pipe according to ASTM D 2774 and ASTM F 645.
- H. Install PVC, AWWA pipe according to ASTM F 645 and AWWA M23.
- I. Install fiberglass AWWA pipe according to AWWA M45.
- J. Bury piping with depth of cover over top at least 30 inches, with top at least 12 inches below level of maximum frost penetration, and according to the following:
 - 1. Under Driveways: With at least 36 inches cover over top.
 - 2. Under Railroad Tracks: With at least 48 inches cover over top.
 - 3. In Loose Gravelly Soil and Rock: With at least 12 inches additional cover.

- K. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.
- L. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
 - 1. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.
- M. Sleeves are specified in Section 15092 "Sleeves and Sleeve Seals for Plumbing Piping."
- N. Mechanical sleeve seals are specified in Section 15092 "Sleeves and Sleeve Seals for Plumbing Piping."
- O. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.
- P. See Section 13974 "Fire-Suppression Standpipes," Section 13930 "Wet-Pipe Fire-Suppression Sprinklers," and Section 13935 "Dry-Pipe Fire-Suppression Sprinklers" for fire-suppression-water piping inside the building.
- Q. See Section 15140 "Domestic Water Piping" for potable-water piping inside the building.

3.6 JOINT CONSTRUCTION

- A. See Section 02080 "Piped Utilities Basic Materials and Methods" for basic piping joint construction.
- B. Make pipe joints according to the following:
 - 1. Copper-Tubing, Pressure-Sealed Joints: Use proprietary crimping tool and procedure recommended by copper, pressure-seal-fitting manufacturer.
 - 2. Ductile-Iron Piping, Gasketed Joints for Water-Service Piping: AWWA C600 and AWWA M41.
 - 3. Ductile-Iron Piping, Gasketed Joints for Fire-Service-Main Piping: UL 194.
 - 4. Ductile-Iron Piping, Grooved Joints: Cut-groove pipe. Assemble joints with groovedend, ductile-iron-piping couplings, gaskets, lubricant, and bolts according to coupling manufacturer's written instructions.
 - 5. PE Piping Insert-Fitting Joints: Use plastic insert fittings and fasteners according to fitting manufacturer's written instructions.
 - 6. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139 and pipe manufacturer's written instructions.
 - 7. Fiberglass Piping Bonded Joints: Use adhesive and procedure recommended by piping manufacturer.
 - 8. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 - a. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples or unions].
 - b. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges, flange kits or nipples.
 - c. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.7 ANCHORAGE INSTALLATION

- A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:
 - 1. Concrete thrust blocks.
 - 2. Locking mechanical joints.
 - 3. Set-screw mechanical retainer glands.
 - 4. Bolted flanged joints.
 - 5. Heat-fused joints.
 - 6. Pipe clamps and tie rods.
- B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:
 - 1. Gasketed-Joint, Ductile-Iron, Water-Service Piping: According to AWWA C600.
 - 2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.
 - 3. Bonded-Joint Fiberglass, Water-Service Piping: According to AWWA M45.
 - 4. Fire-Service-Main Piping: According to NFPA 24.
- C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.8 VALVE INSTALLATION

- A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.
- B. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.
- C. UL/FMG, Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.
- D. UL/FMG, Valves Other Than Gate Valves: Comply with NFPA 24.
- E. MSS Valves: Install as component of connected piping system.
- F. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.
- G. Pressure-Reducing Valves: Install in vault or aboveground between shutoff valves
- H. Relief Valves: Comply with AWWA C512. Install aboveground with shutoff valve on inlet.

3.9 DETECTOR-CHECK VALVE INSTALLATION

- A. Install in vault or aboveground.
- B. Install for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.

C. Support detector check valves, meters, shutoff valves, and piping on brick or concrete piers.

3.10 WATER METER INSTALLATION

- A. Install water meters, piping, and specialties according to utility company's written instructions.
- B. Water Meters: Install displacement or turbine type water meters, NPS 2 and smaller, in meter boxes with shutoff valves on water meter inlets. Include valves on water meter outlets and valved bypass around meters unless prohibited by authorities having jurisdiction.
- C. Water Meters: Install compound or turbine type water meters, NPS 3 and larger, in meter vaults. Include shutoff valves on water meter inlets and outlets and valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.
- D. Water Meters: Install detector-type water meters in meter vault according to AWWA M6. Include shutoff valves on water meter inlets and outlets and full-size valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.

3.11 ROUGHING-IN FOR WATER METERS

A. Rough-in piping and specialties for water meter installation according to utility company's written instructions.

3.12 VACUUM BREAKER ASSEMBLY INSTALLATION

- A. Install pressure vacuum breaker assemblies of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
- B. Do not install pressure vacuum breaker assemblies in vault or other space subject to flooding.

3.13 BACKFLOW PREVENTER INSTALLATION

- A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
- B. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.
- C. Do not install bypass piping around backflow preventers.
- D. Support NPS 2-1/2 and larger backflow preventers, valves, and piping near floor and on brick or concrete piers.

3.14 WATER METER BOX INSTALLATION

A. Install water meter boxes in paved areas flush with surface.

WATER DISTRIBUTION

B. Install water meter boxes in grass or earth areas with top 2 inches above surface.

3.15 CONCRETE VAULT INSTALLATION

A. Install precast concrete vaults according to ASTM C 891.

3.16 PROTECTIVE ENCLOSURE INSTALLATION

- A. Install concrete base level and with top approximately 2 inches above grade.
- B. Install protective enclosure over valves and equipment.
- C. Anchor protective enclosure to concrete base.

3.17 FIRE HYDRANT INSTALLATION

- A. General: Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.
- B. Wet-Barrel Fire Hydrants: Install with valve below frost line. Provide for drainage.
- C. AWWA Fire Hydrants: Comply with AWWA M17.
- D. UL/FMG Fire Hydrants: Comply with NFPA 24.

3.18 FLUSHING HYDRANT INSTALLATION

- A. Install post-type flushing hydrants with valve below frost line and provide for drainage. Support in upright position. Include separate gate valve or curb valve and restrained joints in supply piping.
- B. Install ground-type flushing hydrants with valve below frost line and provide for drainage. Install hydrant box flush with grade. Include separate gate valve or curb valve and restrained joints in supply piping.
- C. Install sampling stations with valve below frost line and provide for drainage. Attach weatherresistant housing and support in upright position. Include separate curb valve in supply piping.

3.19 FIRE DEPARTMENT CONNECTION INSTALLATION

- A. Install ball drip valves at each check valve for fire department connection to mains.
- B. Install protective pipe bollards on each fire department connection. Pipe bollards are specified in Section 05500 "Metal Fabrications."

3.20 ALARM DEVICE INSTALLATION

- A. General: Comply with NFPA 24 for devices and methods of valve supervision. Underground valves with valve box do not require supervision.
- B. Supervisory Switches: Supervise valves in open position.
 - 1. Valves: Grind away portion of exposed valve stem. Bolt switch, with plunger in stem depression, to OS&Y gate-valve yoke.
 - 2. Indicator Posts: Drill and thread hole in upper-barrel section at target plate. Install switch, with toggle against target plate, on barrel of indicator post.
- C. Locking and Sealing: Secure unsupervised valves as follows:
 - 1. Valves: Install chain and padlock on open OS&Y gate valve.
 - 2. Post Indicators: Install padlock on wrench on indicator post.
- D. Pressure Switches: Drill and thread hole in exposed barrel of fire hydrant. Install switch.
- E. Water-Flow Indicators: Install in water-service piping in vault. Select indicator with saddle and vane matching pipe size. Drill hole in pipe, insert vane, and bolt saddle to pipe.
- F. Connect alarm devices to building fire alarm system. Wiring and fire-alarm devices are specified in Section 13852 "Digital, Addressable Fire-Alarm System" and Section 13853 "Zoned (DC Loop) Fire-Alarm System."

3.21 CONNECTIONS

- A. See Section 02080 "Piped Utilities Basic Materials and Methods" for piping connections to valves and equipment.
- B. Connect water-distribution piping to utility water main. Connect water-distribution piping to interior domestic water and fire-suppression piping.
- C. Connect waste piping from concrete vault drains to sanitary sewerage system. See Section 02530 "Sanitary Sewerage" for connection to sanitary-sewer piping.
- D. Ground equipment according to Section 16060 "Grounding and Bonding."
- E. Connect wiring according to Section 16120 "Conductors and Cables."

3.22 FIELD QUALITY CONTROL

- A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
- B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.
 - 1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig. Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints.

Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

C. Prepare reports of testing activities.

3.23 IDENTIFICATION

- A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 02300 "Earthwork."
- B. Permanently attach equipment nameplate or marker indicating plastic water-service piping, on main electrical meter panel. See Section 02080 "Piped Utilities Basic Materials and Methods" for identifying devices.

3.24 CLEANING

- A. Clean and disinfect water-distribution piping as follows:
 - 1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
 - 2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
 - 3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 - a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 - b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.
 - c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.
- B. Prepare reports of purging and disinfecting activities.

END OF SECTION 02510

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 02515 - FACILITY FIRE-SUPPRESSION WATER-SERVICE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes fire-suppression water-service piping and related components outside the building and service entrance piping through floor into the building.
- B. Utility-furnished products include water meters that will be furnished to the site, ready for installation.
- C. Related Sections:
 - 1. Section 13921 "Electric-Drive, Centrifugal Fire Pumps", Section 13922 "Diesel-Drive, Centrifugal Fire Pumps", Section 13926 "Electric-Drive, Vertical-Turbine Fire Pumps", Section 13927 "Diesel-Drive, Vertical-Turbine Fire Pumps" for fire pumps, pressuremaintenance pumps, and controllers.
 - 2. Section 13930 "Wet-Pipe Fire-Suppression Sprinklers" for wet-pipe fire-suppression sprinkler systems inside the building.
 - 3. Section 13935 "Dry-Pipe Fire-Suppression Sprinklers" for dry-pipe fire-suppression sprinkler systems inside the building.
 - 4. Section 13955 "Foam Fire Extinguishing" for AFFF piping.
 - 5. Section 13974 "Fire-Suppression Standpipes" for fire-suppression standpipes inside the building.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings:
 - 1. Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.
- B. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Regulatory Requirements:
 - 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 - 2. Comply with standards of authorities having jurisdiction for fire-suppression waterservice piping, including materials, hose threads, installation, and testing.
- B. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with the "Approval Guide," published by FM Global, or UL's "Fire Protection Equipment Directory" for fire-service-main products.
- E. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-suppression water-service piping.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 - 1. Ensure that valves are dry and internally protected against rust and corrosion.
 - 2. Protect valves against damage to threaded ends and flange faces.
 - 3. Set valves in best position for handling. Set valves closed to prevent rattling.
- B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
 1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 - Protect from weather. Store indoors and maintain temperature higher than ambient dew point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.
- C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
- D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.
- E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.
- F. Protect flanges, fittings, and specialties from moisture and dirt.
- G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

1.7 PROJECT CONDITIONS

- A. Interruption of Existing Fire-Suppression Water-Service Piping: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:
 - 1. Notify Architect, Construction Manager, and Owner no fewer than 7 days in advance of proposed interruption of service.
 - 2. Do not proceed with interruption of service without Architect's, Construction Manager's, and Owner's written permission.

1.8 COORDINATION

A. Coordinate connection to water main with utility company.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L, water tube, annealed temper.
- B. Hard Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L, water tube, drawn temper.
- C. Copper, Solder-Joint Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint pressure type. Furnish only wrought-copper fittings if indicated.
- D. Copper, Pressure-Seal Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Viega; Plumbing & Heating Systems.
 - 2. Standard: UL 213.
 - 3. NPS 2 and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 - 4. NPS 2-1/2 to NPS 4: Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.
- E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.
- F. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

2.2 DUCTILE-IRON PIPE AND FITTINGS

- A. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, rounded-grooved ends.
- B. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end.

- C. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end.
- D. Grooved-End, Ductile-Iron Pipe Appurtenances:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anvil International, Inc.
 - b. Shurjoint Piping Products.
 - c. Star Pipe Products.
 - d. Victaulic Company.
 - 2. Grooved-End, Ductile-Iron Fittings: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron castings with dimensions matching pipe.
 - 3. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.
- E. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 1. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- F. Push-on-Joint, Ductile-Iron Fittings: AWWA C153, ductile-iron compact pattern.
 1. Gaskets: AWWA C111, rubber.
- G. Flanges: ASME B16.1, Class 125, cast iron.

2.3 PE PIPE AND FITTINGS

- A. PE, Fire-Service Pipe: FM Global approved, with minimum thickness equivalent to Class 150 and Class 200.
- B. Molded PE Fittings: FM Global approved; PE butt-fusion type, made to match PE pipe dimensions and class.
- 2.4 PVC PIPE AND FITTINGS
 - A. PVC Pipe: AWWA C900 or UL 1285, Class 150 and Class 200, with bell end with gasket, and with spigot end.
 - B. PVC Fittings: AWWA C900 or UL 1285, Class 150 and Class 200, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.

2.5 FIBERGLASS PIPE AND FITTINGS

- A. RTRP: UL 1713, Class 150 and Class 200, with bell-and-spigot ends for bonded joints. Liner is optional unless otherwise indicated.
- B. RTRF: UL 1713, similar to pipe in material, pressure class, and joining method.

2.6 SPECIAL PIPE FITTINGS

- A. Ductile-Iron Flexible Expansion Joints:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. EBAA Iron, Inc.
 - b. ROMAC Industries Inc.
 - c. Star Pipe Products.
 - 2. Description: Compound, ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 - 3. Pressure Rating: 250 psig minimum.
- B. Ductile-Iron Deflection Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. EBAA Iron, Inc.
 - 2. Description: Compound, ductile-iron coupling fitting with sleeve and one or two flexing sections for up to 15-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 - 3. Pressure Rating: 250 psig minimum.

2.7 ENCASEMENT FOR PIPING

- A. Standard: ASTM A 674 or AWWA C105.
- B. Material: Linear low-density PE film of 0.008-inch or High-density, cross-laminated PE film of 0.004-inch minimum thickness.
- C. Form: Sheet or tube.
- D. Color: Black or natural.

2.8 JOINING MATERIALS

- A. Gaskets for Ferrous Piping and Copper-Alloy Tubing: ASME B16.21, asbestos free.
- B. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series.
- C. Bonding Adhesive for Fiberglass Piping: As recommended by fiberglass piping manufacturer.

2.9 PIPING SPECIALTIES

- A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.
- B. Tubular-Sleeve Pipe Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Cascade Waterworks Manufacturing.
 - b. Dresser, Inc.; Dresser Piping Specialties.
 - c. Ford Meter Box Company, Inc. (The); Pipe Products Division.
 - d. JCM Industries.
 - e. ROMAC Industries Inc.
 - f. Smith-Blair, Inc.; a Sensus company.
 - g. Viking Johnson.
 - 2. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners, and with ends of same sizes as piping to be joined.
 - 3. Standard: AWWA C219.
 - 4. Center-Sleeve Material: Manufacturer's standard
 - 5. Gasket Material: Natural or synthetic rubber.
 - 6. Pressure Rating: 150 psig minimum.
 - 7. Metal Component Finish: Corrosion-resistant coating or material.
- 2.10 [Retain first paragraph below for tapping connections NPS 2 (DN 50) and smaller.
 - A. Corporation Valves: Comply with AWWA C800. Include saddle and valve compatible with tapping machine and manifold.
 - 1. Service Saddle: Copper alloy with seal and AWWA C800, threaded outlet for corporation valve.
 - 2. Corporation Valve: Bronze body and ground-key plug, with AWWA C800, threaded inlet and outlet matching service piping material.
 - 3. Manifold: Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.
 - B. Curb Valves: Comply with AWWA C800 for high-pressure service-line valves. Valve has bronze body, ground-key plug or ball, wide tee head, and inlet and outlet matching service piping material.
 - C. Service Boxes for Curb Valves: Similar to AWWA M44 requirements for cast-iron valve boxes. Include cast-iron telescoping top section of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over curb valve and with a barrel approximately 3 inches in diameter.
 - 1. Shutoff Rods: Steel; with tee-handle with one pointed end, stem of length to operate deepest buried valve, and slotted end matching curb valve.

D. Meter Valves: Comply with AWWA C800 for high-pressure service-line valves. Include angle- or straight-through-pattern bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.

2.11 GATE VALVES

- A. AWWA Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. American AVK Company; Valves & Fittings Division.
 - b. American Cast Iron Pipe Company; American Flow Control Division.
 - c. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 - d. American R/D.
 - e. Clow Valve Company; a division of McWane, Inc.
 - f. Crane Co.; Crane Valve Group; Stockham Division.
 - g. East Jordan Iron Works, Inc.
 - h. Kennedy Valve; a division of McWane, Inc.
 - i. M&H Valve Company; a division of McWane, Inc.
 - j. Mueller Co.; Water Products Division.
 - k. NIBCO INC.
 - 1. Tyler Pipe; a division of McWane, Inc.; Utilities Division.
 - m. U.S. Pipe.
 - 2. 200-psig, AWWA, Iron, Nonrising-Stem, Metal-Seated Gate Valves:
 - a. Description: Gray- or ductile-iron body and bonnet; with cast-iron or bronze double-disc gate, bronze gate rings, bronze stem, and stem nut.
 - b. Standard: AWWA C500.
 - c. Pressure Rating: 200 psig.
 - d. End Connections: Mechanical joint.
 - e. Interior Coating: Complying with AWWA C550.
 - 3. 200-psig, AWWA, Iron, Nonrising-Stem, Resilient-Seated Gate Valves:
 - a. Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 - b. Standard: AWWA C509.
 - c. Pressure Rating: 200 psig .
 - d. End Connections: Mechanical or push-on joint.
 - e. Interior Coating: Complying with AWWA C550.
 - 4. 250-psig, AWWA, Iron, Nonrising-Stem, Resilient-Seated Gate Valves:
 - a. Description: Ductile-iron body and bonnet; with bronze or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 - b. Standard: AWWA C509.
 - c. Pressure Rating: 250 psig.
 - d. End Connections: Mechanical or push-on joint.
 - e. Interior Coating: Complying with AWWA C550.
 - 5. 200-psig, AWWA, Iron, OS&Y, Metal-Seated Gate Valves:
 - a. Description: Cast- or ductile-iron body and bonnet; with cast-iron double disc, bronze disc and seat rings, and bronze stem.
 - b. Standard: AWWA C500.
 - c. Pressure Rating: 200 psig.

- d. End Connections: Flanged or grooved.
- 6. 200-psig, AWWA, Iron, OS&Y, Resilient-Seated Gate Valves:
 - a. Description: Cast- or ductile-iron body and bonnet; with bronze, gray-iron, or ductile-iron gate; resilient seats; and bronze stem.
 - b. Standard: AWWA C509.
 - c. Pressure Rating: 200 psig.
 - d. End Connections: Flanged or grooved.
- 7. 250-psig, AWWA, Iron, OS&Y, Resilient-Seated Gate Valves:
 - a. Description: Cast- or ductile-iron body and bonnet; with bronze, gray-iron, or ductile-iron gate; resilient seats; and bronze stem.
 - b. Standard: AWWA C509.
 - c. Pressure Rating: 200 psig.
 - d. End Connections: Flanged or grooved.
 - Class 125, Bronze, Nonrising-Stem Gate Valves:
 - a. Description: Class 125, Type 1; bronze with solid wedge and malleable-iron handwheel.
 - b. Standard: MSS SP-80.
 - c. Pressure Rating: 200 psig.
 - d. End Connections: Solder joint or threaded.
- B. UL-Listed or FM-Approved Gate Valves:

8.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. American AVK Company; Valve & Fittings Division.
 - b. American Cast Iron Pipe Company; American Flow Control Division.
 - c. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 - d. Clow Valve Company; a division of McWane, Inc.
 - e. Crane Co.; Crane Valve Group; Jenkins Valves.
 - f. Crane Co.; Crane Valve Group; Stockham Division.
 - g. East Jordan Iron Works, Inc.
 - h. Hammond Valve.
 - i. Kennedy Valve; a division of McWane, Inc.
 - j. M&H Valve Company; a division of McWane, Inc.
 - k. Milwaukee Valve Company.
 - l. Mueller Co.; Water Products Division.
 - m. NIBCO INC.
 - n. Shurjoint Piping Products.
 - o. Troy Valve; a division of Penn-Troy Manufacturing, Inc.
 - p. Tyco Fire & Building Products LP.
 - q. United Brass Works, Inc.
 - r. U.S. Pipe.
 - s. Watts Water Technologies, Inc.
- 2. 175-psig, UL-Listed or FM-Approved, Iron, Nonrising-Stem Gate Valves:
 - a. Description: Iron body and bonnet, bronze seating material, and inside screw.
 - b. Standards: UL 262 and "Approval Guide," published by FM Global, listing.
 - c. Pressure Rating: 175 psig minimum.
 - d. End Connections: Mechanical or push-on joint.
 - e. Indicator-Post Flange: Include on valves used with indicator posts.
- 3. 250-psig, UL-Listed or FM-Approved, Iron, Nonrising-Stem Gate Valves:

- a. Description: Iron body and bonnet, bronze seating material, and inside screw.
- b. Standards: UL 262 and "Approval Guide," published by FM Global, listing.
- c. Pressure Rating: 250 psig minimum.
- d. End Connections: Mechanical or push-on joint.
- e. Indicator-Post Flange: Include on valves used with indicator posts.
- 4. 175-psig, UL-Listed or FM-Approved, Iron, OS&Y, Gate Valves:
 - a. Description: Iron body and bonnet and bronze seating material.
 - b. Standards: UL 262 and "Approval Guide," published by FM Global, listing.
 - c. Pressure Rating: 175 psig minimum.
 - d. End Connections: Flanged or grooved.
- 5. 250-psig, UL-Listed or FM-Approved, Iron, OS&Y Gate Valves:
 - a. Description: Iron body and bonnet and bronze seating material.
 - b. Standards: UL 262 and "Approval Guide," published by FM Global, listing.
 - c. Pressure Rating: 250 psig minimum.
 - d. End Connections: Flanged or grooved.
- 6. UL-Listed or FM-Approved, OS&Y Bronze, Gate Valves:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Crane Co.; Crane Valve Group; Crane Valves.
 - 2) Crane Co.; Crane Valve Group; Stockham Division.
 - 3) Milwaukee Valve Company.
 - 4) NIBCO INC.
 - 5) United Brass Works, Inc.
 - b. Description: Bronze body and bonnet and bronze stem.
 - c. Standards: UL 262 and "Approval Guide," published by FM Global, listing.
 - d. Pressure Rating: 175 psig minimum.
 - e. End Connections: Threaded.

2.12 GATE VALVE ACCESSORIES AND SPECIALTIES

- A. Tapping-Sleeve Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 - b. Clow Valve Company; a division of McWane, Inc.
 - c. East Jordan Iron Works, Inc.
 - d. Flowserve.
 - e. Kennedy Valve; a division of McWane, Inc.
 - f. M&H Valve Company; a division of McWane, Inc.
 - g. Mueller Co.; Water Products Division.
 - h. U.S. Pipe.
 - 3. Description: Sleeve and valve compatible with drilling machine.
 - 4. Standard: MSS SP-60.

- 5. Tapping Sleeve: Cast-iron, ductile-iron, or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Sleeve shall match size and type of pipe material being tapped and have recessed flange for branch valve.
- 6. Valve: AWWA, cast-iron, nonrising-stem, metal, resilient-seated gate valve with one raised-face flange mating tapping-sleeve flange.
- B. Valve Boxes: Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches in diameter.
 - 1. Operating Wrenches: Steel; with tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.
- C. Indicator Posts:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. American AVK Company; Valves & Fittings Division.
 - b. American Cast Iron Pipe Company; American Flow Control Division.
 - c. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 - d. Clow Valve Company; a division of McWane, Inc.
 - e. Crane Co.; Crane Valve Group; Stockham Division.
 - f. Kennedy Valve; a division of McWane, Inc.
 - g. Mueller Co.; Water Products Division.
 - h. NIBCO INC.
 - i. Tyco Fire & Building Products LP.
 - 2. Description: Vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.
 - 3. Standards: UL 789 and "Approval Guide," published by FM Global, listing.

2.13 BUTTERFLY VALVES

- A. AWWA Butterfly Valves:
 - 1. Manufacturers: Subject to compliance with requirements available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. DeZurik/Copes-Vulcan; a unit of SPX Corporation.
 - b. Milliken Valve Company.
 - c. Mosser Valve; a division of Olson Technologies, Inc.
 - d. Mueller Co.; Water Products Division.
 - e. Pratt, Henry Company.
 - f. Val-Matic Valve & Manufacturing Corp.
 - 2. Description: Rubber seated.
 - 3. Standard: AWWA C504.
 - 4. Body Material: Cast or ductile iron.
 - 5. Body Type: Wafer or flanged.
 - 6. Pressure Rating: 150 psig.
- B. UL Butterfly Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Kennedy Valve; a division of McWane, Inc.
 - b. Milwaukee Valve Company.
 - c. Mueller Co.; Water Products Division.
 - d. NIBCO INC.
 - e. Pratt, Henry Company.
- 3. Description: Metal on resilient material seating.
- 4. Standards: UL 1091 and "Approval Guide," published by FM Global, listing.
- 5. Body Material: Cast or ductile iron.
- 6. Body Type: Wafer or flanged.
- 7. Pressure Rating: 175 psig.

2.14 CHECK VALVES

- A. AWWA Check Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. American AVK Company; Valves & Fittings Division.
 - b. American Cast Iron Pipe Company; American Flow Control Division.
 - c. APCO Willamette Valve and Primer Corporation.
 - d. Clow Valve Company; a division of McWane, Inc.
 - e. Crane Co.; Crane Valve Group; Crane Valves.
 - f. Crane Co.; Crane Valve Group; Stockham Division.
 - g. Kennedy Valve; a division of McWane, Inc.
 - h. M&H Valve Company; a division of McWane, Inc.
 - i. Mueller Co.; Water Products Division.
 - j. NIBCO INC.
 - k. Watts Water Technologies, Inc.
 - 2. Description: Swing-check type with resilient seat; with interior coating according to AWWA C550 and ends to match piping.
 - 3. Standard: AWWA C508.
 - 4. Pressure Rating: 175 psig.
- B. UL-Listed or FM-Approved Check Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 - b. Clow Valve Company; a division of McWane, Inc.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Globe Fire Sprinkler Corporation.
 - e. Kennedy Valve; a division of McWane, Inc.
 - f. Kidde Fire Fighting.
 - g. Matco-Norca.

- h. Mueller Co.; Water Products Division.
- i. NIBCO INC.
- j. Reliable Automatic Sprinkler Co., Inc.
- k. Tyco Fire & Building Products LP.
- l. United Brass Works, Inc.
- m. Victaulic Company.
- n. Viking Corporation.
- o. Watts Water Technologies, Inc.
- 2. Description: Swing-check type with pressure rating, rubber-face checks unless otherwise indicated, and ends matching piping.
- 3. Standards: UL 312 and "Approval Guide," published by FM Global, listing.
- 4. Pressure Rating: 175 psig.

2.15 DETECTOR CHECK VALVES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 - 2. Badger Meter, Inc.
 - 3. FEBCO; SPX Valves & Controls.
 - 4. Globe Fire Sprinkler Corporation.
 - 5. Kennedy Valve; a division of McWane, Inc.
 - 6. Mueller Co.; Hersey Meters Division.
 - 7. Victaulic Company.
 - 8. Viking Corporation.
 - 9. Watts Water Technologies, Inc.
- C. Description: Galvanized cast-iron body, bolted cover with air-bleed device for access to internal parts, and flanged ends. Include one-piece bronze disc with bronze bushings, pivot, and replaceable seat. Include threaded bypass taps in inlet and outlet for bypass meter connection. Set valve to allow minimal water flow through bypass meter when major water flow is required.
- D. Standards: UL 312 and "Approval Guide," published by FM Global, listing.
- E. Pressure Rating: 175 psig.
- F. Water Meter: AWWA C700, disc type, at least one-fourth size of detector check valve. Include meter, bypass piping, gate valves, check valve, and connections to detector check valve.

2.16 WATER METERS

- A. Water meters will be furnished by utility company.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. AMCO Water Metering Systems.

- 2. Badger Meter, Inc.
- 3. Carlon Meter.
- 4. Hays Fluid Controls.
- 5. McCrometer.
- 6. Mueller Co.; Hersey Meters Division.
- 7. Neptune Technology Group Inc.
- 8. Sensus Metering Systems.
- C. Displacement-Type Water Meters:
 - 1. Description: With bronze main case.
 - 2. Standard: AWWA C700.
 - 3. Registration: Flow in gallons or cubic feet.
- D. Turbine-Type Water Meters:
 - 1. Standard: AWWA C701.
 - 2. Registration: Flow in gallons or cubic feet.
- E. Compound-Type Water Meters:
 - 1. Standard: AWWA C702.
 - 2. Registration: Flow in gallons or cubic feet.
- F. Remote Registration System:
 - 1. Description: Utility company's standard; direct-reading type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 - 2. Standard: AWWA C706.
 - 3. Registration: Flow in gallons or cubic feet.
- G. Remote Registration System:
 - 1. Description: Utility company's standard; encoder type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 - 2. Standard: AWWA C707.
 - 3. Registration: Flow in gallons or cubic feet.
 - 4. Data-Acquisition Units: Comply with utility company's requirements for type and quantity.
 - 5. Visible Display Units: Comply with utility company's requirements for type and quantity.

2.17 DETECTOR-TYPE WATER METERS

- **A.** Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Badger Meter, Inc.
 - 2. Mueller Co.; Hersey Meters Division.
 - 3. Neptune Technology Group Inc.
 - 4. Sensus Metering Systems.
- B. AWWA, Detector Check Water Meters:
 - 1. Description: Main line, turbine meter with second meter on bypass.

- 2. Standard: AWWA C703.
- 3. Registration: Flow in gallons or cubic feet.
- 4. Pressure Rating: 150 psig.
- 5. Bypass Meter: AWWA C701, turbine-type, bronze case.
 - a. Size: At least one-half nominal size of main-line meter.
- C. Fire-Protection, Detector Check Water Meters:
 - 1. Description: Main-line turbine meter with strainer and second meter on bypass.
 - 2. Standards: UL's "Fire Protection Equipment Directory" listing and "Approval Guide," published by FM Global, listing.
 - 3. Registration: Flow in gallons or cubic feet.
 - 4. Pressure Rating: 175 psig minimum.
 - 5. Bypass Meter: AWWA C701, turbine-type, bronze case.
 - a. Size: At least NPS 2.
- D. Remote Registration System:
 - 1. Description: Utility company's standard; direct-reading type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 - 2. Standard: AWWA C706.
 - 3. Registration: Flow in gallons or cubic feet.
- E. Remote Registration System:
 - 1. Description: Utility company's standard; encoder type. Include meter modified with signal-transmitting assembly, low-voltage connecting wiring, and remote register assembly.
 - 2. Standard: AWWA C707.
 - 3. Registration: Flow in gallons or cubic feet.
 - 4. Data-Acquisition Units: Comply with utility company's requirements for type and quantity.
 - 5. Visible Display Units: Comply with utility company's requirements for type and quantity.

2.18 PRESSURE-REDUCING VALVES

- A. Water Regulators:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Cash Acme; a division of The Reliance Worldwide Corporation.
 - b. Conbraco Industries, Inc.; Apollo Valves.
 - c. Honeywell Water Controls.
 - d. Watts Water Technologies, Inc.
 - e. Zurn Plumbing Products Group; Wilkins Water Control Products Division.
- B. Water Control Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. CLA-VAL Automatic Control Valves.
 - b. Flomatic Corporation.
 - c. OCV Control Valves.
 - d. Watts Regulator Company; Ames Fluid Control Systems.
 - e. Watts Regulator Company; Watts ACV Division.
 - f. Zurn Plumbing Products Group; Wilkins Water Control Products Division.
- 3. Description: Pilot-operation, diaphragm-type, single-seated main water control valve with AWWA C550 or FDA-approved, interior epoxy coating. Include small pilot control valve, restrictor device, specialty fittings, and sensor piping.
- 4. Pressure Rating: Initial pressure of 150 psig minimum.
- 5. Main Valve Body: Cast or ductile iron with AWWA C550 or FDA-approved, interior epoxy coating; or stainless-steel body.
- 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.

2.19 BACKFLOW PREVENTERS

- A. Reduced-Pressure-Principle Backflow Preventers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 - b. Conbraco Industries, Inc.; Apollo Valves.
 - c. FEBCO; SPX Valves & Controls.
 - d. Flomatic Corporation.
 - e. Watts Water Technologies, Inc.
 - f. Zurn Plumbing Products Group; Wilkins Water Control Products Division.
 - 3. Standard: ASSE 1013, or, AWWA C511.
 - 4. Operation: Continuous-pressure applications.
 - 5. Pressure Loss: 12 psig maximum, through middle one-third of flow range.
 - 6. Body Material: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved, steel with interior lining complying with AWWA C550 or that is FDA approved, stainless steel for NPS 2-1/2 and larger.
 - 7. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 8. Configuration: Designed for horizontal, straight through, or vertical inlet, horizontal center section, and vertical outlet flow.
 - 9. Accessories:
 - a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; OS&Y gate type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow preventer connection.
- B. Double-Check, Backflow-Prevention Assemblies:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 - b. Conbraco Industries, Inc.; Apollo Valves.
 - c. FEBCO; SPX Valves & Controls.
 - d. Flomatic Corporation.
 - e. Watts Water Technologies, Inc.
 - f. Zurn Plumbing Products Group; Wilkins Water Control Products Division.
- C. Reduced-Pressure-Detector, Fire-Protection Backflow Preventer Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 - b. Conbraco Industries, Inc.; Apollo Valves.
 - c. FEBCO; SPX Valves & Controls.
 - d. Watts Water Technologies, Inc.
 - e. Zurn Plumbing Products Group; Wilkins Water Control Products Division.
- D. Double-Check, Detector-Assembly Backflow Preventers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 - b. Conbraco Industries, Inc.; Apollo Valves.
 - c. FEBCO; SPX Valves & Controls.
 - d. Watts Water Technologies, Inc.
 - e. Zurn Plumbing Products Group; Wilkins Water Control Products Division.
- E. Backflow Preventer Test Kits:
 - 1. Manufacturers: Subject to compliance with requirements available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. FEBCO; SPX Valves & Controls.
 - c. Flomatic Corporation.
 - d. Watts Water Technologies, Inc.
 - e. Zurn Plumbing Products Group; Wilkins Water Control Products Division.
 - 2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with testprocedure instructions.

2.20 WATER METER BOXES

- A. Description: Cast-iron body and cover for disc-type water meter, with lettering "WATER METER" on cover; and with slotted, open-bottom base section of length to fit over service piping.
 - 1. Option: Base section may be cast-iron, PVC, clay, or other pipe.
- B. Description: Cast-iron body and double cover for disc-type water meter, with lettering "WATER METER" on top cover; and with separate inner cover; air space between covers; and slotted, open-bottom base section of length to fit over service piping.
- C. Description: Polymer-concrete body and cover for disc-type water meter, with lettering "WATER" on cover; and with slotted, open-bottom base section of length to fit over service piping. Include vertical and lateral design loadings of 15,000 lb minimum over 10 by 10 inches square.

2.21 CONCRETE VAULTS

- A. Description: Precast, reinforced-concrete vault, designed for A-16 load designation according to ASTM C 857, and made according to ASTM C 858.
- B. Ladder: ASTM A 36/A 36M, steel ladder; or PE-encased steel steps.
- C. Manhole: ASTM A 48/A 48M, Class No. 35A minimum tensile strength, gray-iron traffic frame and cover.
 - 1. Dimension: 24-inch minimum diameter unless otherwise indicated.
- D. Manhole: ASTM A 536, Grade 60-40-18, ductile-iron traffic frame and cover.
 1. Dimension: 24-inch minimum diameter unless otherwise indicated.
- E. Drain: ASME A112.6.3, cast-iron floor drain with outlet of size indicated. Include body anchor flange, light-duty cast-iron grate, bottom outlet, and integral or field-installed bronze ball or clapper-type backwater valve.

2.22 PROTECTIVE ENCLOSURES

- A. Freeze-Protection Enclosures:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. AquaShield.
 - b. BF Products.
 - c. DekoRRa Products LLC.
 - d. Dunco Manufacturing, Inc.
 - e. G&C Enclosures.
 - f. Hot Box, Inc.
 - g. HydroCowl, Inc.

- h. Piedmont Well Covers, Inc.
- i. Watts Water Technologies, Inc.
- 3. Description: Insulated enclosure designed to protect aboveground water piping, equipment, or specialties from freezing and damage, with heat source to maintain minimum internal temperature of 40 deg F when external temperatures reach as low as minus 34 deg F.
- 4. Standard: ASSE 1060.
- 5. Class I: For equipment or devices other than pressure or atmospheric vacuum breakers.
- 6. Class I-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.
 - a. Housing: Reinforced aluminum or fiberglass construction.
 - 1) Size: Of dimensions indicated but not less than those required for access and service of protected unit.
 - 2) Drain opening for units with drain connection.
 - 3) Access doors with locking devices.
 - 4) Insulation inside housing.
 - 5) Anchoring devices for attaching housing to concrete base.
 - b. Electric heating cable or heater with self-limiting temperature control.
- B. Weather-Resistant Enclosures:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. AquaShield.
 - b. BF Products.
 - c. DekoRRa Products LLC.
 - d. Dunco Manufacturing, Inc.
 - e. G&C Enclosures.
 - f. Hot Box, Inc.
 - g. HydroCowl, Inc.
 - h. Piedmont Well Covers, Inc.
 - i. Watts Water Technologies, Inc.
 - 3. Description: Uninsulated enclosure designed to protect aboveground water piping, equipment, or specialties from weather and damage.
 - 4. Standard: ASSE 1060.
 - 5. Class III: For equipment or devices other than pressure or atmospheric vacuum breakers.
 - 6. Class III-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.
 - a. Housing: Reinforced aluminum or fiberglass construction.
 - 1) Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
 - 2) Drain opening for units with drain connection.
 - 3) Access doors with locking devices.
 - 4) Anchoring devices for attaching housing to concrete base.
- C. Expanded-Metal Enclosures:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Backflow Prevention Device InnClosures, Inc.
 - b. BF Products.
 - c. Cross Brothers Inc.
 - d. Le Meur Welding & Manufacturing Co.
 - e. V.I.T. Products, Inc.
- 3. Description: Enclosure designed to protect aboveground water piping, equipment, or specialties from damage.
- 4. Material: ASTM F 1267, expanded metal side and top panels, of weight and with reinforcement of same metal at edges as required for rigidity.
- 5. Type: I, expanded; II, expanded and flattened.
- 6. Class: Class 1, uncoated carbon steel.
- 7. Finish: Manufacturer's enamel paint.
- 8. Size: Of dimensions indicated but not less than those required for access and service of protected unit.
- 9. Locking device.
- 10. Lugs or devices for securing enclosure to base.
- 11. Enclosure Bases: 4-inch minimum thickness precast concrete, of dimensions required to extend at least 6 inches beyond edges of enclosure housings. Include openings for piping.

2.23 FIRE HYDRANTS

- A. AWWA Dry-Barrel Fire Hydrants:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. American AVK Company; Valves & Fittings Division.
 - b. American Cast Iron Pipe Company; American Flow Control Division.
 - c. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 - d. American Foundry Group, Inc.
 - e. Clow Valve Company; a division of McWane, Inc.
 - f. East Jordan Iron Works, Inc.
 - g. Kennedy Valve; a division of McWane, Inc.
 - h. M&H Valve Company; a division of McWane, Inc.
 - i. Mueller Co.; Water Products Division.
 - j. Troy Valve; a division of Penn-Troy Manufacturing, Inc.
 - k. U.S. Pipe.
 - 3. Description: Post type, with one NPS 4-1/2 and two NPS 2-1/2 outlets; and with 5-1/4inch main valve, drain valve, and NPS 6 mechanical-joint inlet. Include interior coating according to AWWA C550. Hydrant shall have cast-iron body and compression-type valve opening against pressure and closing with pressure.
 - 4. Standard: AWWA C502.

- 5. Pressure Rating: 150 psig minimum.
- B. UL-Listed, Dry-Barrel Fire Hydrants:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. American Cast Iron Pipe Company; American Flow Control Division.
 - b. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 - c. American Foundry Group, Inc.
 - d. Clow Valve Company; a division of McWane, Inc.
 - e. East Jordan Iron Works, Inc.
 - f. Kennedy Valve; a division of McWane, Inc.
 - g. M&H Valve Company; a division of McWane, Inc.
 - h. Mueller Co.; Water Products Division.
 - i. Troy Valve; a division of Penn-Troy Manufacturing, Inc.
 - j. U.S. Pipe.
 - 3. Description: Freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets; and with 5-1/4-inch main valve, drain valve, and NPS 6 mechanical-joint inlet. Hydrant shall have cast-iron body and compression-type valve opening against pressure and closing with pressure.
 - 4. Standards: UL 246 and "Approval Guide," published by FM Global, listing.
 - 5. Design: Base valve.
 - 6. Pressure Rating: 150 psig minimum.
 - 7. Outlet Threads: NFPA 1963, with external hose thread used by local fire department. Include cast-iron caps with steel chains.
 - 8. Operating and Cap Nuts: Pentagon, 1-1/2 inches point to flat.
 - 9. Direction of Opening: Hydrant valve opens by turning operating nut to left or counterclockwise.
 - 10. Exterior Finish: Red alkyd-gloss enamel paint unless otherwise indicated.
- C. AWWA Wet-Barrel Fire Hydrants:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. American AVK Company; Valves & Fittings Division.
 - b. Clow Valve Company; a division of McWane, Inc.
 - c. Jones, James Company.
 - d. Mueller Co.; Water Products Division.
 - 3. Description: Post type, with one NPS 4-1/2 and two NPS 2-1/2 outlets and with NPS 6 threaded or flanged inlet, and base section with NPS 6 mechanical-joint inlet. Include interior coating according to AWWA C550.
 - 4. Standard: AWWA C503.
 - 5. Pressure Rating: [150 psig minimum.
- D. UL-Listed, Wet-Barrel Fire Hydrants:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. American AVK Company; Valves & Fittings Division.
 - b. Clow Valve Company; a division of McWane, Inc.
 - c. Jones, James Company.
 - d. Mueller Co.; Water Products Division.
- 3. Description: Freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets and with NPS 6 threaded or flanged inlet, and base section with NPS 6 mechanical-joint inlet.
- 4. Standards: UL 246 and "Approval Guide," published by FM Global, listing.
- 5. Design: Wet barrel.
- 6. Pressure Rating: 150 psig minimum.
- 7. Outlet Threads: NFPA 1963, with external hose thread used by local fire department. Include cast-iron caps with steel chains.
- 8. Operating and Cap Nuts: Pentagon, 1-1/2 inches point to flat.
- 9. Direction of Opening: Hydrant valves open by turning operating nut to left or counterclockwise.
- 10. Exterior Finish: Red alkyd-gloss enamel paint unless otherwise indicated.

2.24 FIRE-DEPARTMENT CONNECTIONS

- A. Manufacturers: Subject to compliance with requirements available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Elkhart Brass Mfg. Company, Inc.
 - 2. Fire-End & Croker Corporation.
 - 3. Guardian Fire Equipment, Inc.
 - 4. Kidde Fire Fighting.
 - 5. Potter Roemer.
 - 6. Reliable Automatic Sprinkler Co., Inc.
- C. Description: Freestanding, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire-department hose threads, and threaded bottom outlet. Include lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18-inch high brass sleeve; and round escutcheon plate.
- D. Standard: UL 405.
- E. Connections: Two NPS 2-1/2 inlets and one NPS 4 outlet.
- F. Connections: Three NPS 2-1/2 inlets and one NPS 6 outlet.
- G. Connections: Six NPS 2-1/2 inlets and one NPS 6 outlet.
- H. Inlet Alignment: Inline, horizontal or square.

- I. Finish Including Sleeve: Polished chrome plated.
- J. Escutcheon Plate Marking: "AUTO SPKR & STANDPIPE."

2.25 ALARM DEVICES

- A. General: UL 753 and "Approval Guide," published by FM Global, listing, of types and sizes to mate and match piping and equipment.
- B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psig working pressure; designed for horizontal or vertical installation; with two single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.
- C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.
- D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with excavating, trenching, and backfilling requirements in Section 02300 "Earthwork."

3.2 PIPING INSTALLATION

- A. Water-Main Connection: Arrange with water utility company for tap of size and in location indicated in water main.
- B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.
- C. Make connections larger than NPS 2 with tapping machine according to the following:
 - 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 - 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 - 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
 - 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.
- D. Make connections NPS 2 and smaller with drilling machine according to the following:
 - 1. Install service-saddle assemblies and corporation valves in size, quantity, and arrangement required by utility company's standards.
 - 2. Install service-saddle assemblies on water-service pipe to be tapped. Position outlets for corporation valves.

- 3. Use drilling machine compatible with service-saddle assemblies and corporation valves. Drill hole in main. Remove drilling machine and connect water-service piping.
- 4. Install corporation valves into service-saddle assemblies.
- 5. Install manifold for multiple taps in water main.
- 6. Install curb valve in water-service piping with head pointing up and with service box.
- E. Comply with NFPA 24 for fire-service-main piping materials and installation.
- F. Install copper tube and fittings according to CDA's "Copper Tube Handbook."
 1. Install encasement for tubing according to ASTM A 674 or AWWA C105.
- G. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
 1. Install encasement for piping according to ASTM A 674 or AWWA C105.
- H. Install PE pipe according to ASTM D 2774 and ASTM F 645.
- I. Install PVC, AWWA pipe according to ASTM F 645 and AWWA M23.
- J. Install fiberglass AWWA pipe according to AWWA M45.
- K. Bury piping with depth of cover over top at least 30 inches, with top at least 12 inches below level of maximum frost penetration, and according to the following:
 - 1. Under Driveways: With at least 36 inches of cover over top.
 - 2. Under Railroad Tracks: With at least 48 inches of cover over top.
 - 3. In Loose Gravelly Soil and Rock: With at least 12 inches of additional cover.
- L. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.
- M. Extend fire-suppression water-service piping and connect to water-supply source and building fire-suppression water-service piping systems at locations and pipe sizes indicated.
 - 1. Terminate fire-suppression water-service piping at building floor slab until buildingwater-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building's fire-suppression waterservice piping systems when those systems are installed.
- N. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.
- Comply with requirements in Section 13974 "Fire-Suppression Standpipes," Section 13930 "Wet-Pipe Fire-Suppression Sprinklers," and Section 13935 "Dry-Pipe Fire-Suppression Sprinklers" for fire-suppression-water piping inside the building.
- P. Comply with requirements in Section 15140 "Domestic Water Piping" for potable-water piping inside the building.
- Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 15091 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

R. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 15091 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

3.3 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure rating same as or higher than systems pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in tubing NPS 2 and smaller.
- C. Install flanges, flange adaptors, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Reamends of tubes and remove burrs.
- E. Remove scale, slag, dirt, and debris from outside and inside of pipes, tubes, and fittings before assembly.
- F. Copper-Tubing, Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
- G. Copper-Tubing, Pressure-Sealed Joints: Use proprietary crimping tool and procedure recommended by copper, pressure-seal-fitting manufacturer.
- H. Ductile-Iron Piping, Gasketed Joints for Fire-Service-Main Piping: UL 194.
- I. Ductile-Iron Piping, Grooved Joints: Cut-groove pipe. Assemble joints with grooved-end, ductile-iron-piping couplings, gaskets, lubricant, and bolts.
- J. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with bolts according to ASME B31.9.
- K. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
- L. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139.
- M. Fiberglass Piping Bonded Joints: Use adhesive and procedure recommended by piping manufacturer.
- N. Dissimilar Materials Piping Joints: Use adapters compatible with both piping materials, with OD, and with system working pressure.
- O. Do not use flanges or unions for underground piping.
3.4 ANCHORAGE INSTALLATION

- A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:
 - 1. Concrete thrust blocks.
 - 2. Locking mechanical joints.
 - 3. Set-screw mechanical retainer glands.
 - 4. Bolted flanged joints.
 - 5. Heat-fused joints.
 - 6. Pipe clamps and tie rods.
 - 7. <Insert devices>.
- B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches in firesuppression water-service piping according to NFPA 24 and the following:
 - 1. Gasketed-Joint, Ductile-Iron, Water-Service Piping: According to AWWA C600.
 - 2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.
 - 3. Bonded-Joint Fiberglass, Water-Service Piping: According to AWWA M45.
- C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.5 VALVE INSTALLATION

- A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.
- B. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.
- C. UL-Listed or FM-Approved Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.
- D. UL-Listed or FM-Approved Valves Other Than Gate Valves: Comply with NFPA 24.
- E. MSS Valves: Install as component of connected piping system.
- F. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.
- G. Pressure-Reducing Valves: Install in vault or aboveground between shutoff valves. Install fullsize valved bypass.
- H. Support valves and piping, not direct buried, on concrete piers. Comply with requirements for concrete piers in Section 03300 "Cast-in-Place Concrete.", or Section 03301 "Miscellaneous Cast-in-Place Concrete."

3.6 DETECTOR CHECK VALVE INSTALLATION

A. Install in vault or aboveground.

- B. Install for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.
- C. Support detector check valves and piping on concrete piers. Comply with requirements for concrete piers in Section 03300 "Cast-in-Place Concrete." and Section 03301 "Miscellaneous Cast-in-Place Concrete."

3.7 WATER METER INSTALLATION

- A. Install water meters, piping, and specialties according to utility company's written instructions.
- B. Water Meters: Install displacement or turbine-type water meters NPS 2 and smaller in meter boxes with shutoff valves on water meter inlets. Include valves on water meter outlets, and include valved bypass around meters unless prohibited by authorities having jurisdiction.
- C. Water Meters: Install compound or turbine-type water meters NPS 3 and larger in meter vaults. Include shutoff valves on water meter inlets and outlets, and include valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.
- D. Water Meters: Install detector-type water meters in meter vault according to AWWA M6. Include shutoff valves on water meter inlets and outlets, and include full-size valved bypass around meters. Support meters, valves, and piping on brick or concrete piers.
- E. Support water meters and piping NPS 3 and larger on concrete piers. Comply with requirements for concrete piers in Section 03300 "Cast-in-Place Concrete." Or Section 03301 "Miscellaneous Cast-in-Place Concrete."

3.8 ROUGHING-IN FOR WATER METERS

A. Rough-in piping and specialties for water meter installation according to utility company's written instructions.

3.9 BACKFLOW PREVENTER INSTALLATION

- A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
- B. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.
- C. Do not install bypass piping around backflow preventers.
- D. Support NPS 2-1/2 and larger backflow preventers and piping on concrete piers. Comply with requirements for concrete piers in Section 03300 "Cast-in-Place Concrete." Or Section 03301 "Miscellaneous Cast-in-Place Concrete."

3.10 WATER METER BOX INSTALLATION

- A. Install water meter boxes in paved areas flush with surface.
- B. Install water meter boxes in grass or earth areas with top 2 inches above surface.
- 3.11 CONCRETE VAULT INSTALLATION
 - A. Install precast concrete vaults according to ASTM C 891.

3.12 PROTECTIVE ENCLOSURE INSTALLATION

- A. Install concrete base level and with top approximately 2 inches above grade.
- B. Install protective enclosure over valves and equipment.
- C. Anchor protective enclosure to concrete base.

3.13 FIRE HYDRANT INSTALLATION

- A. General: Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.
- B. Wet-Barrel Fire Hydrants: Install with valve below frost line. Provide for drainage.
- C. AWWA Fire Hydrants: Comply with AWWA M17.
- D. UL-Listed or FM-Approved Fire Hydrants: Comply with NFPA 24.

3.14 FIRE-DEPARTMENT CONNECTION INSTALLATION

- A. Install ball drip valves at each check valve for fire-department connection to mains.
- B. Install protective pipe bollards on all sides of each fire-department connection. Pipe bollards are specified in Section 05500 "Metal Fabrications."

3.15 ALARM DEVICE INSTALLATION

- A. General: Comply with NFPA 24 for devices and methods of valve supervision. Underground valves with valve box do not require supervision.
- B. Supervisory Switches: Supervise valves in open position.
 - 1. Valves: Grind away portion of exposed valve stem. Bolt switch, with plunger in stem depression, to OS&Y gate-valve yoke.
 - 2. Indicator Posts: Drill and thread hole in upper-barrel section at target plate. Install switch, with toggle against target plate, on barrel of indicator post.
- C. Locking and Sealing: Secure unsupervised valves as follows:

- 1. Valves: Install chain and padlock on open OS&Y gate valve.
- 2. Post Indicators: Install padlock on wrench on indicator post.
- D. Pressure Switches: Drill and thread hole in exposed barrel of fire hydrant. Install switch.
- E. Water-Flow Indicators: Install in water-service piping in vault. Select indicator with saddle and vane matching pipe size. Drill hole in pipe, insert vane, and bolt saddle to pipe.
- F. Connect alarm devices to building's fire-alarm system. Wiring and fire-alarm devices are specified in Section 13852 "Digital, Addressable Fire-Alarm System." or Section 13853 "Zoned (DC Loop) Fire-Alarm System."

3.16 CONNECTIONS

- A. Connect fire-suppression water-service piping to utility water main.
- B. Connect fire-suppression water-service piping to interior fire-suppression piping.
- C. Connect waste piping from concrete vault drains to sanitary sewerage system. Comply with requirements in Section 02530 "Sanitary Sewerage" for connection to sanitary sewer.
- 3.17 FIELD QUALITY CONTROL
 - A. Use test procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described below.
 - B. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
 - C. Hydrostatic Tests: Test at not less than one-and-one-half times the working pressure for two hours.
 - 1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for one hour; decrease to 0 psig. Slowly increase again to test pressure and hold for one more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.
 - D. Prepare test and inspection reports.

3.18 IDENTIFICATION

- A. Install continuous underground detectable warning tape during backfilling of trench for underground fire-suppression water-service piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 02300 "Earthwork."
- B. Permanently attach equipment nameplate or marker indicating plastic fire-suppression waterservice piping or fire-suppression water-service piping with electrically insulated fittings, on

main electrical meter panel. Comply with requirements for identifying devices in Section 15076 "Identification for Plumbing Piping and Equipment."

3.19 CLEANING

- A. Clean and disinfect fire-suppression water-service piping as follows:
 - 1. Purge new piping systems and parts of existing systems that have been altered, extended, or repaired before use.
 - 2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
 - 3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 - a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 - b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for three hours.
 - c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.
- B. Prepare reports of purging and disinfecting activities.

3.20 PIPING SCHEDULE

- A. Underground fire-suppression water-service piping NPS 2 and smaller shall be one of the following:
 - 1. Copper tube, ASTM B 88, Type K or ASTM B 88, Type L; wrought-copper, solder-joint fittings; and brazed or copper, pressure-seal fittings; and pressure-sealed joints.
 - 2. NPS 2 PE, Class 150 or Class 200, fire-service pipe; molded PE fittings; and heat-fusion joints.
- B. Underground fire-suppression water-service piping NPS 3 shall be one of the following:
 - 1. Copper tube, ASTM B 88, Type K or ASTM B 88, Type L; wrought-copper, solder-joint fittings; and brazed or copper, pressure-seal fittings; and pressure-sealed] joints.
 - 2. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
 - 3. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standardpattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and gasketed joints.
 - 4. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron compact-pattern fittings; and gasketed joints.
 - 5. PE, Class 150 or Class 200, fire-service pipe; molded PE fittings; and heat-fusion joints.
- C. Underground fire-suppression water-service piping NPS 4 shall be one of the following:

- 1. Copper tube, ASTM B 88, Type K or ASTM B 88, Type L; wrought-copper, solder-joint fittings; and brazed or copper, pressure-seal fittings; and pressure-sealed joints.
- 2. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
- 3. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standardpattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and gasketed joints.
- 4. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron compact-pattern fittings; and gasketed joints.
- 5. PE, Class 150 or Class 200, fire-service pipe; molded PE fittings; and heat-fusion joints.
- 6. PVC, Class 150 or Class 200 pipe listed for fire-protection service; PVC fittings of same class as pipe; and gasketed joints.
- 7. Fiberglass, RTRP, Class 150 or Class 200; RTRF; and bonded joints.
- D. Underground fire-suppression water-service piping NPS 6 to NPS 12 shall be one of the following:
 - 1. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
 - 2. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standardpattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and gasketed joints.
 - 3. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron compact-pattern fittings; and gasketed joints.
 - 4. PE, Class 150 or Class 200, fire-service pipe; molded PE fittings; and heat-fusion joints.
 - 5. PVC, Class 150 or Class 200 pipe listed for fire-protection service; PVC fittings of same class as pipe; and gasketed joints.
 - 6. Fiberglass, RTRP, Class 150 or Class 200; RTRF; and bonded joints.
- E. Aboveground and vault fire-suppression water-service piping NPS 2 and smaller shall be hard copper tube, ASTM B 88, Type K, or ASTM B 88, Type L; wrought- or cast-copper-alloy, solder-joint fittings; and brazed copper, pressure-seal fittings; and pressure-sealed] joints.
- F. Aboveground and vault fire-suppression water-service piping[NPS 3 and NPS 4 shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type K or ASTM B 88, Type L; wrought-copper, solderjoint fittings; and brazed copper, pressure-seal fittings; and pressure-sealed joints.
 - 2. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
- G. Aboveground and vault fire-suppression water-service piping NPS 5 to NPS 12 shall be grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
- H. Underslab fire-suppression water-service piping NPS 2 and smaller shall be copper tube, ASTM B 88, Type K or ASTM B 88, Type L; wrought-copper, solder-joint fittings; and brazed copper, pressure-seal fittings; and pressure-sealed joints.
- I. Underslab fire-suppression water-service piping NPS 3 and NPS 4 shall be one of the following:
 - 1. Copper tube, ASTM B 88, Type K or ASTM B 88, Type L; wrought-copper, solder-joint fittings; and brazed copper, pressure-seal fittings; and pressure-sealed joints.

- 2. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
- 3. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standardpattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and restrained, gasketed joints.
- 4. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron compact-pattern fittings; and restrained, gasketed joints.
- J. Underslab fire-suppression water-service piping NPS 6 to NPS 12 shall be one of the following:
 - 1. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
 - 2. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standardpattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and restrained, gasketed joints.
 - 3. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron compact-pattern fittings; and restrained, gasketed joints.

3.21 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
- B. Underground fire-suppression water-service shutoff valves NPS 2 and smaller shall be corporation valves or curb valves with ends compatible with piping.
- C. Meter box fire-suppression water-service shutoff valves NPS 2 and smaller shall be meter valves.
- D. Vault fire-suppression water-service shutoff valves NPS 2 and smaller shall be Class 125, MSS, bronze, nonrising stem or UL-listed or FM-approved, OS&Y, bronze, gate valves.
- E. Underground fire-suppression water-service shutoff valves NPS 3 and larger shall be one of the following:
 - 1. 200-psig, AWWA, iron, nonrising-stem, metal or resilient-seated gate valves.
 - 2. 250-psig, AWWA, iron, nonrising-stem, resilient-seated gate valves.
 - 3. 175-psig, UL-listed or FM-approved, iron, nonrising-stem gate valves.
- F. Indicator-post underground fire-suppression water-service valves NPS 3 and larger shall be 175-psig, UL-listed or FM-approved, iron, nonrising-stem gate valves with indicator-post flange.
- G. Standard-pressure, aboveground and vault fire-suppression water-service shutoff valves NPS 3 and larger shall be one of the following:
 - 1. 200-psig, AWWA, iron, OS&Y, metal or resilient-seated gate valves.
 - 2. 250-psig, AWWA, iron, OS&Y, resilient-seated gate valves.
 - 3. 175-psig, UL-listed or FM-approved, iron, OS&Y gate valves.
 - 4. AWWA or UL-listed or FM-approved butterfly valves.
- H. Fire-suppression water-service check valves NPS 3 larger shall be one of the following:
 - 1. AWWA or UL-listed or FM-approved check valves.

2. UL-listed or FM-approved detector check valves.

END OF SECTION 02515

SECTION 02530 - SANITARY SEWERAGE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe and fittings.
 - 2. Nonpressure and pressure couplings.
 - 3. Expansion joints and deflection fittings.
 - 4. Backwater valves.
 - 5. Cleanouts.
 - 6. Encasement for piping.
 - 7. Manholes.

1.3 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.

1.4 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Expansion joints and deflection fittings.
 - 2. Backwater valves.
- B. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
- B. Profile Drawings: Show system piping in elevation. Draw profiles to horizontal scale of not less than 1 inch equals 50 feet and to vertical scale of not less than 1 inch equals 5 feet. Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing system piping.
- C. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.
- D. Field quality-control reports.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
- B. Protect pipe, pipe fittings, and seals from dirt and damage.
- C. Handle manholes according to manufacturer's written rigging instructions.

1.7 PROJECT CONDITIONS

- A. Interruption of Existing Sanitary Sewerage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Architect, and Owner no fewer than seven days in advance of proposed interruption of service.
 - 2. Do not proceed with interruption of service without Architect's, or Owner's written permission.

PART 2 - PRODUCTS

- 2.1 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS
 - A. Pipe and Fittings: ASTM A 74,
 - B. Gaskets: ASTM C 564, rubber.
 - C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.
- 2.2 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS
 - A. Pipe and Fittings: ASTM A 888 or CISPI 301.
 - B. CISPI-Trademark, Shielded Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings; product name or designation or comparable product by one of the following:
 - a. ANACO-Husky.
 - b. Dallas Specialty & Mfg. Co.
 - c. Fernco Inc.
 - d. Mission Rubber Company; a division of MCP Industries, Inc.
 - e. Stant; a Tompkins company.
 - f. Tyler Pipe.
 - 3. Description: ASTM C 1277 and CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

- C. Heavy-Duty, Shielded Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings; product name or designation or comparable product by one of the following:
 - a. ANACO-Husky.
 - b. Clamp-All Corp.
 - c. Dallas Specialty & Mfg. Co.
 - d. Mission Rubber Company; a division of MCP Industries, Inc.
 - e. Stant; a Tompkins company.
 - f. Tyler Pipe.
 - 3. Description: ASTM C 1277 and ASTM C 1540, with stainless-steel shield; stainlesssteel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- D. Cast-Iron, Shielded Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings; product name or designation or comparable product by one of the following:
 - a. MG Piping Products Company.
 - 3. Description: ASTM C 1277 with ASTM A 48/A 48M, two-piece, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- E. Unshielded Couplings:
 - 1. Manufacturers: Subject to compliance with requirements available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings; product name or designation or comparable product by one of the following:
 - a. ANACO-Husky.
 - 3. Description: ASTM C 1277 and ASTM C 1461, rigid, sleeve-type, reducing- or transition-type mechanical coupling, with integral, center pipe stop, molded from ASTM C 1440, TPE material; with corrosion-resistant-metal tension band and tightening mechanism on each end.

2.3 DUCTILE-IRON, GRAVITY SEWER PIPE AND FITTINGS

- A. Pipe: ASTM A 746, for push-on joints.
- B. Standard Fittings: AWWA C110, ductile or gray iron, for push-on joints.
- C. Compact Fittings: AWWA C153, ductile iron, for push-on joints.

D. Gaskets: AWWA C111, rubber.

2.4 DUCTILE-IRON, PRESSURE PIPE AND FITTINGS

- A. Push-on-Joint Piping:
 - 1. Pipe: AWWA C151.
 - 2. Standard Fittings: AWWA C110, ductile or gray iron.
 - 3. Compact Fittings: AWWA C153.
 - 4. Gaskets: AWWA C111, rubber, of shape matching pipe and fittings.
- B. Mechanical-Joint Piping:
 - 1. Pipe: AWWA C151, with bolt holes in bell.
 - 2. Standard Fittings: AWWA C110, ductile or gray iron, with bolt holes in bell.
 - 3. Compact Fittings: AWWA C153, with bolt holes in bells.
 - 4. Glands: Cast or ductile iron; with bolt holes and high-strength, cast-iron or high-strength, low-alloy steel bolts and nuts.
 - 5. Gaskets: AWWA C111, rubber, of shape matching pipe, fittings, and glands.

2.5 ABS PIPE AND FITTINGS

- A. ABS Sewer Pipe and Fittings: ASTM D 2751, with bell-and-spigot ends for gasketed joints.
 - 1. NPS 3 to NPS 6: SDR 35.
 - 2. NPS 8 to NPS 12: SDR 42.
- B. Gaskets: ASTM F 477, elastomeric seals.
- 2.6 PVC PIPE AND FITTINGS
 - A. PVC Cellular-Core Sewer Piping:
 - 1. Pipe: ASTM F 891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellularcore pipe with plain ends for solvent-cemented joints.
 - 2. Fittings: ASTM D 3034, SDR 35, SDR 26, PVC socket-type fittings.
 - B. PVC Corrugated Sewer Piping:
 - 1. Pipe: ASTM F 949, PVC corrugated pipe with bell-and-spigot ends for gasketed joints.
 - 2. Fittings: ASTM F 949, PVC molded or fabricated, socket type.
 - 3. Gaskets: ASTM F 477, elastomeric seals.
 - C. PVC Profile Sewer Piping:
 - 1. Pipe: ASTM F 794, PVC profile, gravity sewer pipe with bell-and-spigot ends for gasketed joints.
 - 2. Fittings: ASTM D 3034, PVC with bell ends.
 - 3. Gaskets: ASTM F 477, elastomeric seals.
 - D. PVC Type PSM Sewer Piping:
 - 1. Pipe: ASTM D 3034, SDR 35 or SDR 26, PVC Type PSM sewer pipe with bell-andspigot ends for gasketed joints.
 - 2. Fittings: ASTM D 3034, PVC with bell ends.
 - 3. Gaskets: ASTM F 477, elastomeric seals.

- E. PVC Gravity Sewer Piping:
 - 1. Pipe and Fittings: ASTM F 679, T-1 or T-2 wall thickness, PVC gravity sewer pipe with bell-and-spigot ends and with integral ASTM F 477, elastomeric seals for gasketed joints.
- F. PVC Pressure Piping:
 - 1. Pipe: AWWA C900 PVC pipe with bell-and-spigot ends for gasketed joints.
 - 2. Fittings: AWWA C900 PVC pipe with bell ends.
 - 3. Gaskets: ASTM F 477, elastomeric seals.
- G. PVC Water-Service Piping:
 - 1. Pipe: ASTM D 1785, Schedule 40 and Schedule 80 PVC, with plain ends for solvent-cemented joints.
 - 2. Fittings: ASTM D 2466, Schedule 40 and ASTM D 2467, Schedule 80 PVC, socket type.

2.7 FIBERGLASS PIPE AND FITTINGS

- A. Fiberglass Sewer Pipe: ASTM D 3262, RTRP, for gasketed joints fabricated with Type 2, polyester or Type 4, **epoxy** resin.
 - 1. Liner: Reinforced thermoset, Nonreinforced thermoset, Thermoplastic, No liner.
 - 2. Grade: Reinforced, surface layer matching pipe resin
- B. Fiberglass Nonpressure Fittings: ASTM D 3840, RTRF, for gasketed joints.
 - 1. Laminating Resin: Type 1, polyester or Type 2, epoxy resin.
 - 2. Reinforcement: Grade with finish compatible with resin.
- C. Gaskets: ASTM F 477, elastomeric seals.

2.8 CONCRETE PIPE AND FITTINGS

A. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76.
1. tongue-and-groove ends for gasketed joints, with ASTM C 443, rubber gaskets.

2.9 NONPRESSURE-TYPE TRANSITION COUPLINGS

- A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.
- B. Sleeve Materials:
 - 1. For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2. For Concrete Pipes: ASTM C 443, rubber.
 - 3. For Fiberglass Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 4. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 5. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
- C. Unshielded, Flexible Couplings:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings; product name or designation or comparable product by one of the following:
 - a. Dallas Specialty & Mfg. Co.
 - b. Fernco Inc.
 - c. Logan Clay Pipe.
 - d. Mission Rubber Company; a division of MCP Industries, Inc.
 - e. NDS.
 - f. Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
- 3. Description: Elastomeric sleeve with stainless-steel shear ring and corrosion-resistantmetal tension band and tightening mechanism on each end.
- D. Shielded, Flexible Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Cascade Waterworks Mfg.
 - b. Dallas Specialty & Mfg. Co.
 - c. Mission Rubber Company; a division of MCP Industries, Inc.
 - 3. Description: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
- E. Ring-Type, Flexible Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings; product name or designation or comparable product by one of the following:
 - a. Fernco Inc.
 - b. Logan Clay Pipe.
 - c. Mission Rubber Company; a division of MCP Industries, Inc.
 - 3. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.
- F. Nonpressure-Type, Rigid Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. ANACO-Husky.

3. Description: ASTM C 1461, sleeve-type, reducing- or transition-type mechanical coupling, molded from ASTM C 1440, TPE material; with corrosion-resistant-metal tension band and tightening mechanism on each end.

2.10 PRESSURE-TYPE PIPE COUPLINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Cascade Waterworks Mfg.
 - 2. Dresser, Inc.
 - 3. Ford Meter Box Company, Inc. (The); Pipe Products Div.
 - 4. JCM Industries, Inc.
 - 5. Romac Industries, Inc.
 - 6. Smith-Blair, Inc.; a Sensus company.
 - 7. Victaulic Depend-O-Lok, Inc.
 - 8. Viking Johnson.
- C. Tubular-Sleeve Couplings: AWWA C219, with center sleeve, gaskets, end rings, and bolt fasteners.
- D. Metal, bolted, sleeve-type, reducing or transition coupling, for joining underground pressure piping. Include 150-psig minimum pressure rating and ends of same sizes as piping to be joined.
- E. Center-Sleeve Material: Manufacturer's standard.
- F. Gasket Material: Natural or synthetic rubber.
- G. Metal Component Finish: Corrosion-resistant coating or material.

2.11 EXPANSION JOINTS AND DEFLECTION FITTINGS

- A. Ductile-Iron, Flexible Expansion Joints:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. EBAA Iron, Inc.
 - b. Romac Industries, Inc.
 - c. Star Pipe Products.
 - 3. Description: Compound fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections, rated for 250-psig minimum working pressure and for offset and expansion indicated.

- B. Ductile-Iron Expansion Joints:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Dresser, Inc.
 - b. EBAA Iron, Inc.
 - c. JCM Industries, Inc.
 - d. Smith-Blair, Inc.; a Sensus company.
 - 3. Description: Three-piece assembly of telescoping sleeve with gaskets and restrainedtype, ductile-iron, bell-and-spigot end sections complying with AWWA C110 or AWWA C153. Include rating for 250-psig minimum working pressure and for expansion indicated.
- C. Ductile-Iron Deflection Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. EBAA Iron, Inc.
 - 3. Description: Compound coupling fitting with ball joint, flexing section, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include rating for 250-psig minimum working pressure and for up to 15 degrees of deflection.

2.12 BACKWATER VALVES

- A. Cast-Iron Backwater Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Josam Company.
 - b. Smith, Jay R. Mfg. Co.
 - c. Tyler Pipe.
 - d. Watts Water Technologies, Inc.
 - e. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
 - 3. Description: ASME A112.14.1, gray-iron body and bolted cover, with bronze seat.
 - 4. Horizontal type; with swing check valve and hub-and-spigot ends.
 - 5. Combination horizontal and manual gate-valve type; with swing check valve, integral gate valve, and hub-and-spigot ends.
 - 6. Terminal type; with bronze seat, swing check valve, and hub inlet.
- B. PVC Backwater Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Canplas LLC.
 - b. IPS Corporation.
 - c. NDS.
 - d. Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 - e. Sioux Chief Manufacturing Company, Inc.
 - f. Zurn Light Commercial Products Operation; Zurn Plumbing Products Group.
- 3. Description: Horizontal type; with PVC body, PVC removable cover, and PVC swing check valve.

2.13 CLEANOUTS

- A. Cast-Iron Cleanouts:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Josam Company.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.
 - d. Tyler Pipe.
 - e. Watts Water Technologies, Inc.
 - f. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
 - 3. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 - 4. Top-Loading Classification(s): Light Duty, Medium Duty, Heavy Duty, and Extra-Heavy Duty.
 - 5. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.
- B. PVC Cleanouts:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Canplas LLC.
 - b. IPS Corporation.
 - c. NDS.
 - d. Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 - e. Sioux Chief Manufacturing Company, Inc.
 - f. Zurn Light Commercial Products Operation; Zurn Plumbing Products Group.
 - 3. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.14 ENCASEMENT FOR PIPING

- A. Standard: ASTM A 674 or AWWA C105.
- B. Material: Linear low-density polyethylene film of 0.008-inch (0.20-mm) or high-density, crosslaminated polyethylene film of 0.004-inch (0.10-mm) minimum thickness.
- C. Form: Sheet, or tube.
- D. Color: Black or natural.

2.15 MANHOLES

- A. Standard Precast Concrete Manholes:
 - 1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Diameter: 48 inches minimum unless otherwise indicated.
 - 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section, as required to prevent flotation.
 - 4. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section; with separate base slab or base section with integral floor.
 - 5. Riser Sections: 4-inch minimum thickness, of length to provide depth indicated.
 - 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated; with top of cone of size that matches grade rings.
 - 7. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
 - 8. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
 - 9. Steps: Individual FRP steps, FRP ladder, or ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
 - 10. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
 - 11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
- B. Designed Precast Concrete Manholes:
 - 1. Description: ASTM C 913; designed according to ASTM C 890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
 - 2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
 - 3. Joint Sealant: ASTM C 990, bitumen or butyl rubber.

- 4. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
- 5. Steps: Individual FRP steps, FRP ladder, or ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
- 6. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
- 7. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
- C. Fiberglass Manholes:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Associated Fiberglass Enterprises.
 - b. Containment Solutions, Inc.
 - c. L. F. Manufacturing, Inc.
 - 3. Description: ASTM D 3753.
 - 4. Diameter: 48 inches minimum unless otherwise indicated.
 - 5. Ballast: Increase thickness of concrete base as required to prevent flotation.
 - 6. Base Section: Concrete, 6-inch minimum thickness.
 - 7. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
 - 8. Steps: Individual FRP steps or FRP ladder, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
 - 9. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
 - 10. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
- D. Manhole Frames and Covers:
 - 1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser, with 4-inch minimum-width flange and 26-inch diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "SANITARY SEWER."
 - 2. Material: ASTM A 536, Grade 60-40-18 ductile iron unless otherwise indicated.
- E. Manhole-Cover Inserts:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings; comparable product by one of the following:
 - a. FRW Industries; a Syneco Systems, Inc. company.
 - b. Knutson Enterprises.
 - c. L. F. Manufacturing, Inc.
 - d. Parson Environmental Products, Inc.
- 3. Description: Manufactured, plastic form, of size to fit between manhole frame and cover and designed to prevent stormwater inflow. Include handle for removal and gasket for gastight sealing.
- 4. Type: Solid

2.16 CONCRETE

- A. General: Cast-in-place concrete complying with ACI 318, ACI 350/350R and the following:
 - 1. Cement: ASTM C 150, Type II.
 - 2. Fine Aggregate: ASTM C 33, sand.
 - 3. Coarse Aggregate: ASTM C 33, crushed gravel.
 - 4. Water: Potable.
- B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.
 - 1. Reinforcing Fabric: ASTM A 185/A 185M, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.
- C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.
 - 1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 - a. Invert Slope: 1 to 2 percent through manhole.
 - 2. Benches: Concrete, sloped to drain into channel.
 - a. Slope: 4 to 8 percent.
- D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.
 - 1. Reinforcing Fabric: ASTM A 185/A 185M, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Section 02300 "Earthwork."

3.2 PIPING INSTALLATION

- A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
- C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipejacking process of microtunneling.
- F. Install gravity-flow, nonpressure, drainage piping according to the following:
 - 1. Install piping pitched down in direction of flow, at minimum slope of 0.5 percent unless otherwise indicated.
 - 2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place-concrete supports or anchors.
 - 3. Install piping with 36-inch minimum cover.
 - 4. Install hub-and-spigot, cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook."
 - 5. Install hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook."
 - 6. Install ductile-iron, gravity sewer piping according to ASTM A 746.
 - 7. Install ABS sewer piping according to ASTM D 2321 and ASTM F 1668.
 - 8. Install PVC cellular-core sewer piping according to ASTM D 2321 and ASTM F 1668.
 - 9. Install PVC corrugated sewer piping according to ASTM D 2321 and ASTM F 1668.
 - 10. Install PVC profile sewer piping according to ASTM D 2321 and ASTM F 1668.
 - 11. Install PVC Type PSM sewer piping according to ASTM D 2321 and ASTM F 1668.
 - 12. Install PVC gravity sewer piping according to ASTM D 2321 and ASTM F 1668.
 - 13. Install fiberglass sewer piping according to ASTM D 3839 and ASTM F 1668.
 - 14. Install nonreinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."
 - 15. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."
- G. Install force-main, pressure piping according to the following:
 - 1. Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place-concrete supports or anchors.
 - 2. Install piping with 36-inch minimum cover.

- 3. Install ductile-iron pressure piping according to AWWA C600 or AWWA M41.
- 4. Install ductile-iron special fittings according to AWWA C600.
- 5. Install PVC pressure piping according to AWWA M23 or to ASTM D 2774 and ASTM F 1668.
- 6. Install PVC water-service piping according to ASTM D 2774 and ASTM F 1668.
- H. Install corrosion-protection piping encasement over the following underground metal piping according to ASTM A 674 or AWWA C105:
 - 1. Hub-and-spigot, cast-iron soil pipe.
 - 2. Hubless cast-iron soil pipe and fittings.
 - 3. Ductile-iron pipe and fittings.
 - 4. Expansion joints and deflection fittings.
- I. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.3 PIPE JOINT CONSTRUCTION

- A. Join gravity-flow, nonpressure, drainage piping according to the following:
 - 1. Join hub-and-spigot, cast-iron soil piping with gasket joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
 - 2. Join hub-and-spigot, cast-iron soil piping with calked joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
 - 3. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.
 - 4. Join ductile-iron, gravity sewer piping according to AWWA C600 for push-on joints.
 - 5. Join ABS sewer piping according to ASTM D 2321 and ASTM D 2751 for elastomericseal joints.
 - 6. Join PVC cellular-core sewer piping according to ASTM D 2321 and ASTM F 891 for solvent-cemented joints.
 - 7. Join PVC corrugated sewer piping according to ASTM D 2321.
 - 8. Join PVC profile sewer piping according to ASTM D 2321 for elastomeric-seal joints or ASTM F 794 for gasketed joints.
 - 9. Join PVC Type PSM sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
 - 10. Join PVC gravity sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
 - 11. Join fiberglass sewer piping according to ASTM D 4161 for elastomeric-seal joints.
 - 12. Join nonreinforced-concrete sewer piping according to ASTM C 14 and ACPA's "Concrete Pipe Installation Manual" for rubber-gasket joints.
 - 13. Join reinforced-concrete sewer piping according to ACPA's "Concrete Pipe Installation Manual" for rubber-gasket joints.
 - 14. Join dissimilar pipe materials with nonpressure-type, flexible or rigid couplings.
- B. Join force-main, pressure piping according to the following:
 - 1. Join ductile-iron pressure piping according to AWWA C600 or AWWA M41 for push-on joints.

- 2. Join ductile-iron special fittings according to AWWA C600 or AWWA M41 for push-on joints.
- 3. Join PVC pressure piping according to AWWA M23 for gasketed joints.
- 4. Join PVC water-service piping according to ASTM D 2855.
- 5. Join dissimilar pipe materials with pressure-type couplings.
- C. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - 1. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 - a. Unshielded, Shielded, flexible, or rigid couplings for pipes of same or slightly different OD.
 - b. Unshielded, Shielded, flexible, or rigid couplings for pipes with different OD.
 - c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.
 - 2. Use pressure pipe couplings for force-main joints.

3.4 MANHOLE INSTALLATION

- A. General: Install manholes complete with appurtenances and accessories indicated.
- B. Install precast concrete manhole sections with sealants according to ASTM C 891.
- C. Install FRP manholes according to manufacturer's written instructions.
- D. Form continuous concrete channels and benches between inlets and outlet.
- E. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.
- F. Install manhole-cover inserts in frame and immediately below cover.

3.5 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.

3.6 BACKWATER VALVE INSTALLATION

- A. Install horizontal-type backwater valves in piping manholes or pits.
- B. Install combination horizontal and manual gate valves in piping and in manholes.
- C. Install terminal-type backwater valves on end of piping and in manholes. Secure units to sidewalls.

3.7 CLEANOUT INSTALLATION

- A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 - 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 - 2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 - 3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
 - 4. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
- B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.
- C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.8 CONNECTIONS

- A. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains specified in Section 15150 "Sanitary Waste and Vent Piping."
- B. Connect force-main piping to building's sanitary force mains specified in Section 15150 "Sanitary Waste and Vent Piping." Terminate piping where indicated.
- C. Make connections to existing piping and underground manholes.
 - 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 - 2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 - 3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes by cutting opening into existing unit large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.
 - a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
 - b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
 - 4. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.
- D. Connect to grease, oil, and sand interceptors specified in Section 02085 "Interceptors."

3.9 CLOSING ABANDONED SANITARY SEWER SYSTEMS

- A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:
 - 1. Close open ends of piping with at least 8-inch thick, brick masonry bulkheads.
 - 2. Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.
- B. Abandoned Manholes: Excavate around manhole as required and use either procedure below:
 - 1. Remove manhole and close open ends of remaining piping.
 - 2. Remove top of manhole down to at least 36 inches below final grade. Fill to within 12 inches of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.
- C. Backfill to grade according to Section 02300 "Earthwork."

3.10 IDENTIFICATION

- A. Comply with requirements in Section 02300 "Earthwork" for underground utility identification devices. Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.
 - 1. Use warning tape or detectable warning tape over ferrous piping.
 - 2. Use detectable warning tape over nonferrous piping and over edges of underground manholes.

3.11 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 - 1. Submit separate report for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 - 4. Reinspect and repeat procedure until results are satisfactory.
- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - 1. Do not enclose, cover, or put into service before inspection and approval.
 - 2. Test completed piping systems according to requirements of authorities having jurisdiction.
 - 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
 - 4. Submit separate report for each test.

- 5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 - a. Fill sewer piping with water. Test with pressure of at least 10-foot head of water, and maintain such pressure without leakage for at least 15 minutes.
 - b. Close openings in system and fill with water.
 - c. Purge air and refill with water.
 - d. Disconnect water supply.
 - e. Test and inspect joints for leaks.
- 6. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 - a. Option: Test plastic gravity sewer piping according to ASTM F 1417.
 - b. Option: Test concrete gravity sewer piping according to ASTM C 924.
- 7. Force Main: Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psig.
 - a. Ductile-Iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.
 - b. PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.
- 8. Manholes: Perform hydraulic test according to ASTM C 969.
- C. Leaks and loss in test pressure constitute defects that must be repaired.
- D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.12 CLEANING

A. Clean dirt and superfluous material from interior of piping and flush with potable water.

END OF SECTION 02530

SECTION 02741 - ASPHALT PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cold milling of existing asphalt pavement.
 - 2. Hot-mix asphalt patching.
 - 3. Hot-mix asphalt paving.
 - 4. Hot-mix asphalt overlay.
 - 5. Asphalt curbs.
 - 6. Asphalt traffic-calming devices.
 - 7. Asphalt surface treatments.
- B. Related Requirements:
 - 1. Section 01732 "Selective Demolition", and, Section 02221 "Building Demolition" for demolition and removal of existing asphalt pavement.
 - 2. Section 02300 "Earthwork" for subgrade preparation, fill material, unbound-aggregate subbase and base courses, and for aggregate pavement shoulders.
 - 3. Section 02764 "Pavement Joint Sealants" for joint sealants and fillers at pavement terminations.
 - 4. Section 02780 "Unit Pavers" for bituminous setting bed for pavers.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review methods and procedures related to hot-mix asphalt paving including, but not limited to, the following:
 - a. Review proposed sources of paving materials, including capabilities and location of plant that will manufacture hot-mix asphalt.
 - b. Review requirements for protecting paving work, including restriction of traffic during installation period and for remainder of construction period.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include technical data and tested physical and performance properties.
 - 2. Job-Mix Designs: Certification, by authorities having jurisdiction, of approval of each job mix proposed for the Work.
 - 3. Job-Mix Designs: For each job mix proposed for the Work.

B. LEED Submittals:

- 1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.
- C. Samples for Verification: For the following product, in manufacturer's standard sizes unless otherwise indicated:
 - 1. Paving Fabric: 12 by 12 inches minimum.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer and testing agency.
- B. Material Certificates: For each paving material.
- C. Include statement that mixes containing recycled materials will perform equal to mixes produced from all new materials.
- D. Material Test Reports: For each paving material, by a qualified testing agency.
- E. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A paving-mix manufacturer registered with and approved by authorities having jurisdiction or the DOT of state in which Project is located.
- B. Testing Agency Qualifications: Qualified according to ASTM D 3666 for testing indicated.
- C. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of TxDOT for asphalt paving work.
 - 1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.7 FIELD CONDITIONS

- A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:
 - 1. Prime Coat: Minimum surface temperature of 60 deg F.
 - 2. Tack Coat: Minimum surface temperature of 60 deg F.
 - 3. Slurry Coat: Comply with weather limitations in ASTM D 3910.
 - 4. Asphalt Base Course: Minimum surface temperature of 40 deg F and rising at time of placement.
 - 5. Asphalt Surface Course: Minimum surface temperature of 60 deg F at time of placement.

PART 2 - PRODUCTS

2.1 AGGREGATES

- A. General: Use materials and gradations that have performed satisfactorily in previous installations.
- B. Coarse Aggregate: ASTM D 692/D 692M, sound; angular crushed stone, crushed gravel, or cured, crushed blast-furnace slag.
- C. Fine Aggregate: ASTM D 1073, or, ASHTO M 29, sharp-edged natural sand or sand prepared from stone, gravel, cured blast-furnace slag, or combinations thereof.
 - 1. For hot-mix asphalt, limit natural sand to a maximum of 20 percent by weight of the total aggregate mass.
- D. Mineral Filler: ASTM D 242/D 242M, or, AASHTO M 17, rock or slag dust, hydraulic cement, or other inert material.

2.2 ASPHALT MATERIALS

- A. Asphalt Binder: AASHTO M 320, PG 64-22, PG 58-28, PG 70-22.
- B. Asphalt Cement: ASTM D 3381/D 3381M for viscosity-graded material ASTM D 946/D 946M for penetration-graded material.
- C. Cutback Prime Coat: ASTM D 2027, medium-curing cutback asphalt, MC-30 or MC-70, or MC-250.
- D. Emulsified Asphalt Prime Coat: ASTM D 977, or, AASHTO M 140 emulsified asphalt, or ASTM D 2397, or, AASHTO M 208 cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.
- E. Tack Coat: ASTM D 977, or, AASHTO M 140 emulsified asphalt, or ASTM D 2397, or, AASHTO M 208 cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.
- F. Fog Seal: ASTM D 977, or, AASHTO M 140 emulsified asphalt, or ASTM D 2397, or, ASHTO M 208 cationic emulsified asphalt, slow setting, factory diluted in water, of suitable grade and consistency for application.
- G. Water: Potable.
- H. Undersealing Asphalt: ASTM D 3141/D 3141M; pumping consistency.

2.3 AUXILIARY MATERIALS

A. Recycled Materials for Hot-Mix Asphalt Mixes: Reclaimed asphalt pavement; reclaimed, unbound-aggregate base material; and recycled tires, asphalt shingles, or, glass from sources

and gradations that have performed satisfactorily in previous installations, equal to performance of required hot-mix asphalt paving produced from all new materials.

- B. Herbicide: Commercial chemical for weed control, registered by the EPA, and not classified as "restricted use" for locations and conditions of application. Provide in granular, liquid, or wettable powder form.
- C. Sand: ASTM D 1073, or, AASHTO M 29, Grade No. 2 or No. 3.
- D. Paving Geotextile: AASHTO M 288 paving fabric; nonwoven polypropylene; resistant to chemical attack, rot, and mildew; and specifically designed for paving applications.
- E. Joint Sealant: ASTM D 6690 Type I, or, AASHTO M 324 Type I IV, hot-applied, single-component, polymer-modified bituminous sealant.

2.4 MIXES

- A. Recycled Content of Hot-Mix Asphalt: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 10 percent or more than 25 percent by weight.
 1. Surface Course Limit: Recycled content no more than 10 percent by weight.
- B. Hot-Mix Asphalt: Dense-graded, hot-laid, hot-mix asphalt plant mixes approved by authorities having jurisdiction; designed according to procedures in AI MS-2, "Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types"; and complying with the following requirements:
 - 1. Provide mixes with a history of satisfactory performance in geographical area where Project is located.
 - 2. Base Course: Per geotechnical report
 - 3. Surface Course: Per geotechnical report.
- C. Emulsified-Asphalt Slurry: ASTM D 3910.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that subgrade is dry and in suitable condition to begin paving.
- B. Proof-roll subgrade below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 - 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
 - 2. Proof roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons.
 - 3. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.
- C. Proceed with paving only after unsatisfactory conditions have been corrected.

3.2 COLD MILLING

- A. Clean existing pavement surface of loose and deleterious material immediately before cold milling. Remove existing asphalt pavement by cold milling to grades and cross sections indicated.
 - 1. Mill to a depth of 3 inches.
 - 2. Mill to a uniform finished surface free of excessive gouges, grooves, and ridges.
 - 3. Control rate of milling to prevent tearing of existing asphalt course.
 - 4. Repair or replace curbs, manholes, and other construction damaged during cold milling.
 - 5. Excavate and trim unbound-aggregate base course, if encountered, and keep material separate from milled hot-mix asphalt.
 - 6. Patch surface depressions deeper than 1 inch after milling, before wearing course is laid.
 - 7. Handle milled asphalt material according to approved waste management plan required in Section 01524 "Construction Waste Management."
 - 8. Keep milled pavement surface free of loose material and dust.
 - 9. Do not allow milled materials to accumulate on-site.

3.3 PATCHING

- A. Asphalt Pavement: Saw cut perimeter of patch and excavate existing pavement section to sound base. Excavate rectangular or trapezoidal patches, extending 12 inches into perimeter of adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Remove excavated material. Recompact existing unbound-aggregate base course to form new subgrade.
- B. Portland Cement Concrete Pavement: Break cracked slabs and roll as required to reseat concrete pieces firmly.
 - 1. Pump hot undersealing asphalt under rocking slab until slab is stabilized or, if necessary, crack slab into pieces and roll to reseat pieces firmly.
 - 2. Remove disintegrated or badly cracked pavement. Excavate rectangular or trapezoidal patches, extending into perimeter of adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Recompact existing unbound-aggregate base course to form new subgrade.
- C. Tack Coat: Before placing patch material, apply tack coat uniformly to vertical asphalt surfaces abutting the patch. Apply at a rate of 0.05 to 0.15 gal./sq. yd.
 - 1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 - 2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.
- D. Placing Patch Material: Fill excavated pavement areas with hot-mix asphalt base mix for full thickness of patch and, while still hot, compact flush with adjacent surface.
- E. Placing Patch Material: Partially fill excavated pavements with hot-mix asphalt base mix and, while still hot, compact. Cover asphalt base course with compacted, hot-mix surface layer finished flush with adjacent surfaces.

3.4 REPAIRS

- A. Leveling Course: Install and compact leveling course consisting of hot-mix asphalt surface course to level sags and fill depressions deeper than 1 inch in existing pavements.
 1. Install leveling wedges in compacted lifts not exceeding 3 inches thick.
- B. Crack and Joint Filling: Remove existing joint filler material from cracks or joints to a depth of 1/4 inch.
 - 1. Clean cracks and joints in existing hot-mix asphalt pavement.
 - 2. Use emulsified-asphalt slurry to seal cracks and joints less than 1/4 inch wide. Fill flush with surface of existing pavement and remove excess.
 - 3. Use hot-applied joint sealant to seal cracks and joints more than 1/4 inch wide. Fill flush with surface of existing pavement and remove excess.

3.5 SURFACE PREPARATION

- A. General: Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.
- B. Herbicide Treatment: Apply herbicide according to manufacturer's recommended rates and written application instructions. Apply to dry, prepared subgrade or surface of compacted-aggregate base before applying paving materials.
 - 1. Mix herbicide with prime coat if formulated by manufacturer for that purpose.
- C. Cutback Prime Coat: Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.15 to 0.50 gal./sq. yd. Apply enough material to penetrate and seal, but not flood, surface. Allow prime coat to cure.
 - 1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
 - 2. Protect primed substrate from damage until ready to receive paving.
- D. Emulsified Asphalt Prime Coat: Apply uniformly over surface of compacted unboundaggregate base course at a rate of 0.10 to 0.30 gal./sq. yd. per inch depth. Apply enough material to penetrate and seal, but not flood, surface. Allow prime coat to cure.
 - 1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
 - 2. Protect primed substrate from damage until ready to receive paving.
- E. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd.
 - 1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 - 2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.6 PAVING GEOTEXTILE INSTALLATION

A. Apply tack coat uniformly to existing pavement surfaces at a rate of 0.20 to 0.30 gal/sq. yd.

ASPHALT PAVING

- B. Place paving geotextile promptly according to manufacturer's written instructions. Broom or roll geotextile smooth and free of wrinkles and folds. Overlap longitudinal joints 4 inches and transverse joints 6 inches.
- C. Protect paving geotextile from traffic and other damage, and place hot-mix asphalt overlay the same day.

3.7 PLACING HOT-MIX ASPHALT

- A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand in areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.
 - 1. Place hot-mix asphalt base course in number of lifts and thicknesses indicated.
 - 2. Place hot-mix asphalt surface course in single lift.
 - 3. Spread mix at a minimum temperature of 250 deg F.
 - 4. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.
 - 5. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.
- B. Place paving in consecutive strips not less than 10 feet wide unless infill edge strips of a lesser width are required.
 - 1. After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Overlap mix placement about 1 to 1-1/2 inches from strip to strip to ensure proper compaction of mix along longitudinal joints.
 - 2. Complete a section of asphalt base course before placing asphalt surface course.
- C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

3.8 JOINTS

- A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.
 - 1. Clean contact surfaces and apply tack coat to joints.
 - 2. Offset longitudinal joints, in successive courses, a minimum of 6 inches.
 - 3. Offset transverse joints, in successive courses, a minimum of 24 inches.
 - 4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method according to AI MS-22, for both "Ending a Lane" and "Resumption of Paving Operations." as shown on Drawings.
 - 5. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.
 - 6. Compact asphalt at joints to a density within 2 percent of specified course density.

3.9 COMPACTION

- A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.
 - 1. Complete compaction before mix temperature cools to 185 deg F.
- B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.
- C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:
 - 1. Average Density: 96 percent of reference laboratory density according to ASTM D 6927 or AASHTO T 245, but not less than 94 percent or greater than 100 percent.
 - 2. Average Density: 92 percent of reference maximum theoretical density according to ASTM D 2041, but not less than 90 percent or greater than 96 percent.
- D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.
- E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.
- F. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.
- G. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.
- H. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.10 ASPHALT CURBS

- A. Construct hot-mix asphalt curbs over compacted pavement surfaces. Apply a light tack coat unless pavement surface is still tacky and free from dust. Spread mix at a minimum temperature of 250 deg F.
 - 1. Asphalt Mix: Same as pavement surface-course mix.
- B. Place hot-mix asphalt to curb cross section indicated or, if not indicated, to local standard shapes, by machine or by hand in wood or metal forms. Tamp hand-placed materials and screed to smooth finish. Remove forms after hot-mix asphalt has cooled.

3.11 INSTALLATION TOLERANCES

- A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:
 - 1. Base Course: Plus or minus 1/2 inch.
 - 2. Surface Course: Plus 1/4 inch, no minus.
- B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas:
 - 1. Base Course: 1/4 inch.
 - 2. Surface Course: 1/8 inch.
 - 3. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch.
- C. Asphalt Traffic-Calming Devices: Compact and form asphalt to produce the contour indicated and within a tolerance of plus or minus 1/8 inch of height indicated above pavement surface.

3.12 SURFACE TREATMENTS

- A. Fog Seals: Apply fog seal at a rate of 0.10 to 0.15 gal./sq. yd. to existing asphalt pavement and allow to cure. With fine sand, lightly dust areas receiving excess fog seal.
- B. Slurry Seals: Apply slurry coat in a uniform thickness according to ASTM D 3910 and allow to cure.
 - 1. Roll slurry seal to remove ridges and provide a uniform, smooth surface.

3.13 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D 3549.
- C. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances.
- D. Asphalt Traffic-Calming Devices: Finished height of traffic-calming devices above pavement will be measured for compliance with tolerances.
- E. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to ASTM D 979 or AASHTO T 168.
 - 1. Reference maximum theoretical density will be determined by averaging results from four samples of hot-mix asphalt-paving mixture delivered daily to site, prepared according to ASTM D 2041, and compacted according to job-mix specifications.
 - 2. In-place density of compacted pavement will be determined by testing core samples according to ASTM D 1188 or ASTM D 2726.
 - a. One core sample will be taken for every 1000 sq. yd. or less of installed pavement, with no fewer than three cores taken.

- b. Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D 2950 and correlated with ASTM D 1188 or ASTM D 2726.
- F. Replace and compact hot-mix asphalt where core tests were taken.
- G. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.
- 3.14 WASTE HANDLING
 - A. General: Handle asphalt-paving waste according to approved waste management plan required in Section 01524 "Construction Waste Management."

END OF SECTION 02741
SECTION 02751 - CEMENT CONCRETE PAVEMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Driveways.
 - 2. Roadways.
 - 3. Parking lots.
 - 4. Curbs and gutters.
 - 5. Walks.
- B. Related Sections:
 - 1. Section 02764 "Pavement Joint Sealants" for joint sealants in expansion and contraction joints within concrete paving and in joints between concrete paving and asphalt paving or adjacent construction.
 - 2. Section 02768 "Decorative Cement Concrete Pavement" for stamped concrete other than detectable warnings.
 - 3. Section 03300 "Cast-in-Place Concrete", Section 03301 "Miscellaneous Cast-in-Place Concrete" for general building applications of concrete.

1.3 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, and ground granulated blast-furnace slag.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. LEED Submittals:
 - 1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.
 - 2. Design Mixtures for Credit ID 1: For each concrete mixture containing fly ash as a replacement for portland cement or other portland cement replacements. For each design mixture submitted, include an equivalent concrete mixture that does not contain portland cement replacements, to determine amount of portland cement replaced.
- C. Shop Drawings: Indicate pavement markings, lane separations, and defined parking spaces. Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.

- D. Samples for Initial Selection: For each type of product, ingredient, or admixture requiring color selection.
- E. Samples for Verification: For each type of product or exposed finish, prepared as Samples of size indicated below:
 - 1. Exposed Aggregate: 10-lb Sample of each mix.
 - 2. Wheel Stops: 6 inches long showing cross section; with fasteners.
 - 3. Preformed Traffic-Calming Devices: 6 inches long showing cross section; with fasteners.
- F. Other Action Submittals:
 - 1. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer of detectable warnings ready-mix concrete manufacturer, and, testing agency.
- B. Material Certificates: For the following, from manufacturer:
 - 1. Cementitious materials.
 - 2. Steel reinforcement and reinforcement accessories.
 - 3. Fiber reinforcement.
 - 4. Admixtures.
 - 5. Curing compounds.
 - 6. Applied finish materials.
 - 7. Bonding agent or epoxy adhesive.
 - 8. Joint fillers.
- C. Material Test Reports: For each of the following:
 - 1. Aggregates. Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.
- D. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Detectable Warning Installer Qualifications: An employer of workers trained and approved by manufacturer of stamped concrete paving systems.
- B. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing readymixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual - Section 3, "Plant Certification Checklist").
- C. Testing Agency Qualifications: Qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.

- 1. Personnel conducting field tests shall be qualified as ACI Concrete Field-Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
- D. Concrete Testing Service: Engage a qualified testing agency to perform material evaluation tests and to design concrete mixtures.
- E. ACI Publications: Comply with ACI 301 unless otherwise indicated.
- F. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Build mockups of full-thickness sections of concrete paving to demonstrate typical joints; surface finish, texture, and color; curing; and standard of workmanship.
 - 2. Build mockups of concrete paving in the location and of the size indicated or, if not indicated, build mockups where directed by Architect and not less than 96 inches by 96 inches. Include full-size detectable warning.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
- G. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review methods and procedures related to concrete paving, including but not limited to, the following:
 - a. Concrete mixture design.
 - b. Quality control of concrete materials and concrete paving construction practices.
 - 2. Require representatives of each entity directly concerned with concrete paving to attend, including the following:
 - a. Contractor's superintendent.
 - b. Independent testing agency responsible for concrete design mixtures.
 - c. Ready-mix concrete manufacturer.
 - d. Concrete paving subcontractor.
 - e. Manufacturer's representative of stamped concrete paving system used for detectable warnings.

1.7 PROJECT CONDITIONS

- A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.
- B. Pavement-Marking Paint: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F for oil-based materials, 55 deg F for water-based materials, and not exceeding 95 deg F.

PART 2 - PRODUCTS

2.1 FORMS

- A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
 - 1. Use flexible or uniformly curved forms for curves with a radius of 100 feet or less. Do not use notched and bent forms.
- B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.
- 2.2 STEEL REINFORCEMENT
 - A. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
 - B. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, fabricated from steel wire into flat sheets.
 - C. Deformed-Steel Welded Wire Reinforcement: ASTM A 497/A 497M, flat sheet.
 - D. Epoxy-Coated Welded Wire Reinforcement: ASTM A 884/A 884M, Class A, plain steel.
 - E. Reinforcing Bars: ASTM A 615/A 615M, Grade 60; deformed.
 - F. Galvanized Reinforcing Bars: ASTM A 767/A 767M, Class II zinc coated, hot-dip galvanized after fabrication and bending; with ASTM A 615/A 615M, Grade 60 deformed bars.
 - G. Epoxy-Coated Reinforcing Bars: ASTM A 775/A 775M or ASTM A 934/A 934M; with ASTM A 615/A 615M, Grade 60 deformed bars.
 - H. Steel Bar Mats: ASTM A 184/A 184M; with ASTM A 615/A 615M, Grade 60, deformed bars; assembled with clips.
 - I. Plain-Steel Wire: ASTM A 82/A 82M
 - J. Deformed-Steel Wire: ASTM A 496/A 496M.
 - K. Epoxy-Coated-Steel Wire: ASTM A 884/A 884M, Class A coated, deformed.
 - L. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 plain-steel bars. Cut bars true to length with ends square and free of burrs.
 - M. Epoxy-Coated, Joint Dowel Bars: ASTM A 775/A 775M; with ASTM A 615/A 615M, Grade 60, plain-steel bars.
 - N. Tie Bars: ASTM A 615/A 615M, Grade 60, deformed.

- O. Hook Bolts: ASTM A 307, Grade A, internally and externally threaded. Design hook-bolt joint assembly to hold coupling against paving form and in position during concreting operations, and to permit removal without damage to concrete or hook bolt.
- P. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars, welded wire reinforcement, and dowels in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete of greater compressive strength than concrete specified, and as follows:
 - 1. Equip wire bar supports with sand plates or horizontal runners where base material will not support chair legs.
 - 2. For epoxy-coated reinforcement, use epoxy-coated or other dielectric-polymer-coated wire bar supports.
- Q. Epoxy Repair Coating: Liquid, two-part, epoxy repair coating, compatible with epoxy coating on reinforcement.
- R. Zinc Repair Material: ASTM A 780.

2.3 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of same type, brand, and source throughout Project:
 - 1. Portland Cement: ASTM C 150, portland cement Type I
 - a. Fly Ash: ASTM C 618
 - b. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
 - 2. Blended Hydraulic Cement: ASTM C 595, Type IS, portland blast-furnace slag cement.
- B. Normal-Weight Aggregates: ASTM C 33, Class 4M, uniformly graded. Provide aggregates from a single source.
 - 1. Maximum Coarse-Aggregate Size: 1-1/2 inches nominal.
 - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Exposed Aggregate: Selected, hard, and durable; washed; free of materials with deleterious reactivity to cement or that cause staining; from a single source, with gap-graded coarse aggregate as follows:
 - 1. Aggregate Sizes: 3/4 to 1 inch.
- D. Water: Potable and complying with ASTM C 94/C 94M.
- E. Air-Entraining Admixture: ASTM C 260.
- F. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
 - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 - 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
- G. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, nonfading, and resistant to lime and other alkalis.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ChemMasters.
 - b. Davis Colors.
 - c. Dayton Superior Corporation.
 - d. Elementis Pigments.
 - e. Hoover Color Corporation.
 - f. Lambert Corporation.
 - g. LANXESS Corporation.
 - h. QC Construction Products.
 - i. Scofield, L. M. Company.
 - j. Solomon Colors, Inc.
 - k. Stampcrete International, Ltd.
 - 1. SureCrete Design Products.
 - 2. Color: As selected by Architect from manufacturer's full range.

2.4 FIBER REINFORCEMENT

- A. Synthetic Fiber: Monofilament or fibrillated polypropylene fibers engineered and designed for use in concrete paving, complying with ASTM C 1116/C 1116M, Type III, 1/2 to 1-1/2 inches long.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Monofilament Fibers:
 - 1) Axim Italcementi Group, Inc.; FIBRASOL II P.
 - 2) Euclid Chemical Company (The), an RPM company; Fiberstrand 100, Fiberstrand 150.
 - 3) FORTA Corporation;
 - 4) Grace, W. R. & Co. Conn.; Grace MicroFiber.
 - 5) Metalcrete Industries; Polystrand 1000.
 - 6) QC Construction Products; QC FIBERS.
 - b. Fibrillated Fibers:
 - 1) Axim Italcementi Group, Inc.; FIBRASOL F.
 - 2) Euclid Chemical Company (The), an RPM company; Fiberstrand F.
 - 3) FORTA Corporation;
 - 4) Grace, W. R. & Co. Conn.; Grace Fibers.
 - 5) Propex Concrete Systems Corp.; Fibermesh 300

2.5 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry, or, cotton mats.

- B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- C. Water: Potable.
- D. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Axim Italcementi Group, Inc.; Caltexol CIMFILM.
 - b. BASF Construction Chemicals, LLC; Confilm.
 - c. ChemMasters; Spray-Film.
 - d. Conspec by Dayton Superior; Aquafilm.
 - e. Dayton Superior Corporation; Sure Film (J-74).
 - f. Edoco by Dayton Superior; BurkeFilm.
 - g. Euclid Chemical Company (The), an RPM company; Eucobar.
 - h. Kaufman Products, Inc.; VaporAid.
 - i. Lambert Corporation; LAMBCO Skin.
 - j. L&M Construction Chemicals, Inc.; E-CON.
 - k. Meadows, W. R., Inc.; EVAPRE.
 - l. Metalcrete Industries; Waterhold.
 - m. Nox-Crete Products Group; MONOFILM.
 - n. Sika Corporation, Inc.; SikaFilm.
 - o. SpecChem, LLC; Spec Film.
 - p. Symons by Dayton Superior; Finishing Aid.
 - q. TK Products, Division of Sierra Corporation; TK-2120 TRI-FILM.
 - r. Unitex; PRO-FILM.
 - s. Vexcon Chemicals Inc.; Certi-Vex EnvioAssist.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anti-Hydro International, Inc.; A-H Curing Compound #2 DR WB.
 - b. ChemMasters; Safe-Cure Clear.
 - c. Conspec by Dayton Superior;
 - d. Dayton Superior Corporation; Day-Chem Rez Cure (J-11-W).
 - e. Edoco by Dayton Superior;
 - f. Euclid Chemical Company (The), an RPM company; Kurez W VOX.
 - g. Kaufman Products, Inc.; Thinfilm 420.
 - h. Lambert Corporation; AQUA KURE CLEAR.
 - i. L&M Construction Chemicals, Inc.; L&M CURE R.
 - j. Meadows, W. R., Inc.; 1100-CLEAR SERIES.
 - k. Nox-Crete Products Group; Resin Cure E.
 - l. SpecChem, LLC; PaveCure Rez.
 - m. Symons by Dayton Superior; Resi-Chem Clear.
 - n. Tamms Industries, Inc., Euclid Chemical Company (The); TAMMSCURE WB 30C.
 - o. TK Products, Division of Sierra Corporation;
 - p. Vexcon Chemicals Inc.; Certi-Vex Enviocure 100.

- F. White, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 2, Class B, dissipating.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anti-Hydro International, Inc.; A-H Curing Compound #2 WP WB.
 - b. ChemMasters; Safe-Cure 2000.
 - c. Conspec by Dayton Superior;
 - d. Dayton Superior Corporation; Day-Chem White Pigmented Cure (J-10-W).
 - e. Edoco by Dayton Superior; Resin Emulsion Cure V.O.C. (Type II).
 - f. Euclid Chemical Company (The), an RPM company; Kurez VOX White Pigmented.
 - g. Kaufman Products, Inc.; Thinfilm 450.
 - h. Lambert Corporation; AQUA KURE WHITE.
 - i. L&M Construction Chemicals, Inc.; L&M CURE R-2.
 - j. Meadows, W. R., Inc.; 1100-WHITE SERIES.
 - k. SpecChem, LLC; PaveCure Rez White.
 - 1. Symons by Dayton Superior; Resi-Chem White.
 - m. Vexcon Chemicals Inc.; Certi-Vex Enviocure White 100.

2.6 RELATED MATERIALS

- A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber, or ASTM D 1752, cork or selfexpanding cork in preformed strips.
- B. Slip-Resistive Aggregate Finish: Factory-graded, packaged, rustproof, nonglazing, abrasive aggregate of fused aluminum-oxide granules or crushed emery aggregate containing not less than 50 percent aluminum oxide and not less than 20 percent ferric oxide; unaffected by freezing, moisture, and cleaning materials.
- C. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
- D. Epoxy Bonding Adhesive: ASTM C 881/C 881M, two-component epoxy resin capable of humid curing and bonding to damp surfaces; of class suitable for application temperature, of grade complying with requirements, and of the following types:
 - 1. Types I and II, non-load bearing, Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.
- E. Chemical Surface Retarder: Water-soluble, liquid, set retarder with color dye, for horizontal concrete surface application, capable of temporarily delaying final hardening of concrete to a depth of 1/8 to 1/4 inch.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ChemMasters; Exposee.
 - b. Conspec by Dayton Superior; Delay S.
 - c. Dayton Superior Corporation; Sure Etch (J-73).
 - d. Edoco by Dayton Superior; True Etch Surface Retarder.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- e. Euclid Chemical Company (The), an RPM company; Surface Retarder Formula S.
- f. Kaufman Products, Inc.; Expose.
- g. Meadows, W. R., Inc.; TOP-STOP.
- h. Metalcrete Industries; Surftard.
- i. Nox-Crete Products Group; CRETE-NOX TA.
- j. Scofield, L. M. Company; LITHOTEX Top Surface Retarder.
- k. Sika Corporation, Inc.; Rugasol-S.
- l. SpecChem, LLC; Spec Etch.
- m. TK Products, Division of Sierra Corporation; TK-6000 Concrete Surface Retarder.
- n. Unitex; TOP-ETCH Surface Retarder.
- o. Vexcon Chemicals Inc.; Certi-Vex Envioset.
- F. Pigmented Mineral Dry-Shake Hardener: Factory-packaged, dry combination of portland cement, graded quartz aggregate, color pigments, and plasticizing admixture. Use color pigments that are finely ground, nonfading mineral oxides interground with cement.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Anti-Hydro International, Inc.; A-H S-Q Hardener.
 - b. BASF Construction Chemicals, LLC; Mastercron.
 - c. ChemMasters; ConColor.
 - d. Conspec by Dayton Superior; Conshake 600 Colortone.
 - e. Dayton Superior Corporation; Quartz Tuff.
 - f. Euclid Chemical Company (The), an RPM company; Surflex.
 - g. Lambert Corporation; COLORHARD.
 - h. L&M Construction Chemicals, Inc.; QUARTZPLATE FF.
 - i. Metalcrete Industries; Floor Quartz.
 - j. Scofield, L. M. Company; LITHOCHROME Color Hardener.
 - k. Southern Color N.A., Inc.; Mosaics Color Hardener.
 - 1. Stampcrete International, Ltd.; Color Hardener.
 - m. Symons by Dayton Superior; Hard Top.
- G. Rock Salt: Sodium chloride crystals, kiln dried, coarse gradation with 100 percent passing 3/8inch sieve and 85 percent retained on a No. 8 sieve.

2.7 DETECTABLE WARNING MATERIALS

- A. Detectable Warning Stamp: Semirigid polyurethane mats with formed underside capable of imprinting detectable warning pattern on plastic concrete; perforated with a vent hole at each dome.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advanced Surfaces Inc.
 - b. Matcrete Precision Stamped Concrete Tools.
 - c. Southern Color N.A., Inc.
 - d. Stampcrete International Ltd.
 - e. Superior Decorative by Dayton Superior.
 - 2. Size of Stamp: One piece matching detectable warning area shown on Drawings

- B. Liquid Release Agent: Manufacturer's standard, clear, evaporating formulation designed to facilitate release of stamp mats.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advanced Surfaces Inc.; Liquid Release.
 - b. Matcrete Precision Stamped Concrete Tools; Liquid Release Agent.
 - c. Southern Color N.A., Inc.; SCC Clear Liquid Release.
 - d. Stampcrete International Ltd.; Stampcrete Liquid Release.
 - e. Superior Decorative by Dayton Superior; Pro Liquid Release.

2.8 PAVEMENT MARKINGS

- A. Pavement-Marking Paint: Alkyd-resin type, lead and chromate free, ready mixed, complying with AASHTO M 248; colors complying with FS TT-P-1952.
- B. Pavement-Marking Paint: MPI #32 Alkyd Traffic Marking Paint.
- C. Pavement-Marking Paint: Latex, waterborne emulsion, lead and chromate free, ready mixed, complying with FS TT-P-1952, Type II, with drying time of less than 45 minutes.
- D. Pavement-Marking Paint: MPI #97 Latex Traffic Marking Paint.
- E. Glass Beads: AASHTO M 247, Type 1, or FS TT-B-1325, Type 1A.

2.9 WHEEL STOPS

 A. Wheel Stops: Precast, air-entrained concrete, 2500-psi minimum compressive strength. Provide chamfered corners and drainage slots on underside and holes for anchoring to substrate.
 1. Dowels: Galvanized steel, 3/4 inch in diameter, 10-inch minimum length.

2.10 CONCRETE MIXTURES

- A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.
 - 1. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
 - 2. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that meet or exceed requirements.

2.11 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M and ASTM C 1116/C 1116M. Furnish batch certificates for each batch discharged and used in the Work.
 - 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 - 1. For concrete batches of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 - 2. For concrete batches larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd.
 - 3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.
- B. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.
 - 1. Completely proof-roll subbase in one direction and repeat in perpendicular direction. Limit vehicle speed to 3 mph.
 - 2. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 15 tons.
 - 3. Correct subbase with soft spots and areas of pumping or rutting exceeding depth of 1/2 inch according to requirements in Section 02300 "Earthwork."
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

- A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
- B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.

- C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.
- D. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.
- E. Zinc-Coated Reinforcement: Use galvanized-steel wire ties to fasten zinc-coated reinforcement. Repair cut and damaged zinc coatings with zinc repair material.
- F. Epoxy-Coated Reinforcement: Use epoxy-coated steel wire ties to fasten epoxy-coated reinforcement. Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D 3963/D 3963M.
- G. Install fabricated bar mats in lengths as long as practicable. Handle units to keep them flat and free of distortions. Straighten bends, kinks, and other irregularities, or replace units as required before placement. Set mats for a minimum 2-inch overlap of adjacent mats.

3.5 JOINTS

- A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
 - 1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.
- B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
 - 1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.
 - 2. Provide tie bars at sides of paving strips where indicated.
 - 3. Butt Joints: Use bonding agent at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
 - 4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete.
 - 5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.
- C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
 - 1. Locate expansion joints at intervals of 50 feet unless otherwise indicated.
 - 2. Extend joint fillers full width and depth of joint.
 - 3. Terminate joint filler not less than 1/2 inch or more than 1 inch below finished surface if joint sealant is indicated.
 - 4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
 - 5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.

- 6. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.
- D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows, to match jointing of existing adjacent concrete paving:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/4-inch to 3/8-inch radius. Repeat grooving of contraction joints after applying surface finishes. Retain first subparagraph below if doweled contraction joints are required and if tolerance, coordinated with dowel length, is not indicated on Drawings. See Evaluations.
 - a. Tolerance: Ensure that grooved joints are within 3 inches either way from centers of dowels.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
 - a. Tolerance: Ensure that sawed joints are within 3 inches either way from centers of dowels.
 - 3. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.
- E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 1/4-inch to 3/8-inch radius. Repeat tooling of edges after applying surface finishes.

3.6 CONCRETE PLACEMENT

- A. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.
- B. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.
- C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.
- D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.
- E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.
- F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.
- G. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.

- 1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels, and joint devices.
- H. Screed paving surface with a straightedge and strike off.
- I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.
- J. Curbs and Gutters: Use design mixture for automatic machine placement. Produce curbs and gutters to required cross section, lines, grades, finish, and jointing.
- K. Slip-Form Paving: Use design mixture for automatic machine placement. Produce paving to required thickness, lines, grades, finish, and jointing.
 - 1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of slip-form paving machine during operations.
- L. Cold-Weather Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
 - 1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
 - 2. Do not use frozen materials or materials containing ice or snow.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.
- M. Hot-Weather Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:
 - 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 - 3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

3.7 FLOAT FINISHING

- A. General: Do not add water to concrete surfaces during finishing operations.
- B. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

- 1. Burlap Finish: Drag a seamless strip of damp burlap across float-finished concrete, perpendicular to line of traffic, to provide a uniform, gritty texture.
- 2. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across float-finished concrete surface perpendicular to line of traffic to provide a uniform, fine-line texture.
- 3. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating floatfinished concrete surface 1/16 to 1/8-inch-deep with a stiff-bristled broom, perpendicular to line of traffic.

3.8 SPECIAL FINISHES

- A. Monolithic Exposed-Aggregate Finish: Expose coarse aggregate in paving surface as follows:
 - 1. Immediately after float finishing, spray-apply chemical surface retarder to paving according to manufacturer's written instructions.
 - 2. Cover paving surface with plastic sheeting, sealing laps with tape, and remove when ready to continue finishing operations.
 - 3. Without dislodging aggregate, remove mortar concealing the aggregate by lightly brushing surface with a stiff, nylon-bristle broom. Do not expose more than one-third of the average diameter of the aggregate and not more than one-half of the diameter of the smallest aggregate.
 - 4. Fine-spray surface with water and brush. Repeat cycle of water flushing and brushing until cement film is removed from aggregate surfaces to depth required.
- B. Seeded Exposed-Aggregate Finish: Immediately after initial floating, spread a single layer of aggregate uniformly on paving surface. Tamp aggregate into plastic concrete and float finish to entirely embed aggregate with mortar cover of 1/16 inch.
 - 1. Spray-apply chemical surface retarder to paving according to manufacturer's written instructions.
 - 2. Cover paving surface with plastic sheeting, sealing laps with tape, and remove sheeting when ready to continue finishing operations.
 - 3. Without dislodging aggregate, remove mortar concealing the aggregate by lightly brushing surface with a stiff, nylon-bristle broom. Do not expose more than one-third of the average diameter of the aggregate and not more than one-half of the diameter of the smallest aggregate.
 - 4. Fine-spray surface with water and brush. Repeat cycle of water flushing and brushing until cement film is removed from aggregate surfaces to depth required.
- C. Slip-Resistive Aggregate Finish: Before final floating, spread slip-resistive aggregate finish on paving surface according to manufacturer's written instructions and as follows:
 - 1. Uniformly spread of dampened, slip-resistive aggregate over paving surface in two applications. Tamp aggregate flush with surface using a steel trowel, but do not force below surface.
 - 2. Uniformly distribute approximately two-thirds of slip-resistive aggregate over paving surface with mechanical spreader, allow to absorb moisture, and embed by power floating. Follow power floating with a second slip-resistive aggregate application, uniformly distributing remainder of material at right angles to first application to ensure uniform coverage, and embed by power floating.
 - 3. Cure concrete with curing compound recommended by slip-resistive aggregate manufacturer. Apply curing compound immediately after final finishing.

- 4. After curing, lightly work surface with a steel wire brush or abrasive stone and water to expose nonslip aggregate.
- D. Rock-Salt Finish: After initial floating, troweling, or brooming, uniformly spread rock salt over paving surface at the rate of 5 lb/100 sq. ft.
 - 1. Embed rock salt into plastic concrete with roller, or, magnesium float.
 - 2. Cover paving surface with 1-mil thick polyethylene sheet and remove sheet when concrete has hardened and seven-day curing period has elapsed.
 - 3. After seven-day curing period, saturate concrete with water and broom-sweep surface to dissolve remaining rock salt, thereby leaving pits and holes.
- E. Pigmented Mineral Dry-Shake Hardener Finish: After initial floating, apply dry-shake materials to paving surface according to manufacturer's written instructions and as follows:
 - 1. Uniformly spread dry-shake hardener at a rate of 100 lb/100 sq. ft., unless greater amount is recommended by manufacturer to match paving color required.
 - 2. Uniformly distribute approximately two-thirds of dry-shake hardener over the concrete surface with mechanical spreader; allow hardener to absorb moisture and embed it by power floating. Follow power floating with a second application of pigmented mineral dry-shake hardener, uniformly distributing remainder of material at right angles to first application to ensure uniform color, and embed hardener by final power floating.
 - 3. After final power floating, apply a hand-trowel finish followed by a broom finish.
 - 4. Cure concrete with curing compound recommended by dry-shake hardener manufacturer. Apply curing compound immediately after final finishing.

3.9 DETECTABLE WARNINGS

- A. Blockouts: Form blockouts in concrete for installation of detectable paving units specified in Section 02780 "Unit Pavers".
 - 1. Tolerance for Opening Size: Plus 1/4 inch, no minus
- B. Stamped Detectable Warnings: Install stamped detectable warnings as part of a continuous concrete paving placement and according to stamp-mat manufacturer's written instructions.
 - 1. Before using stamp mats, verify that the vent holes are unobstructed.
 - 2. Apply liquid release agent to the concrete surface and the stamp mat.
 - 3. Stamping: While initially finished concrete is plastic, or after application and final floating of pigmented mineral dry-shake hardener, accurately align and place stamp mats in sequence. Uniformly load, gently vibrate, and press mats into concrete to produce imprint pattern on concrete surface. Load and tamp mats directly perpendicular to the stamp-mat surface to prevent distortion in shape of domes. Press and tamp until mortar begins to come through all of the vent holes. Gently remove stamp mats.
 - 4. Trimming: After 24 hours, cut off the tips of mortar formed by the vent holes.
 - 5. Remove residual release agent according to manufacturer's written instructions, but no fewer than three days after stamping concrete. High-pressure-wash surface and joint patterns, taking care not to damage stamped concrete. Control, collect, and legally dispose of runoff.

3.10 CONCRETE PROTECTION AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
- B. Comply with ACI 306.1 for cold-weather protection.
- C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.
- D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.
- E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound, or a combination of these as follows:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period using cover material and waterproof tape.
 - 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas that have been subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.11 PAVING TOLERANCES

- A. Comply with tolerances in ACI 117 and as follows:
 - 1. Elevation: 3/4 inch.
 - 2. Thickness: Plus 3/8 inch, minus 1/4 inch.
 - 3. Surface: Gap below 10-foot long, unleveled straightedge not to exceed 1/2 inch.
 - 4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches of tie bar.
 - 5. Lateral Alignment and Spacing of Dowels: 1 inch.
 - 6. Vertical Alignment of Dowels: 1/4 inch.
 - 7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches of dowel.
 - 8. Joint Spacing: 3 inches.
 - 9. Contraction Joint Depth: Plus 1/4 inch, no minus.
 - 10. Joint Width: Plus 1/8 inch, no minus.

3.12 PAVEMENT MARKING

- A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect.
- B. Allow concrete paving to cure for a minimum of 28 days and be dry before starting pavement marking.
- C. Sweep and clean surface to eliminate loose material and dust.
- D. Apply paint with mechanical equipment to produce markings of dimensions indicated with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.
 - 1. Apply graphic symbols and lettering with paint-resistant, die-cut stencils, firmly secured to concrete surface. Mask an extended area beyond edges of each stencil to prevent paint application beyond stencil. Apply paint so that it cannot run beneath stencil.
 - 2. Broadcast glass beads uniformly into wet markings at a rate of 6 lb/gal.

3.13 WHEEL STOPS

- A. Install wheel stops in bed of adhesive applied as recommended by manufacturer.
- B. Securely attach wheel stops to paving with not less than two steel dowels located at one-quarter to one-third points. Install dowels in drilled holes in the paving and bond dowels to wheel stop. Recess head of dowel beneath top of wheel stop.

3.14 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd., 5000 sq. ft., or fraction thereof of each concrete mixture placed each day.
 - a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 - 3. Air Content: ASTM C 231, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - 4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F and below and when it is 80 deg F and above, and one test for each composite sample.
 - 5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.
 - 6. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at seven days and two specimens at 28 days.

- a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.
- C. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
- D. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- F. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.
- G. Concrete paving will be considered defective if it does not pass tests and inspections.
- H. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- I. Prepare test and inspection reports.

3.15 REPAIRS AND PROTECTION

- A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.
- B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.
- C. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.
- D. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 02751

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 02764 - PAVEMENT JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cold-applied joint sealants.
 - 2. Cold-applied, jet-fuel-resistant joint sealants.
 - 3. Hot-applied joint sealants.
 - 4. Hot-applied, jet-fuel-resistant joint sealants.
- B. Related Sections:
 - 1. Section 02741 "Asphalt Paving" for constructing joints between concrete and asphalt pavement.
 - 2. Section 02751 "Cement Concrete Pavement" for constructing joints in concrete pavement.
 - 3. Section 07920 "Joint Sealants" for sealing nontraffic and traffic joints in locations not specified in this Section.

1.3 PRECONSTRUCTION TESTING

- A. Preconstruction Compatibility and Adhesion Testing: Submit to joint-sealant manufacturers, for testing indicated below, Samples of materials that will contact or affect joint sealants.
 - 1. Use ASTM C 1087 to determine whether priming and other specific joint-preparation techniques are required to obtain rapid, optimum adhesion of joint sealants to joint substrates.
 - 2. Submit no fewer than eight pieces of each type of material, including joint substrates, shims, joint-sealant backings, secondary seals, and miscellaneous materials.
 - 3. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
 - 4. For materials failing tests, obtain joint-sealant manufacturer's written instructions for corrective measures including use of specially formulated primers.
 - 5. Testing will not be required if joint-sealant manufacturers submit joint-preparation data that are based on previous testing, not older than 24 months, of sealant products for compatibility with and adhesion to joint substrates and other materials matching those submitted.

1.4 ACTION SUBMITTALS

A. Product Data: For each joint-sealant product indicated.

- B. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch wide joints formed between two 6-inch long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
- C. Pavement-Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.
 - 2. Joint-sealant manufacturer and product name.
 - 3. Joint-sealant formulation.
 - 4. Joint-sealant color.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Product Certificates: For each type of joint sealant and accessory, from manufacturer.
- C. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for joint sealants.
- D. Preconstruction Compatibility and Adhesion Test Reports: From joint-sealant manufacturer, indicating the following:
 - 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility with and adhesion to joint sealants.
 - 2. Interpretation of test results and written recommendations for primers and substrate preparation needed for adhesion.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Source Limitations: Obtain each type of joint sealant from single source from single manufacturer.
- C. Product Testing: Test joint sealants using a qualified testing agency.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C 1021 to conduct the testing indicated.
- D. Preinstallation Conference: Conduct conference at Project site.

1.7 PROJECT CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside limits permitted by jointsealant manufacturer or are below 40 deg F.
 - 2. When joint substrates are wet.
 - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.

4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer based on testing and field experience.
- B. Colors of Exposed Joint Sealants: As indicated by manufacturer's designations.

2.2 COLD-APPLIED JOINT SEALANTS

- A. Single-Component, Nonsag, Silicone Joint Sealant for Concrete: ASTM D 5893, Type NS.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crafco Inc., an ERGON company; RoadSaver Silicone.
 - b. Dow Corning Corporation; 888.
 - c. Pecora Corporation; 301 NS.
- B. Single-Component, Self-Leveling, Silicone Joint Sealant for Concrete: ASTM D 5893, Type SL.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crafco Inc., an ERGON company; RoadSaver Silicone SL.
 - b. Dow Corning Corporation; 890-SL.
 - c. Pecora Corporation; 300 SL.
- C. Multicomponent, Pourable, Traffic-Grade, Urethane Joint Sealant for Concrete: ASTM C 920, Type M, Grade P, Class 25, for Use T.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Pecora Corporation; Urexpan NR-200.

2.3 COLD-APPLIED, JET-FUEL-RESISTANT JOINT SEALANTS

- A. Jet-Fuel-Resistant, Single-Component, Pourable, Traffic-Grade, Modified-Urethane Joint Sealant for Concrete: ASTM C 920, Type S, Grade P, Class 25, for Use T.
 - Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. BASF Building Systems; Sonomeric 1.
- B. Jet-Fuel-Resistant, Multicomponent, Pourable, Traffic-Grade, Modified-Urethane Joint Sealant for Concrete: ASTM C 920, Type M, Grade P, Class 12-1/2, for Use T.

- Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Pecora Corporation; Urexpan NR-300.
- C. Jet-Fuel-Resistant, Multicomponent, Pourable, Traffic-Grade, Modified-Urethane Joint Sealant for Concrete: ASTM C 920, Type M, Grade P, Class 25, for Use T.
 - Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Meadows, W. R., Inc.; Sealtight Gardox.

2.4 HOT-APPLIED JOINT SEALANTS

- A. Hot-Applied, Single-Component Joint Sealant for Concrete: ASTM D 3406.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crafco Inc., an ERGON company; Superseal 402/117.
- B. Hot-Applied, Single-Component Joint Sealant for Concrete and Asphalt: ASTM D 6690, Types I, II, and III.
 - 1. Products: Subject to compliance with requirements available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Meadows, W. R., Inc.; Sealtight Hi-Spec.
 - b. Right Pointe; D-3405 Hot Applied Sealant.

2.5 HOT-APPLIED, JET-FUEL-RESISTANT JOINT SEALANTS

- A. Hot-Applied, Jet-Fuel-Resistant, Single-Component Joint Sealant for Concrete: ASTM D 7116, Type I.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Crafco Inc., an ERGON company; Superseal 402/117.
- B. Hot-Applied, Jet-Fuel-Resistant, Single-Component Joint Sealant for Concrete and Tar Concrete: Single-component formulation complying with ASTM D 3581.
 - Products: Subject to compliance with requirements available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Crafco Inc., an ERGON company; Superseal 1614A

2.6 JOINT-SEALANT BACKER MATERIALS

- A. General: Provide joint-sealant backer materials that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by joint-sealant manufacturer based on field experience and laboratory testing.
- B. Round Backer Rods for Cold- and Hot-Applied Joint Sealants: ASTM D 5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.

- C. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D 5249, Type 3, of diameter and density required to control joint-sealant depth and prevent bottom-side adhesion of sealant.
- D. Backer Strips for Cold- and Hot-Applied Joint Sealants: ASTM D 5249; Type 2; of thickness and width required to control joint-sealant depth, prevent bottom-side adhesion of sealant, and fill remainder of joint opening under sealant.

2.7 PRIMERS

A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions.
- B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.
- B. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
- C. Install joint-sealant backings of kind indicated to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - 1. Do not leave gaps between ends of joint-sealant backings.
 - 2. Do not stretch, twist, puncture, or tear joint-sealant backings.

- 3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.
- D. Install joint sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place joint sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- E. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:
 - 1. Remove excess joint sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.
- F. Provide joint configuration to comply with joint-sealant manufacturer's written instructions unless otherwise indicated.

3.4 CLEANING

A. Clean off excess joint sealant or sealant smears adjacent to joints as the Work progresses, by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 **PROTECTION**

A. Protect joint sealants, during and after curing period, from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations in repaired areas are indistinguishable from the original work.

3.6 PAVEMENT-JOINT-SEALANT SCHEDULE

- A. Joint-Sealant Application: Joints within cement concrete pavement.
 - 1. Joint Location:
 - a. Expansion and isolation joints in cast-in-place concrete pavement.
 - b. Contraction joints in cast-in-place concrete slabs.
 - c. Other joints as indicated.
 - 2. Silicone Joint Sealant for Concrete: Single component, self-leveling
 - 3. Hot-Applied Joint Sealant for Concrete: Single component
- B. Joint-Sealant Application: Joints between cement concrete and asphalt pavement.
 - 1. Joint Location:
 - a. Joints between concrete and asphalt pavement.

- b. Joints between concrete curbs and asphalt pavement.
- c. Other joints as indicated.
- 2. Hot-Applied Joint Sealant for Concrete and Asphalt: Single component.

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 031000 - CONCRETE FORMING AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Form-facing material for cast-in-place concrete.
 - 2. Shoring, bracing, and anchoring.
- B. Related Requirements:
 - 1. Section 321313 "Concrete Paving" for formwork related to concrete pavement and walks.

1.3 DEFINITIONS

- A. Form-Facing Material: Temporary structure or mold for the support of concrete while the concrete is setting and gaining sufficient strength to be self-supporting.
- B. Formwork: The total system of support of freshly placed concrete, including the mold or sheathing that contacts the concrete, as well as supporting members, hardware, and necessary bracing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each of the following:
 - 1. Exposed surface form-facing material.
 - 2. Concealed surface form-facing material.
 - 3. Void forms.
 - 4. Form-release agent.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing and inspection agency.
- 1.6 QUALITY ASSURANCE
 - A. Testing and Inspection Agency Qualifications: An independent agency, qualified in accordance with ASTM C1077 and ASTM E329 for testing indicated.

1.7 DELIVERY, STORAGE, AND HANDLING

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Concrete Formwork: Design, engineer, erect, shore, brace, and maintain formwork, shores, and reshores in accordance with ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads, so that resulting concrete conforms to the required shapes, lines, and dimensions.
 - 1. Design wood panel forms in accordance with APA's "Concrete Forming Design/Construction Guide."
 - 2. Design formwork to limit deflection of form-facing material to 1/240 of center-to-center spacing of supports.

2.2 FORM-FACING MATERIALS

- A. As-Cast Surface Form-Facing Material:
 - 1. Provide continuous, true, and smooth concrete surfaces.
 - 2. Furnish in largest practicable sizes to minimize number of joints.
 - 3. Acceptable Materials: As required to comply with Surface Finish designations specified in Section 033000 "Cast-In-Place Concrete, and as follows:
 - a. Plywood, metal, or other approved panel materials.
 - b. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:
 - 1) APA HDO (high-density overlay).
 - 2) APA MDO (medium-density overlay); mill-release agent treated and edge sealed.
 - 3) APA Structural 1 Plyform, B-B or better; mill oiled and edge sealed.
 - 4) APA Plyform Class I, B-B or better; mill oiled and edge sealed.
- B. Concealed Surface Form-Facing Material: Lumber, plywood, metal, plastic, or another approved material.
 - 1. Provide lumber dressed on at least two edges and one side for tight fit.
- C. Void Forms: Biodegradable paper surface, treated for moisture resistance, structurally sufficient to support weight of plastic concrete and other superimposed loads.

2.3 RELATED MATERIALS

- A. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch, minimum unless otherwise specified by architect.
- B. Form-Release Agent: Commercially formulated form-release agent that does not bond with, stain, or adversely affect concrete surfaces and does not impair subsequent treatments of concrete surfaces.
 - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials.
 - 2. Form release agent for form liners shall be acceptable to form liner manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION OF FORMWORK

- A. Comply with ACI 301.
- B. Construct formwork, so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117 and to comply with the Surface Finish designations specified in Section 033000 "Cast-In-Place Concrete" for as-cast finishes.
- C. Limit concrete surface irregularities as follows:
 - 1. Surface Finish-2.0: ACI 117 Class B, 1/4 inch.
- D. Construct forms tight enough to prevent loss of concrete mortar.
 - 1. Minimize joints.
 - 2. Exposed Concrete: Symmetrically align joints in forms.
- E. Construct removable forms for easy removal without hammering or prying against concrete surfaces.
 - 1. Provide crush or wrecking plates where stripping may damage cast-concrete surfaces.
 - 2. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 - 3. Install keyways, reglets, recesses, and other accessories, for easy removal.
- F. Do not use rust-stained, steel, form-facing material.
- G. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces.
 - 1. Provide and secure units to support screed strips
 - 2. Use strike-off templates or compacting-type screeds.
- H. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible.
 - 1. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar.
 - 2. Locate temporary openings in forms at inconspicuous locations.
- I. At construction joints, overlap forms onto previously placed concrete not less than 12 inches.
- J. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work.
 - 1. Determine sizes and locations from trades providing such items.
 - 2. Obtain written approval of Architect prior to forming openings not indicated on Drawings.
- K. Construction and Movement Joints:
 - 1. Construct joints true to line with faces perpendicular to surface plane of concrete.
 - 2. Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 - 3. Place joints perpendicular to main reinforcement.

- 4. Locate joints for beams, slabs, joists, and girders in the middle third of spans.
 - a. Offset joints in girders a minimum distance of twice the beam width from a beamgirder intersection.
- L. Provide temporary ports or openings in formwork where required to facilitate cleaning and inspection.
 - 1. Locate ports and openings in bottom of vertical forms, in inconspicuous location, to allow flushing water to drain.
 - 2. Close temporary ports and openings with tight-fitting panels, flush with inside face of form, and neatly fitted, so joints will not be apparent in exposed concrete surfaces.
- M. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- N. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.
- O. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 INSTALLATION OF EMBEDDED ITEMS

- A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete.
 - 1. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC 303.
 - 3. Clean embedded items immediately prior to concrete placement.

3.3 REMOVING AND REUSING FORMS

- A. Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete. Concrete has to be hard enough to not be damaged by form-removal operations, and curing and protection operations need to be maintained.
 - 1. Leave formwork for beam soffits, joists, slabs, and other structural elements that support weight of concrete in place until concrete has achieved at least 70 percent of its 28-day design compressive strength.
 - 2. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.
- B. Clean and repair surfaces of forms to be reused in the Work.
 - 1. Split, frayed, delaminated, or otherwise damaged form-facing material are unacceptable for exposed surfaces.
 - 2. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints.
 - 1. Align and secure joints to avoid offsets.

2. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a special inspector to perform field tests and inspections and prepare test reports.
- B. Testing Agency: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
- C. Inspections:
 - 1. Inspect formwork for shape, location, and dimensions of the concrete member being formed.
 - 2. Inspect insulating concrete forms for shape, location, and dimensions of the concrete member being formed.

END OF SECTION 031000

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 032000 - CONCRETE REINFORCING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Steel reinforcement bars.
 - 2. Welded-wire reinforcement.
- B. Related Requirements:
 - 1. Section 321313 "Concrete Paving" for reinforcing related to concrete pavement and walks.

1.2 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Each type of steel reinforcement.
 - 2. Bar supports.
- B. Shop Drawings: Comply with ACI SP-066:
 - 1. Include placing drawings that detail fabrication, bending, and placement.
 - 2. Include bar sizes, lengths, materials, grades, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, location of splices, lengths of lap splices, details of mechanical splice couplers, details of welding splices, tie spacing, hoop spacing, and supports for concrete reinforcement.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Statements: For testing and inspection agency.
- B. Welding certificates.
 - 1. Reinforcement To Be Welded: Welding procedure specification in accordance with AWS D1.4.
- C. Material Test Reports: For the following, from a qualified testing agency:
 - 1. Steel Reinforcement:
 - a. For reinforcement to be welded, mill test analysis for chemical composition and carbon equivalent of the steel in accordance with ASTM A706.

1.4 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency qualified in accordance with ASTM C1077 and ASTM E329 for testing indicated.
- B. Welding Qualifications: Qualify procedures and personnel in accordance with AWS D1.4.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.
 - 1. Store reinforcement to avoid contact with earth.
 - 2.
 - 3. Do not allow dual-coated reinforcement to be stored outdoors for more than 60 days without being stored under an opaque covering.

PART 2 - PRODUCTS

- 2.1 STEEL REINFORCEMENT
 - A. Reinforcing Bars: ASTM A615Grade 60, deformed.
 - B. Plain-Steel Welded-Wire Reinforcement: ASTM A1064, plain, fabricated from as-drawn steel wire into flat sheets.

2.2 REINFORCEMENT ACCESSORIES

- A. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded-wire reinforcement in place.
 - 1. Manufacture bar supports from steel wire, plastic, or precast concrete in accordance with CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:
 - a. For concrete surfaces exposed to view, where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire, all-plastic bar supports, or CRSI Class 2 stainless steel bar supports.
- B. Steel Tie Wire: ASTM A1064, annealed steel, not less than 0.0508 inch in diameter.
 1. Finish: Plain.

2.3 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protection of In-Place Conditions:
 - 1. Do not cut or puncture vapor retarder.
 - 2. Repair damage and reseal vapor retarder before placing concrete.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that reduce bond to concrete.
3.2 INSTALLATION OF STEEL REINFORCEMENT

- A. Comply with CRSI's "Manual of Standard Practice" for placing and supporting reinforcement.
- B. Accurately position, support, and secure reinforcement against displacement.
 - 1. Locate and support reinforcement with bar supports to maintain minimum concrete cover.
 - 2. Do not tack weld crossing reinforcing bars.
- C. Preserve clearance between bars of not less than 1 inch, not less than one bar diameter, or not less than 1-1/3 times size of large aggregate, whichever is greater.
- D. Provide concrete coverage in accordance with structural drawings.
- E. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.
- F. Splices: Lap splices as indicated on Drawings.
 - 1. Bars indicated to be continuous, and all vertical bars to be lapped not less than 36 bar diameters at splices, or 24 inches, whichever is greater.
 - 2. Stagger splices in accordance with ACI 318.
 - 3. Weld reinforcing bars in accordance with AWS D1.4/D 1.4M, where indicated on Drawings.
- G. Install welded-wire reinforcement in longest practicable lengths.
 - 1. Support welded-wire reinforcement in accordance with CRSI "Manual of Standard Practice."
 - a. For reinforcement less than W4.0 or D4.0, continuous support spacing to not exceed 12 inches.
 - 2. Lap edges and ends of adjoining sheets at least one wire spacing plus 2 inches for plain wire and 8 inches for deformed wire.
 - 3. Offset laps of adjoining sheet widths to prevent continuous laps in either direction.
 - 4. Lace overlaps with wire.

3.3 JOINTS

- A. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 - 1. Place joints perpendicular to main reinforcement.
 - 2. Continue reinforcement across construction joints unless otherwise indicated.
 - 3. Do not continue reinforcement through sides of strip placements of floors and slabs.
- B. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length, to prevent concrete bonding to one side of joint.

3.4 INSTALLATION TOLERANCES

A. Comply with ACI 117.

3.5 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a special inspectorto perform field tests and inspections.
- B. Testing Agency: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
- C. Inspections:
 - 1. Steel-reinforcement placement.
 - 2. Steel-reinforcement welding.

END OF SECTION 032000

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cast-in-place concrete, including concrete materials, mixture design, placement procedures, and finishes.
- B. Related Requirements:
 - 1. Section 032000 "Concrete Reinforcing" for steel reinforcing bars and welded-wire reinforcement.
 - 2. Section 321313 "Concrete Paving" for concrete pavement and walks.

1.2 DEFINITIONS

- A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash, slag cement, other pozzolans, and silica fume; materials subject to compliance with requirements.
- B. Water/Cement Ratio (w/cm): The ratio by weight of water to cementitious materials.

1.3 ACTION SUBMITTALS

- A. Product Data: For each of the following.
 - 1. Portland cement.
 - 2. Fly ash.
 - 3. Aggregates.
 - 4. Admixtures:
 - a. Include limitations of use, including restrictions on cementitious materials, supplementary cementitious materials, air entrainment, aggregates, temperature at time of concrete placement, relative humidity at time of concrete placement, curing conditions, and use of other admixtures.
 - 5. Vapor retarders.
 - 6. Curing materials.
 - a. Include documentation from color pigment manufacturer, indicating that proposed methods of curing are recommended by color pigment manufacturer.
 - 7. Repair materials.
- B. Design Mixtures: For each concrete mixture, include the following:
 - 1. Mixture identification.
 - 2. Minimum 28-day compressive strength.
 - 3. Durability exposure class.
 - 4. Maximum w/cm.
 - 5. Calculated equilibrium unit weight, for lightweight concrete.
 - 6. Slump limit.

- 7. Air content.
- 8. Nominal maximum aggregate size.
- 9. Intended placement method.
- 10. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
- C. Shop Drawings:
 - 1. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.
 - a. Location of construction joints is subject to approval of the Architect and Structural Engineer of record.
- D. Concrete Schedule: For each location of each Class of concrete indicated in "Concrete Mixtures" Article, including the following:
 - 1. Concrete Class designation.
 - 2. Location within Project.
 - 3. Exposure Class designation.
 - 4. Formed Surface Finish designation and final finish.
 - 5. Final finish for floors.
 - 6. Curing process.
 - 7. Floor treatment if any.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For the following:
 - 1. Installer: Include copies of applicable ACI certificates.
 - 2. Ready-mixed concrete manufacturer.
 - 3. Testing agency: Include copies of applicable ACI certificates.
- B. Material Certificates: For each of the following, signed by manufacturers:
 - 1. Cementitious materials.
 - 2. Admixtures.
 - 3. Curing compounds.
 - 4. Vapor retarders.
 - 5.
- C. Material Test Reports: For the following, from a qualified testing agency:
 - 1. Portland cement.
 - 2. Fly ash.
 - 3. Aggregates.
 - 4. Admixtures:
- D. Floor surface flatness and levelness measurements report, indicating compliance with specified tolerances.
- E. Research Reports:
 - 1. For concrete admixtures in accordance with ICC's Acceptance Criteria AC198.
 - 2. For sheet vapor retarder/termite barrier, showing compliance with ICC AC380.
- F. Preconstruction Test Reports: For each mix design.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer who employs Project personnel qualified as an ACI-certified Flatwork Technician and Finisher and a supervisor who is a certified ACI Flatwork Concrete Finisher/Technician or an ACI Concrete Flatwork Technician with experience installing and finishing concrete.
 - 1. Post-Installed Concrete Anchors Installers: ACI-certified Adhesive Anchor Installer.
- B. Ready-Mixed Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C94/C94M requirements for production facilities and equipment.
 - 1. Manufacturer certified in accordance with NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- C. Laboratory Testing Agency Qualifications: A testing agency qualified in accordance with ASTM C1077 and ASTM E329 for testing indicated and employing an ACI-certified Concrete Quality Control Technical Manager.
- D. Field Quality-Control Testing Agency Qualifications: An independent agency, qualified in accordance with ASTM C1077 and ASTM E329 for testing indicated.

1.6 PRECONSTRUCTION TESTING

- A. Preconstruction Testing Service: Engage a qualified testing agency to perform preconstruction testing on each concrete mixture.
 - 1. Include the following information in each test report:
 - a. Admixture dosage rates.
 - b. Slump.
 - c. Air content.
 - d. Seven-day compressive strength.
 - e. 28-day compressive strength.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Comply with ASTM C94/C94M and ACI 301.

1.8 FIELD CONDITIONS

- A. Cold-Weather Placement: Comply with ACI 301 and ACI 306.1 and as follows.
 - 1. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 2. When average high and low temperature is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 - 3. Do not use frozen materials or materials containing ice or snow.
 - 4. Do not place concrete in contact with surfaces less than 35 deg F, other than reinforcing steel.
 - 5. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.

- B. Hot-Weather Placement: Comply with ACI 301 and ACI 305.1, and as follows:
 - 1. Maintain concrete temperature at time of discharge to not exceed 95 deg F.
 - 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to furnish replacement sheet vapor retarder/termite barrier material and accessories for sheet vapor retarder/ termite barrier and accessories that do not comply with requirements or that fail to resist penetration by termites within specified warranty period.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 unless modified by requirements in the Contract Documents.

2.2 CONCRETE MATERIALS

- A. Source Limitations:
 - 1. Obtain all concrete mixtures from a single ready-mixed concrete manufacturer for entire Project.
 - 2. Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant.
 - 3. Obtain aggregate from single source.
 - 4. Obtain each type of admixture from single source from single manufacturer.

B. Cementitious Materials:

- 1. Portland Cement: ASTM C150, Type I.
- 2. Fly Ash: ASTM C618, Class C or F.
- C. Normal-Weight Aggregates: ASTM C33, Class 3S, Class 3M coarse aggregate or better, graded. Provide aggregates from a single source.
 - 1. Alkali-Silica Reaction: Comply with one of the following:
 - a. Expansion Result of Aggregate: Not more than 0.04 percent at one-year when tested in accordance with ASTM C1293.
 - b. Expansion Results of Aggregate and Cementitious Materials in Combination: Not more than 0.10 percent at an age of 16 days when tested in accordance with ASTM C1567.
 - c. Alkali Content in Concrete: Not more than 4 lb./cu. yd. for moderately reactive aggregate or 3 lb./cu. yd. for highly reactive aggregate, when tested in accordance with ASTM C1293 and categorized in accordance with ASTM C1778, based on alkali content being calculated in accordance with ACI 301.
 - 2. Maximum Coarse-Aggregate Size: 3/4 inchnominal.
 - 3. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- D. Air-Entraining Admixture: ASTM C260.
- E. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride in steel-reinforced concrete.
 - 1. Water-Reducing Admixture: ASTM C494/C494M, Type A.
 - 2. Retarding Admixture: ASTM C494/C494M, Type B.
 - 3. Water-Reducing and -Retarding Admixture: ASTM C494/C494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
 - 5. High-Range, Water-Reducing and -Retarding Admixture: ASTM C494/C494M, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II.
 - 7. Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete and complying with ASTM C494/C494M, Type C.
 - 8. Non-Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, nonset-accelerating, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete.
- F. Water and Water Used to Make Ice: ASTM C94/C94M, potable

2.3 VAPOR RETARDERS

A. Sheet Vapor Retarder, Class A: ASTM E1745, Class A ; not less than 15 mils thick. Include manufacturer's recommended adhesive or pressure-sensitive tape.

2.4 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd.when dry.
- C. Moisture-Retaining Cover: ASTM C171, polyethylene film burlap-polyethylene sheet.
- D. Clear, Waterborne, Membrane-Forming, Dissipating Curing Compound: ASTM C309, Type 1, Class B.
- E. Clear, Waterborne, Membrane-Forming, Nondissipating Curing Compound: ASTM C309, Type 1, Class B
- F. Clear, Solvent-Borne, Membrane-Forming, Curing and Sealing Compound: ASTM C1315, Type 1, Class A.
- G. Clear, Waterborne, Membrane-Forming, Curing and Sealing Compound: ASTM C1315, Type 1, Class A.

2.5 REPAIR MATERIALS

- A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inchand that can be feathered at edges to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C150 portland cement or hydraulic or blended hydraulic cement, as defined in ASTM C219.
 - 2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inchor coarse sand, as recommended by underlayment manufacturer.
 - 4. Compressive Strength: Not less than 4,000 psi at 28 days when tested in accordance with ASTM C109.
- B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch and that can be filled in over a scarified surface to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C150 portland cement or hydraulic or blended hydraulic cement, as defined in ASTM C219.
 - 2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inchor coarse sand as recommended by topping manufacturer.
 - 4. Compressive Strength: Not less than **5000 psi** at 28 days when tested in accordance with ASTM C109.

2.6 CONCRETE MIXTURES, GENERAL

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, in accordance with ACI 301.
 - 1. Use a qualified testing agency for preparing and reporting proposed mixture designs, based on laboratory trial mixtures.
- B. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:
 - 1. Fly Ash or Other Pozzolans: 25 percent by mass.
- C. Admixtures: Use admixtures in accordance with manufacturer's written instructions.
 - 1. Use water-reducing**or**plasticizing admixture in concrete, as required, for placement and workability.

2.7 CONCRETE MIXTURES

- A. Concrete Piers: Normal-weight concrete.
 - 1. Minimum Compressive Strength: 4000 psi at 28 days.
 - 2. Maximum w/cm: 0.45.
 - 3. Slump Limit: 5 inches, plus or minus 1 inch.
 - 4. Air Content:

- a. 5.0 percent, plus or minus 1.5 percent at point of delivery for concrete containing 3/4-inchnominal maximum aggregate size, 4.5 percent, plus or minus 1.5 percent at point of delivery for concrete containing 1-inchnominal maximum aggregate size, 4.5 percent, plus or minus 1.5 percent at point of delivery for concrete containing 1-1/2-inchnominal maximum aggregate size.
- B. Slab on grade: Normal-weight concrete
 - 1. Minimum Compressive Strength: 4000 psi at 28 days.
 - 2. Maximum w/cm: 0.45.
 - 3. Slump Limit: 4 inches, plus or minus 1 inch.
 - 4. Air Content:
 - a. 5.0 percent, plus or minus 1.5 percent at point of delivery for concrete containing 3/4-inchnominal maximum aggregate size, 4.5 percent, plus or minus 1.5 percent at point of delivery for concrete containing 1-inchnominal maximum aggregate size, 4.5 percent, plus or minus 1.5 percent at point of delivery for concrete containing 1-inchnominal maximum aggregate size.
 - b. Do not use an air-entraining admixture or allow total air content to exceed 3 percent for concrete used in trowel-finished floors.

2.8 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete in accordance with ASTM C94, and furnish batch ticket information.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verification of Conditions:
 - 1. Before placing concrete, verify that installation of concrete forms, accessories, and reinforcement, and embedded items is complete and that required inspections have been performed.
 - 2. Do not proceed until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Provide reasonable auxiliary services to accommodate field testing and inspections, acceptable to testing agency, including the following:
 - 1. Daily access to the Work.
 - 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 - 3. Secure space for storage, initial curing, and field curing of test samples, including source of water and continuous electrical power at Project site during site curing period for test samples.
 - 4. Security and protection for test samples and for testing and inspection equipment at Project site.

3.3 INSTALLATION OF EMBEDDED ITEMS

- A. Place and secure anchorage devices and other embedded items required for adjoining Work that is attached to or supported by cast-in-place concrete.
 - 1. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of ANSI/AISC 303.

3.4 INSTALLATION OF VAPOR RETARDER

- A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder in accordance with ASTM E1643 and manufacturer's written instructions.
 - 1. Install vapor retarder with longest dimension parallel with direction of concrete pour.
 - 2. Face laps away from exposed direction of concrete pour.
 - 3. Lap vapor retarder over footings and grade beams not less than 6 inches, sealing vapor retarder to concrete.
 - 4. Lap joints 6 inches and seal with manufacturer's recommended tape.
 - 5. Terminate vapor retarder at the top of floor slabs, grade beams, and pile caps, sealing entire perimeter to floor slabs, grade beams, foundation walls, or pile caps.
 - 6. Seal penetrations in accordance with vapor retarder manufacturer's instructions.
 - 7. Protect vapor retarder during placement of reinforcement and concrete.
 - a. Repair damaged areas by patching with vapor retarder material, overlapping damages area by 6 incheson all sides, and sealing to vapor retarder.

3.5 JOINTS

- A. Construct joints true to line, with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Coordinate with floor slab pattern and concrete placement sequence.
 - 1. Install so strength and appearance of concrete are not impaired, at locations indicated on Drawings or as approved by Architect.
 - 2. Place joints perpendicular to main reinforcement.
 - a. Continue reinforcement across construction joints unless otherwise indicated.
 - b. Do not continue reinforcement through sides of strip placements of floors and slabs.
 - 3. Form keyed joints as indicated. Embed keys at least 1-1/2 inchesinto concrete.
 - 4. Locate joints for beams, and slabsat mid point of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.
 - 5. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- C. Control Joints in Slabs-on-Ground: Form weakened-plane control joints, sectioning concrete into areas as indicated. Construct control joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Sawed Joints: Form control joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete when cutting action does not tear, abrade, or otherwise damage surface and before concrete develops random cracks.

3.6 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, embedded items, and vapor retarder is complete and that required inspections are completed.
 - 1. Immediately prior to concrete placement, inspect vapor retarder for damage and deficient installation, and repair defective areas.
 - 2. Provide continuous inspection of vapor retarder during concrete placement and make necessary repairs to damaged areas as Work progresses.
- B. Notify Architect and testing and inspection agencies 24 hours prior to commencement of concrete placement.
- C. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect and Structural Engineer of record in writing, but not to exceed the amount indicated on the concrete delivery ticket.
 - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- D. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301, but not to exceed the amount indicated on the concrete delivery ticket.
 - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- E. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete is placed on concrete that has hardened enough to cause seams or planes of weakness.
 - 1. If a section cannot be placed continuously, provide construction joints as indicated.
 - 2. Deposit concrete to avoid segregation.
 - 3. Deposit concrete in horizontal layers of depth not to exceed formwork design pressures and in a manner to avoid inclined construction joints.
 - 4. Consolidate placed concrete with mechanical vibrating equipment in accordance with ACI 301.
 - a. Do not use vibrators to transport concrete inside forms.
 - b. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer.
 - c. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity.
 - d. At each insertion, limit duration of vibration to time necessary to consolidate concrete, and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
- F. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Do not place concrete floors and slabs in a checkerboard sequence.
 - 2. Consolidate concrete during placement operations, so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 - 3. Maintain reinforcement in position on chairs during concrete placement.
 - 4. Screed slab surfaces with a straightedge and strike off to correct elevations.
 - 5. Level concrete, cut high areas, and fill low areas.
 - 6. Slope surfaces uniformly to drains where required.

- 7. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface.
- 8. Do not further disturb slab surfaces before starting finishing operations.

3.7 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with the holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to public view.

3.8 FINISHING FLOORS AND SLABS

- A. Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Float Finish:
 - 1. When bleedwater sheen has disappeared and concrete surface has stiffened sufficiently to permit operation of specific float apparatus, consolidate concrete surface with power-driven floats or by hand floating if area is small or inaccessible to power-driven floats.
 - 2. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture and complies with ACI 117tolerances for conventional concrete.
- C. Trowel Finish:
 - 1. After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel.
 - 2. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance.
 - 3. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 4. Do not add water to concrete surface.
 - 5. Do not apply hard-troweled finish to concrete, which has a total air content greater than 3 percent.
 - 6. Apply a trowel finish to surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin-film-finish coating system
 - 7. Finish surfaces to the following tolerances, in accordance with ASTM E1155, for a randomly trafficked floor surface:
- D. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and locations indicated on Drawings.
 - 1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route.
 - 2. Coordinate required final finish with Architect before application.

3.9 INSTALLATION OF MISCELLANEOUS CONCRETE ITEMS

A. Filling In:

- 1. Fill in holes and openings left in concrete structures after Work of other trades is in place unless otherwise indicated.
- 2. Mix, place, and cure concrete, as specified, to blend with in-place construction.
- 3. Provide other miscellaneous concrete filling indicated or required to complete the Work.
- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.
- C. Equipment Bases and Foundations:
 - 1. Coordinate sizes and locations of concrete bases with actual equipment provided.
 - 2. Construct concrete bases 6 inches high unless otherwise indicated on Drawings, and extend base not less than 6 inches in each direction beyond the maximum dimensions of supported equipment unless otherwise indicated on Drawings, or unless required for seismic anchor support.
 - 3. Minimum Compressive Strength: 4000 psi at 28 days.
 - 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete substrate.
 - 6. Prior to pouring concrete, place and secure anchorage devices.
 - a. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - b. Cast anchor-bolt insert into bases.
 - c. Install anchor bolts to elevations required for proper attachment to supported equipment.

3.10 CONCRETE CURING

- A. Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
 - 1. Comply with ACI 301and ACI 306.1 for cold weather protection during curing.
 - 2. Comply with ACI 301 and ACI 305.1 for hot-weather protection during curing.
 - 3. Maintain moisture loss no more than 0.2 lb/sq. ft. x h, calculated in accordance with ACI 305.1, before and during finishing operations.
- B. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for remainder of curing period.
- C. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.
- D. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.

- c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
- 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period, using cover material and waterproof tape.
 - a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 - b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 - c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies does not interfere with bonding of floor covering used on Project.
- 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 - a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies curing compound does not interfere with bonding of floor covering used on Project.
- 4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.11 APPLICATION OF LIQUID FLOOR TREATMENTS

- A. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment in accordance with manufacturer's written instructions.
 - 1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
 - 2. Do not apply to concrete that is less than seven days' old.
 - 3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing.
 - 4. Rinse with water; remove excess material until surface is dry.
 - 5. Apply a second coat in a similar manner if surface is rough or porous.
- B. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller in accordance with manufacturer's written instructions.

3.12 JOINT FILLING

- A. Prepare, clean, and install joint filler in accordance with manufacturer's written instructions.
 - 1. Defer joint filling until concrete has aged at least one month(s).
 - 2. Do not fill joints until construction traffic has permanently ceased.

- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joints clean and dry.
- C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inchesdeep in formed joints.
- D. Overfill joint, and trim joint filler flush with top of joint after hardening.

3.13 CONCRETE SURFACE REPAIRS

- A. Defective Concrete:
 - 1. Repair and patch defective areas when approved by Architect.
 - 2. Remove and replace concrete that cannot be repaired and patched to Architect's approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of 1 part portland cement to 2-1/2 parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 - 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete.
 - a. Limit cut depth to 3/4 inch.
 - b. Make edges of cuts perpendicular to concrete surface.
 - c. Clean, dampen with water, and brush-coat holes and voids with bonding agent.
 - d. Fill and compact with patching mortar before bonding agent has dried.
 - e. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
 - 2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement, so that, when dry, patching mortar matches surrounding color.
 - a. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching.
 - b. Compact mortar in place and strike off slightly higher than surrounding surface.
 - 3. Repair defects on concealed formed surfaces that will affect concrete's durability and structural performance as determined by Architect.
- D. Repairing Unformed Surfaces:
 - 1. Test unformed surfaces, such as floors and slabs, for finish, and verify surface tolerances specified for each surface.
 - a. Correct low and high areas.
 - b. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 2. Repair finished surfaces containing surface defects, including spalls, popouts, honeycombs, rock pockets, crazing, and cracks in excess of 0.01 inchwide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 - 3. After concrete has cured at least 14 days, correct high areas by grinding.
 - 4. Correct localized low areas during, or immediately after, completing surface-finishing operations by cutting out low areas and replacing with patching mortar.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- a. Finish repaired areas to blend into adjacent concrete.
- 5. Correct other low areas scheduled to receive floor coverings with a repair underlayment.
 - a. Prepare, mix, and apply repair underlayment and primer in accordance with manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
 - b. Feather edges to match adjacent floor elevations.
- 6. Correct other low areas scheduled to remain exposed with repair topping.
 - a. Cut out low areas to ensure a minimum repair topping depth of 1/4 inchto match adjacent floor elevations.
 - b. Prepare, mix, and apply repair topping and primer in accordance with manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
- 7. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete.
 - a. Remove defective areas with clean, square cuts, and expose steel reinforcement with at least a 3/4-inchclearance all around.
 - b. Dampen concrete surfaces in contact with patching concrete and apply bonding agent.
 - c. Mix patching concrete of same materials and mixture as original concrete, except without coarse aggregate.
 - d. Place, compact, and finish to blend with adjacent finished concrete.
 - e. Cure in same manner as adjacent concrete.
- 8. Repair random cracks and single holes 1 inch or less in diameter with patching mortar.
 - a. Groove top of cracks and cut out holes to sound concrete, and clean off dust, dirt, and loose particles.
 - b. Dampen cleaned concrete surfaces and apply bonding agent.
 - c. Place patching mortar before bonding agent has dried.
 - d. Compact patching mortar and finish to match adjacent concrete.
 - e. Keep patched area continuously moist for at least 72 hours.
- E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.
- F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.14 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a special inspector to perform field tests and inspections and prepare testing and inspection reports.
- B. Testing Agency: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
 - 1. Testing agency to be responsible for providing curing container for composite samples on Site and verifying that field-cured composite samples are cured in accordance with ASTM C31.
 - 2. Testing agency to immediately report to Architect, Contractor, and concrete manufacturer any failure of Work to comply with Contract Documents.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 3. Testing agency to report results of tests and inspections, in writing, to Owner, Architect, Contractor, and concrete manufacturer within 48 hours of inspections and tests.
 - a. Test reports to include reporting requirements of ASTM C31, ASTM C39, and ACI 301, including the following as applicable to each test and inspection:
 - 1) Project name.
 - 2) Name of testing agency.
 - 3) Name of concrete manufacturer.
 - 4) Date and time of inspection, sampling, and field testing.
 - 5) Date and time of concrete placement.
 - 6) Location in Work of concrete represented by samples.
 - 7) Date and time sample was obtained.
 - 8) Design compressive strength at 28 days.
 - 9) Concrete mixture designation, proportions, and materials.
 - 10) Field test results.
 - 11) Information on storage and curing of samples before testing, including curing method and maximum and minimum temperatures during initial curing period.
 - 12) Type of fracture and compressive break strengths at seven days and 28 days.
- C. Inspections:
 - 1. Headed bolts and studs.
 - 2. Verification of use of required design mixture.
 - 3. Concrete placement, including conveying and depositing.
 - 4. Curing procedures and maintenance of curing temperature.
 - 5. Verification of concrete strength before removal of shores and forms from beams and slabs.
- D. Concrete Tests: Testing of composite samples of fresh concrete obtained in accordance with ASTM C 172to be performed in accordance with the following requirements:
 - 1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd.but less than 25 cu. yd.plus one set for each additional 50 cu. yd.or fraction thereof.
 - a. When frequency of testing provides fewer than five compressive-strength tests for each concrete mixture, testing to be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 2. Slump: ASTM C143/C143M:
 - a. One test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - b. Perform additional tests when concrete consistency appears to change.
 - 3. Slump Flow: ASTM C1611:
 - a. One test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - b. Perform additional tests when concrete consistency appears to change.
 - 4. Air Content: ASTM C231 pressure method, for normal-weight concrete;.
 - a. One test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - 5. Concrete Temperature: ASTM C1064/C1064M:
 - a. One test hourly when air temperature is 40 deg Fand below or 80 deg Fand above, and one test for each composite sample.
 - 6. Compression Test Specimens: ASTM C31/C31M:

- a. Cast and laboratory cure two sets of two 6-inch by 12-inch cylinder specimens for each composite sample.
- b. Cast, initial cure, and field cure two sets of two standard cylinder specimens for each composite sample.
- 7. Compressive-Strength Tests: ASTM C39.
 - a. Test one set of two laboratory-cured specimens at seven days and one set of two specimens at 28 days.
 - b. Test one set of -two field-cured specimens at seven days and one set of two specimens at 28 days.
 - c. A compressive-strength test to be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.
- 8. When strength of field-cured cylinders is less than 85 percent of companion laboratorycured cylinders, Contractor to evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
- 9. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength, and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
- 10. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- 11. Additional Tests:
 - a. Testing and inspecting agency to make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.
 - b. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C42 or by other methods as directed by Architect.
 - 1) Acceptance criteria for concrete strength to be in accordance with ACI 301, Section 1.6.6.3.
- 12. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- 13. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.
- E. Measure floor and slab flatness and levelness in accordance with ASTM E1155 within 24 hours of completion of floor finishing and promptly report test results to Architect.

3.15 PROTECTION

- A. Protect concrete surfaces as follows:
 - 1. Protect from petroleum stains.
 - 2. Diaper hydraulic equipment used over concrete surfaces.
 - 3. Prohibit vehicles from interior concrete slabs.
 - 4. Prohibit use of pipe-cutting machinery over concrete surfaces.
 - 5. Prohibit placement of steel items on concrete surfaces.
 - 6. Prohibit use of acids or acidic detergents over concrete surfaces.

- 7. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.
- 8. Protect concrete surfaces scheduled to receive surface hardener or polished concrete finish using Floor Slab Protective Covering.

END OF SECTION 033000

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 054000 - COLD-FORMED METAL FRAMING

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior non-load-bearing wall framing.
 - 2. Ceiling joist framing.

1.2 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Cold-formed steel framing materials.
 - 2. Interior non-load-bearing wall framing.
 - 3. Vertical deflection clips.
 - 4. Single deflection track.
 - 5. Double deflection track.
 - 6. Ceiling joist framing.
 - 7. Post-installed anchors.
 - 8. Power-actuated anchors.
- B. Shop Drawings:
 - 1. Include layout, spacings, sizes, thicknesses, and types of cold-formed steel framing; fabrication; and fastening and anchorage details, including mechanical fasteners.
 - 2. Indicate reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work.
- C. Delegated Design Submittal: For cold-formed steel framing.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Welding certificates.
- C. Product Certificates: For each type of code-compliance certification for studs and tracks.
- D. Product Test Reports: For each listed product, for tests performed by a qualified testing agency.
 - 1. Steel sheet.
 - 2. Expansion anchors.
 - 3. Power-actuated anchors.
 - 4. Mechanical fasteners.
 - 5. Vertical deflection clips.
 - 6. Miscellaneous structural clips and accessories.
- E. Research Reports:

1. For nonstandard cold-formed steel framing post-installed anchors and power-actuated fasteners, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.

1.4 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.
- B. Product Tests: Mill certificates or data from a qualified independent testing agency, or in-house testing with calibrated test equipment, indicating steel sheet complies with requirements, including base-metal thickness, yield strength, tensile strength, total elongation, chemical requirements, and metallic-coating thickness.
- C. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according toproduct-certification program the Steel Stud Manufacturers Association.
- D. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."

1.5 DELIVERY, STORAGE, AND HANDLING

A. Protect and store cold-formed steel framing from corrosion, moisture staining, deformation, and other damage during delivery, storage, and handling as required in AISI S202.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cold-formed steel framing.
- B. Structural Performance: Provide cold-formed steel framing capable of withstanding design loads within limits and under conditions indicated.
 - 1. Design Loads: As indicated on Drawings.
 - 2. Deflection Limits: Design framing systems to withstand design loads without deflections greater than the following:
 - a. Interior Non-Load-Bearing Framing: Horizontal deflection of 1/240 of the wall height under a horizontal load of 5 lbf/sq. ft.
 - b. Ceiling Joist Framing: Vertical deflection of 1/360 of the span for live loads and 1/240 for total loads of the span.
 - 3. Design framing system to maintain clearances at openings, to allow for construction tolerances, and to accommodate live load deflection of primary building structure as follows:
 - a. Upward and downward movement as allowed by vertical deflection joist span wall is attached to.

- C. Cold-Formed Steel Framing Standards: Unless more stringent requirements are indicated, framing complies with AISI S100 ASTM C955.
- D. Fire-Resistance Ratings: Comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Indicate design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency acceptable to authorities having jurisdiction.

2.2 COLD-FORMED STEEL FRAMING MATERIALS

- A. Framing Members, General: Comply with ASTM C955 for conditions indicated.
 - 1. Grade: As required by structural performance.
 - 2. Coating: G60.

2.3 INTERIOR NON-LOAD-BEARING WALL FRAMING

- A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0428 inch.
 - 2. Flange Width: 1-5/8 inches.
- B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0428 inch.
 - 2. Flange Width: 1-1/4 inches.
- C. Vertical Deflection Clips, Interior: Manufacturer's standard head clips, capable of accommodating upward and downward vertical displacement of primary structure through positive mechanical attachment to stud web.
- D. Single Deflection Track: Manufacturer's single, deep-leg, U-shaped steel track; unpunched, with unstiffened flanges, of web depth to contain studs while allowing free vertical movement, with flanges designed to support horizontal loads and transfer them to the primary structure, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0428 inch.
- E. Double Deflection Tracks: Manufacturer's double, deep-leg, U-shaped steel tracks, consisting of nested inner and outer tracks; unpunched, with unstiffened flanges.
 - 1. Outer Track: Of web depth to allow free vertical movement of inner track, with flanges designed to support horizontal loads and transfer them to the primary structure, and as follows:
 - a. Minimum Base-Metal Thickness: 0.0428 inch.
 - 2. Inner Track: Of web depth indicated, and as follows:
 - a. Minimum Base-Metal Thickness: 0.0428 inch.

2.4 CEILING JOIST FRAMING

A. Steel Ceiling Joists: Manufacturer's standard C-shaped steel sections, of web depths indicated, punched with standard holes, with stiffened flanges, and as follows:

- 1. Minimum Base-Metal Thickness: 0.0428 inch.
- 2. Flange Width: 1-5/8 inches, minimum.

2.5 FRAMING ACCESSORIES

- A. Fabricate steel-framing accessories from ASTM A1003/A1003M, Structural Grade, Type H, metallic coated steel sheet, of same grade and coating designation used for framing members.
- B. Provide accessories of manufacturer's standard thickness and configuration, unless otherwise indicated, as follows:
 - 1. Supplementary framing.
 - 2. Bracing, bridging, and solid blocking.
 - 3. Web stiffeners.
 - 4. Anchor clips.
 - 5. End clips.
 - 6. Foundation clips.
 - 7. Gusset plates.
 - 8. Stud kickers and knee braces.
 - 9. Joist hangers and end closures.
 - 10. Hole-reinforcing plates.
 - 11. Backer plates.

2.6 ANCHORS, CLIPS, AND FASTENERS

- A. Steel Shapes and Clips: ASTM A36/A36M, zinc coated by hot-dip process according to ASTM A123/A123M.
- B. Anchor Bolts: ASTM F1554, Grade 36, threaded carbon-steel hex-headed bolts carbon-steel nuts, and flat, hardened-steel washers; zinc coated by hot-dip process according to ASTM A153/A153M, Class C.
- C. Post-Installed Anchors: Fastener systems with bolts of same basic metal as fastened metal, if visible, unless otherwise indicated; with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, as appropriate for the substrate.
 - 1. Uses: Securing cold-formed steel framing to structure.
 - 2. Type: Torque-controlled expansion anchor] or adhesive anchor.
 - 3. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B633 or ASTM F1941, Class Fe/Zn 5, unless otherwise indicated.
- D. Power-Actuated Anchors: Fastener systems with working capacity greater than or equal to the design load, according to an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
- E. Mechanical Fasteners: ASTM C1513, corrosion-resistant-coated, self-drilling, self-tapping, steel drill screws.
 - 1. Head Type: Low-profile head beneath sheathing; manufacturer's standard elsewhere.
- F. Welding Electrodes: Comply with AWS standards.

2.7 MISCELLANEOUS MATERIALS

- A. Galvanizing Repair Paint: ASTM A780/A780M or SSPC-Paint 20.
- B. Cement Grout: Portland cement, ASTM C150/C150M, Type I; and clean, natural sand, ASTM C404. Mix at ratio of 1 part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration.
- C. Nonmetallic, Nonshrink Grout: Factory-packaged, nonmetallic, noncorrosive, nonstaining grout, complying with ASTM C1107/C1107M, and with a fluid consistency and 30-minute working time.
- D. Shims: Load-bearing, high-density, multimonomer, nonleaching plastic; or cold-formed steel of same grade and metallic coating as framing members supported by shims.
- E. Sill Sealer Gasket: Closed-cell neoprene foam, 1/4 inch thick, selected from manufacturer's standard widths to match width of bottom track or rim track members as required.

2.8 FABRICATION

- A. Fabricate cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened, according to referenced AISI's specifications and standards, manufacturer's written instructions, and requirements in this Section.
 - 1. Fabricate framing assemblies using jigs or templates.
 - 2. Cut framing members by sawing or shearing; do not torch cut.
 - 3. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, pneumatic pin fastening, or riveting as standard with fabricator. Wire tying of framing members is not permitted.
 - a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 - b. Locate mechanical fasteners and install according to Shop Drawings, with screws penetrating joined members by no fewer than three exposed screw threads.
 - 4. Fasten other materials to cold-formed steel framing by welding, bolting, pneumatic pin fastening, or screw fastening, according to Shop Drawings.
- B. Reinforce, stiffen, and brace framing assemblies to withstand handling, delivery, and erection stresses. Lift fabricated assemblies by means that prevent damage or permanent distortion.
- C. Tolerances: Fabricate assemblies level, plumb, and true to line to a maximum allowable variation of 1/8 inch in 10 feet and as follows:
 - 1. Spacing: Space individual framing members no more than plus or minus 1/8 inch from plan location. Cumulative error are not to exceed minimum fastening requirements of sheathing or other finishing materials.
 - 2. Squareness: Fabricate each cold-formed steel framing assembly to a maximum out-of-square tolerance of 1/8 inch.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, conditions, and abutting structural framing for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Before sprayed fire-resistive materials are applied, attach continuous angles, supplementary framing, or tracks to structural members indicated to receive sprayed fire-resistive materials.
- B. After applying sprayed fire-resistive materials, remove only as much of these materials as needed to complete installation of cold-formed framing without reducing thickness of fire-resistive materials below that required to obtain fire-resistance ratings indicated. Protect remaining fire-resistive materials from damage.

3.3 INSTALLATION, GENERAL

- A. Cold-formed steel framing may be shop or field fabricated for installation, or it may be field assembled.
- B. Install cold-formed steel framing according to AISI S200, AISI S202, and manufacturer's written instructions unless more stringent requirements are indicated.
- C. Install shop- or field-fabricated, cold-formed framing and securely anchor to supporting structure.
 - 1. Screw, bolt, or weld wall panels at horizontal and vertical junctures to produce flush, even, true-to-line joints with maximum variation in plane and true position between fabricated panels not exceeding 1/16 inch.
- D. Install cold-formed steel framing and accessories plumb, square, and true to line, and with connections securely fastened.
 - 1. Cut framing members by sawing or shearing; do not torch cut.
 - 2. Fasten cold-formed steel framing members by welding, screw fastening, clinch fastening, or riveting. Wire tying of framing members is not permitted.
 - a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 - b. Locate mechanical fasteners, install according to Shop Drawings, and comply with requirements for spacing, edge distances, and screw penetration.
- E. Install framing members in one-piece lengths unless splice connections are indicated for track or tension members.
- F. Install temporary bracing and supports to secure framing and support loads equal to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire

integrated supporting structure has been completed and permanent connections to framing are secured.

- G. Do not bridge building expansion joints with cold-formed steel framing. Independently frame both sides of joints.
- H. Install insulation, specified in Section 072100 "Thermal Insulation," in framing-assembly members, such as headers, sills, boxed joists, and multiple studs at openings, that are inaccessible on completion of framing work.
- I. Fasten hole-reinforcing plate over web penetrations that exceed size of manufacturer's approved or standard punched openings.

3.4 INSTALLATION OF INTERIOR NONLOADBEARING WALL FRAMING

- A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure.
- B. Fasten both flanges of studs to top and bottom track unless otherwise indicated. Space studs as follows:
 - 1. Stud Spacing: As indicated on delegated design Drawings.
- C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.
- D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 - 1. Install single deep-leg deflection tracks and anchor to building structure.
 - 2. Install double deep-leg deflection tracks and anchor outer track to building structure.
 - 3. Connect vertical deflection clips to studs and anchor to building structure.
 - 4. Connect drift clips to cold-formed steel metal framing and anchor to building structure.
- E. Install horizontal bridging in wall studs, spaced vertically in rows indicated on Shop Drawings but not more than 48 inches apart. Fasten at each stud intersection.
 - 1. Channel Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs.
 - 2. Strap Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.
 - 3. Bar Bridging: Proprietary bridging bars installed according to manufacturer's written instructions.
- F. Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches of single deflection track. Install a combination of bridging and stud or stud-track solid blocking of width and thickness matching studs, secured to stud webs or flanges.
 - 1. Install solid blocking at centers indicated on delegated design Shop Drawings.
- G. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, and fasteners, to provide a complete and stable wall-framing system.

3.5 INSTALLATION TOLERANCES

- A. Install cold-formed steel framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet and as follows:
 - 1. Space individual framing members no more than plus or minus 1/8 inch from plan location. Cumulative error are not to exceed minimum fastening requirements of sheathing or other finishing materials.

3.6 REPAIR

A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed steel framing with galvanized repair paint according to ASTM A780/A780M and manufacturer's written instructions.

3.7 FIELD QUALITY CONTROL

- A. Testing: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.
- B. Field and shop welds will be subject to testing and inspecting.
- C. Testing agency will report test results promptly and in writing to Contractor and Architect.
- D. Cold-formed steel framing will be considered defective if it does not pass tests and inspections.
- E. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.8 **PROTECTION**

A. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that cold-formed steel framing is without damage or deterioration at time of Substantial Completion.

END OF SECTION 054000

SECTION 055213 - PIPE AND TUBE RAILINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Steel railings.

1.2 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of anchorages for railings. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.3 ACTION SUBMITTALS

- A. Product Data:
 - 1. Nonshrink, nonmetallic grout.
 - 2. Anchoring cement.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1.4 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel in accordance with the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."

1.5 DELIVERY, STORAGE, AND HANDLING

A. Protect mechanical finishes on exposed surfaces of railings from damage by applying a strippable, temporary protective covering before shipping.

1.6 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with railings by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Railings, including attachment to building construction, withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated:
 - 1. Handrails and Top Rails of Guards:
 - a. Uniform load of 50 lbf/ ft. applied in any direction.
 - b. Concentrated load of 200 lbf applied in any direction.
 - c. Uniform and concentrated loads need not be assumed to act concurrently.
- B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 METALS, GENERAL

- A. Metal Surfaces, General: Provide materials with smooth surfaces, without seam marks, roller marks, rolled trade names, stains, discolorations, or blemishes.
- B. Brackets, Flanges, and Anchors: Cast or formed metal of same type of material and finish as supported rails unless otherwise indicated.

2.3 STEEL RAILINGS

- A. Tubing: ASTM A500/A500M (cold formed).
- B. Pipe: ASTM A53/A53M, Type F or Type S, Grade A, Standard Weight (Schedule 40), unless another grade and weight are required by structural loads.
 - 1. Provide galvanized finish for exterior installations and where indicated.

2.4 FASTENERS

- A. Fastener Materials:
 - Hot-Dip Galvanized Railing Components: Type 304 stainless steel or hot-dip zinc-coated steel fasteners complying with ASTM A153/A153M or ASTM F2329/F2329M for zinc coating.
 - 2. Finish exposed fasteners to match appearance, including color and texture, of railings.
- B. Fasteners for Anchoring Railings to Other Construction: Select fasteners of type, grade, and class required to produce connections suitable for anchoring railings to other types of construction and capable of withstanding design loads.
- C. Fasteners for Interconnecting Railing Components:
 - 1. Provide concealed fasteners for interconnecting railing components and for attaching them to other work, unless otherwise indicated.

- 2. Provide concealed fasteners for interconnecting railing components and for attaching them to other work, unless exposed fasteners are unavoidable or are the standard fastening method for railings indicated.
- 3. Provide Phillips tamper-resistant square or hex socket flat-head machine screws for exposed fasteners unless otherwise indicated.

2.5 MISCELLANEOUS MATERIALS

- A. Welding Rods and Bare Electrodes: Select in accordance with AWS specifications for metal alloy welded.
 - 1. For railings, provide type and alloy as recommended by producer of metal to be welded and as required for color match, strength, and compatibility in fabricated items.
- B. Galvanizing Repair Paint: High-zinc-dust-content paint, complying with SSPC-Paint 20 and compatible with paints specified to be used over it.
- C. Shop Primer for Galvanized Steel: Primer formulated for exterior use over zinc-coated metal and compatible with finish paint systems indicated.
- D. Intermediate Coats and Topcoats: Provide products that comply with Section 099113 "Exterior Painting."
- E. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout, complying with ASTM C1107/C1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.
- F. Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with water at Project site to create pourable anchoring, patching, and grouting compound.
 - 1. Water-Resistant Product: At exterior locations, provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating and that is recommended by manufacturer for exterior use.

2.6 FABRICATION

- A. General: Fabricate railings to comply with requirements indicated for design, dimensions, member sizes and spacing, details, finish, and anchorage, but not less than that required to support structural loads.
- B. Shop assemble railings to greatest extent possible to minimize field splicing and assembly. Disassemble units only as necessary for shipping and handling limitations.
 - 1. Clearly mark units for reassembly and coordinated installation.
 - 2. Use connections that maintain structural value of joined pieces.
- C. Cut, drill, and punch metals cleanly and accurately.
 - 1. Remove burrs and ease edges to a radius of approximately 1/32 inch unless otherwise indicated.
 - 2. Remove sharp or rough areas on exposed surfaces.

- D. Form work true to line and level with accurate angles and surfaces.
- E. Fabricate connections that are exposed to weather in a manner that excludes water.
 - 1. Provide weep holes where water may accumulate.
 - 2. Locate weep holes in inconspicuous locations.
- F. Cut, reinforce, drill, and tap as indicated to receive finish hardware, screws, and similar items.
- G. Connections: Fabricate railings with welded or nonwelded connections unless otherwise indicated.
- H. Welded Connections: Cope components at connections to provide close fit, or use fittings designed for this purpose. Weld all around at connections, including at fittings.
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove flux immediately.
 - 4. At exposed connections, finish exposed welds to comply with NOMMA's "Voluntary Joint Finish Standards" for Finish #2 welds; good appearance, completely sanded joint, some undercutting and pinholes okay.
- I. Nonwelded Connections: Connect members with concealed mechanical fasteners and fittings. Fabricate members and fittings to produce flush, smooth, rigid, hairline joints.
 - 1. Fabricate splice joints for field connection, using an epoxy structural adhesive, if this is manufacturer's standard splicing method.
- J. Form changes in direction as follows:
 - 1. By bending or by inserting prefabricated elbow fittings.
- K. Bend members in jigs to produce uniform curvature for each configuration required. Maintain cross section of member throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of components.
- L. Close exposed ends of hollow railing members with prefabricated cap and end fittings of same metal and finish as railings.
- M. Provide wall returns at ends of wall-mounted handrails unless otherwise indicated. Close ends of returns unless clearance between end of rail and wall is 1/4 inch or less.
- N. Brackets, Flanges, Fittings, and Anchors: Provide wall brackets, flanges, miscellaneous fittings, and anchors to interconnect railing members to other work unless otherwise indicated.
 - 1. At brackets and fittings fastened to plaster or gypsum board partitions, provide crushresistant fillers or other means to transfer loads through wall finishes to structural supports and prevent bracket or fitting rotation and crushing of substrate.

2.7 STEEL AND IRON FINISHES

- A. Galvanized Railings:
 - 1. Hot-dip galvanize exterior steel railings, including hardware, after fabrication.
 - 2. Comply with ASTM A123/A123M for hot-dip galvanized railings.

- 3. Comply with ASTM A153/A153M for hot-dip galvanized hardware.
- 4. Do not quench or apply post-galvanizing treatments that might interfere with paint adhesion.
- 5. Fill vent and drain holes that are exposed in the finished Work, unless indicated to remain as weep holes, by plugging with zinc solder and filing off smooth.
- B. For galvanized railings, provide hot-dip galvanized fittings, brackets, fasteners, sleeves, and other ferrous components.
- C. Preparing Galvanized Railings for Shop Priming: After galvanizing, thoroughly clean railings of grease, dirt, oil, flux, and other foreign matter, and treat with etching cleaner and as follows.
 1. Comply with SSPC-SP 16.
- D. For nongalvanized-steel railings, provide nongalvanized ferrous-metal fittings, brackets, fasteners, and sleeves; however, hot-dip galvanize anchors to be embedded in exterior concrete or masonry.
- E. Preparation for Shop Priming: Prepare uncoated ferrous-metal surfaces to comply with SSPC-SP 6/NACE No. 3.
- F. Primer Application: Apply shop primer to prepared surfaces of railings unless otherwise indicated. Comply with requirements in SSPC-PA 1 for shop painting. Primer need not be applied to surfaces to be embedded in concrete or masonry.
 - 1. Shop prime uncoated railings with primers specified in Section 099113 "Exterior Painting" unless indicated.
 - 2. Do not apply primer to galvanized surfaces.
- G. Shop-Painted Finish: Comply with Section 099113 "Exterior Painting."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine plaster and gypsum board assemblies, where reinforced to receive anchors, to verify that locations of concealed reinforcements are clearly marked for Installer. Locate reinforcements and mark locations if not already done.

3.2 INSTALLATION, GENERAL

- A. Perform cutting, drilling, and fitting required for installing railings.
 - 1. Fit exposed connections together to form tight, hairline joints.
 - 2. Install railings level, plumb, square, true to line; without distortion, warp, or rack.
 - 3. Set railings accurately in location, alignment, and elevation; measured from established lines and levels.
 - 4. Do not weld, cut, or abrade surfaces of railing components that are coated or finished after fabrication and that are intended for field connection by mechanical or other means without further cutting or fitting.
 - 5. Set posts plumb within a tolerance of 1/16 inch in 3 feet.

- 6. Align rails so variations from level for horizontal members and variations from parallel with rake of steps and ramps for sloping members do not exceed 1/4 inch in 12 feet.
- B. Control of Corrosion: Prevent galvanic action and other forms of corrosion by insulating metals and other materials from direct contact with incompatible materials.
 - 1. Coat concealed surfaces of aluminum that will be in contact with grout, concrete, masonry, wood, or dissimilar metals, with a heavy coat of bituminous paint.
- C. Adjust railings before anchoring to ensure matching alignment at abutting joints.
- D. Fastening to In-Place Construction: Use anchorage devices and fasteners where necessary for securing railings and for properly transferring loads to in-place construction.

3.3 RAILING CONNECTIONS

- A. Nonwelded Connections: Use mechanical or adhesive joints for permanently connecting railing components. Use wood blocks and padding to prevent damage to railing members and fittings. Seal recessed holes of exposed locking screws, using plastic cement filler colored to match finish of railings.
- B. Welded Connections: Use fully welded joints for permanently connecting railing components. Comply with requirements for welded connections in "Fabrication" Article, whether welding is performed in the shop or in the field.
- C. Expansion Joints: Install expansion joints at locations indicated but not farther apart than required to accommodate thermal movement. Provide slip-joint internal sleeve, extending 2 inches beyond joint on either side; fasten internal sleeve securely to one side; and locate joint within 6 inches of post.

3.4 ANCHORING POSTS

- A. Form or core-drill holes not less than 5 inches deep and 3/4 inch larger than OD of post for installing posts in concrete. Clean holes of loose material, insert posts, and fill annular space between post and concrete with nonshrink, nonmetallic grout or anchoring cement, mixed and placed to comply with anchoring material manufacturer's written instructions.
- B. Leave anchorage joint exposed with 1/8-inch buildup, sloped away from post.

3.5 REPAIR

- A. Touchup Painting:
 - 1. Immediately after erection, clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with the same material used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - a. Apply by brush or spray to provide a minimum 2.0-mil dry film thickness.
 - 2. Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint are specified in Section 099113 "Exterior Painting."

3.6 CLEANING

- A. Clean by washing thoroughly with clean water and soap and rinsing with clean water.
- B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas, and repair galvanizing to comply with ASTM A780/A780M.

3.7 **PROTECTION**

A. Protect finishes of railings from damage during construction period with temporary protective coverings approved by railing manufacturer. Remove protective coverings at time of Substantial Completion.

END OF SECTION 055213

THIS PAGE LEFT INTENTIONALLY BLANK
SECTION 061000 - ROUGH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Wood products.
 - 2. Wood-preservative-treated lumber.
 - 3. Miscellaneous lumber.
 - 4. Plywood backing panels.

B. Related Requirements:

1. Section 061600 "Sheathing" for sheathing, subflooring, and underlayment.

1.2 DEFINITIONS

A. Boards or Strips: Lumber of less than 2 inches nominal size in least dimension.

1.3 DELIVERY, STORAGE, AND HANDLING

A. Stack wood products flat with spacers beneath and between each bundle to provide air circulation. Protect wood products from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS

- A. Lumber: Comply with DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, comply with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Grade lumber by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 - 1. Factory mark each piece of lumber with grade stamp of grading agency.
 - 2. Where nominal sizes are indicated, provide actual sizes required by DOC PS 20 for moisture content specified. Where actual sizes are indicated, they are minimum dressed sizes for dry wood products.
 - 3. Dress lumber, S4S, unless otherwise indicated.
- B. Maximum Moisture Content:
 - 1. Boards: 19 percent.

2.2 WOOD-PRESERVATIVE-TREATED LUMBER

A. Preservative Treatment by Pressure Process: AWPA U1, Use categories as follows:

- 1. UC1: Interior construction not in contact with ground or subject to moisture. Include all rough carpentry.
- 2. UC2: Interior construction not in contact with ground but may be subject to moisture. Include all rough carpentry.
- 3. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium. Do not use inorganic boron (SBX) for sill plates.
- B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.
- C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.
- D. Application: Treat all rough carpentry unless otherwise indicated.
 - 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 - 2. Wood sills, sleepers, blocking, and similar concealed members in contact with masonry or concrete.

2.3 MISCELLANEOUS LUMBER

- A. Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 - 1. Blocking.
 - 2. Nailers.
- B. Dimension Lumber Items: Construction or No. 2 grade lumber.
- C. Concealed Boards: 19 percent maximum moisture content and No. 2 grade. and
- D. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.
- E. For furring strips for installing plywood or hardboard paneling, select boards with no knots capable of producing bent-over nails and damage to paneling.

2.4 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1, Exposure 1, C-D Plugged, in thickness indicated or, if not indicated, not less than 1/2-inch nominal thickness.

2.5 FASTENERS

A. General: Fasteners are to be of size and type indicated and comply with requirements specified in this article for material and manufacture. Provide nails or screws, in sufficient length, to penetrate not less than 1-1/2 inches into wood substrate.

- 1. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A153/A153M or ASTM F2329.
- B. Nails, Brads, and Staples: ASTM F1667.
- C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Set work to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry accurately to other construction. Locatenailers, blocking, and similar supports to comply with requirements for attaching other construction.
- B. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing panels.
- C. Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.
- D. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.
 - 1. Provide metal clips for fastening gypsum board or lath at corners and intersections where framing or blocking does not provide a surface for fastening edges of panels. Space clips not more than 16 inches o.c.
- E. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.
- F. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
 - 1. Use inorganic boron for items that are continuously protected from liquid water.
 - 2. Use copper naphthenate for items not continuously protected from liquid water.
- G. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 - 1. Table 2304.10.1, "Fastening Schedule," in ICC's International Building Code (IBC).
- H. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 INSTALLATION OF WOOD BLOCKING AND NAILERS

- A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.
- B. Attach wood blocking to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

3.3 **PROTECTION**

A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 061000

SECTION 061600 - SHEATHING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:1. Wall sheathing.
- B. Related Requirements:
 1. Section 061000 "Rough Carpentry" for plywood backing panels.

1.2 DELIVERY, STORAGE, AND HANDLING

A. Stack panels flat with spacers beneath and between each bundle to provide air circulation. Protect sheathing from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PANEL PRODUCTS

- A. Thickness: As needed to comply with requirements specified, but not less than thickness indicated.
- B. Factory mark panels to indicate compliance with applicable standard.

2.2 PRESERVATIVE-TREATED PLYWOOD

- A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.
 - 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.
- B. Mark plywood with appropriate classification marking of an inspection agency acceptable to authorities having jurisdiction.
- C. Application: Treat all plywood unless otherwise indicated and plywood in contact with masonry or concrete or used with roofing, flashing, vapor barriers, and waterproofing.

2.3 WALL SHEATHING

A. Glass-Mat Gypsum Sheathing, Walls: ASTM C1177/C1177M.
1. Type and Thickness: Regular, 1/2 inch thick.

2.4 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 - 1. For wall sheathing, provide fasteners with hot-dip zinc coating complying with ASTM A153/A153M.
- B. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
- C. Screws for Fastening Gypsum Sheathing to Cold-Formed Metal Framing: Steel drill screws, in length recommended by sheathing manufacturer for thickness of sheathing to be attached.
 - 1. For steel framing less than 0.0329 inch thick, use screws that comply with ASTM C1002.
 - 2. For steel framing from 0.033 to 0.112 inch thick, use screws that comply with ASTM C954.

2.5 SHEATHING JOINT-AND-PENETRATION TREATMENT MATERIALS

- A. Sealant for Glass-Mat Gypsum Sheathing: Silicone emulsion sealant complying with ASTM C834, compatible with sheathing tape and sheathing and recommended by tape and sheathing manufacturers for use with glass-fiber sheathing tape and for covering exposed fasteners.
 - 1. Sheathing Tape: Self-adhering glass-fiber tape, minimum 2 inches wide, 10 by 10 or 10 by 20 threads/inch, of type recommended by sheathing and tape manufacturers for use with silicone emulsion sealant in sealing joints in glass-mat gypsum sheathing and with a history of successful in-service use.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.
- B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.
- C. Securely attach to substrate by fastening as indicated, complying with the following:
 1. Table 2304.10.1, "Fastening Schedule," in the ICC's International Building Code.
- D. Coordinate wall sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.
- E. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.

F. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

3.2 INSTALLATION OF GYPSUM SHEATHING

- A. Comply with GA-253 and with manufacturer's written instructions.
 - 1. Fasten gypsum sheathing to cold-formed metal framing with screws.
 - 2. Install panels with a 3/8-inch gap where non-load-bearing construction abuts structural elements.
 - 3. Install panels with a 1/4-inch gap where they abut masonry or similar materials that might retain moisture, to prevent wicking.
- B. Apply fasteners so heads bear tightly against face of sheathing, but do not cut into facing.
- C. Vertical Installation: Install vertical edges centered over studs. Abut ends and edges with those of adjacent panels. Attach at perimeter and within field of panel to each stud.
 - 1. Space fasteners approximately 8 inches o.c. and set back a minimum of 3/8 inch from edges and ends of panels.
- D. Seal sheathing joints according to sheathing manufacturer's written instructions.
 - 1. Apply glass-fiber sheathing tape to glass-mat gypsum sheathing joints and apply and trowel sealant to embed entire face of tape in sealant. Apply sealant to exposed fasteners with a trowel so fasteners are completely covered. Seal other penetrations and openings.

END OF SECTION 061600

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 072100 - THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Extruded polystyrene foam-plastic board insulation.
 - 2. Glass-fiber blanket insulation.
- B. Related Requirements:
 - 1. Section 092900 "Gypsum Board" for sound attenuation blanket used as acoustic insulation.

1.3 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Extruded polystyrene foam-plastic board insulation.
 - 2. Glass-fiber blanket insulation.

1.4 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each product, for tests performed by a qualified testing agency.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.
- B. Protect foam-plastic board insulation as follows:
 - 1. Do not expose to sunlight except to necessary extent for period of installation and concealment.
 - 2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site until just before installation time.
 - 3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - PRODUCTS

2.1 EXTRUDED POLYSTYRENE FOAM-PLASTIC BOARD INSULATION

- A. Extruded Polystyrene Board Insulation, Type X: ASTM C578, Type X, 15-psi minimum compressive strength; unfaced.
 - 1. Flame-Spread Index: Not more than 25 when tested in accordance with ASTM E84.
 - 2. Smoke-Developed Index: Not more than 450 when tested in accordance with ASTM E84.
 - 3. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly.
 - 4. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches and wider in width.

2.2 GLASS-FIBER BLANKET INSULATION

- A. Glass-Fiber Blanket Insulation, Unfaced: ASTM C665, Type I; passing ASTM E136 for combustion characteristics.
 - 1. Flame-Spread Index: Not more than 25 when tested in accordance with ASTM E84.
 - 2. Smoke-Developed Index: Not more than 50 when tested in accordance with ASTM E84.
 - 3. Labeling: Provide identification of mark indicating R-value of each piece of insulation 12 inches and wider in width.

2.3 ACCESSORIES

- A. Insulation for Miscellaneous Voids:
 - 1. Glass-Fiber Insulation: ASTM C764, Type II, loose fill; with maximum flame-spread and smoke-developed indexes of 5, per ASTM E84.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation, including removing projections capable of puncturing insulation or vapor retarders, or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

- A. Comply with insulation manufacturer's written instructions applicable to products and applications.
- B. Install insulation that is undamaged, dry, and unsolled and that has not been left exposed to ice, rain, or snow at any time.
- C. Install insulation with manufacturer's R-value label exposed after insulation is installed.
- D. Extend insulation to envelop entire area to be insulated. Fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.

E. Provide sizes to fit applications and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units unless multiple layers are otherwise shown or required to make up total thickness or to achieve R-value.

3.3 INSTALLATION OF CAVITY-WALL INSULATION

- A. Foam-Plastic Board Insulation: Install pads of adhesive spaced approximately 24 inches o.c. both ways on inside face and as recommended by manufacturer.
 - 1. Fit courses of insulation between wall ties and other obstructions, with edges butted tightly in both directions, and with faces flush.
 - 2. Press units firmly against inside substrates.
 - 3. Supplement adhesive attachment of insulation by securing boards with two-piece wall ties designed for this purpose and specified in Section 042000 "Unit Masonry."

3.4 INSTALLATION OF INSULATION IN FRAMED CONSTRUCTION

- A. Blanket Insulation: Install in cavities formed by framing members according to the following requirements:
 - 1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
 - 2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.
 - 3. Maintain 3-inch clearance of insulation around recessed lighting fixtures not rated for or protected from contact with insulation.
 - 4. For metal-framed wall cavities where cavity heights exceed 96 inches, support unfaced blankets mechanically and support faced blankets by taping flanges of insulation to flanges of metal studs.
- B. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:
 - 1. Glass-Fiber Insulation: Compact to approximately 40 percent of normal maximum volume equaling a density of approximately 2.5 lb/cu. ft..

3.5 **PROTECTION**

- A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes.
- B. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 072100

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 072726 - FLUID-APPLIED MEMBRANE AIR BARRIERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:1. Vapor-permeable, fluid-applied air barriers.
- B. Related Requirements:
 - 1. Section 061600 "Sheathing" for wall sheathings and wall sheathing joint-and-penetration treatments.

1.2 DEFINITIONS

- A. Air-Barrier Material: A primary element that provides a continuous barrier to the movement of air.
- B. Air-Barrier Accessory: A transitional component of the air barrier that provides continuity.
- C. Air-Barrier Assembly: The collection of air-barrier materials and accessories applied to an opaque wall, including joints and junctions to abutting construction, to control air movement through the wall.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include manufacturer's written instructions for evaluating, preparing, and treating each substrate; technical data; dry film thickness; and tested physical and performance properties of products.
- B. Shop Drawings: For air-barrier assemblies.
 - 1. Show locations and extent of air-barrier materials, accessories, and assemblies specific to Project conditions.
 - 2. Include details for substrate joints and cracks, counterflashing strips, penetrations, inside and outside corners, terminations, and tie-ins with adjoining construction.
 - 3. Include details of interfaces with other materials that form part of air barrier.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer. Include list of ABAA-certified installers and supervisors employed by Installer, who work on Project.
- B. Product Certificates: From air-barrier manufacturer, certifying compatibility of air barriers and accessory materials with Project materials that connect to or that come in contact with the barrier.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
 - 1. Installer to be licensed by ABAA according to ABAA's Quality Assurance Program and to employ ABAA-certified installers and supervisors on Project.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Remove and replace liquid materials that cannot be applied within their stated shelf life.
- B. Protect stored materials from direct sunlight.

1.7 FIELD CONDITIONS

- A. Environmental Limitations: Apply air barrier within the range of ambient and substrate temperatures recommended in writing by air-barrier manufacturer.
 - 1. Protect substrates from environmental conditions that affect air-barrier performance.
 - 2. Do not apply air barrier to a damp or wet substrate or during snow, rain, fog, or mist.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Source Limitations: Obtain primary air-barrier materials and air-barrier accessories from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Air-Barrier Performance: Air-barrier assembly and seals with adjacent construction to be capable of performing as a continuous air barrier and as a liquid-water drainage plane flashed to discharge to the exterior incidental condensation or water penetration. Air-barrier assemblies to be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations, tie-ins to installed waterproofing, and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.
- B. Air-Barrier Assembly Air Leakage: Maximum 0.04 cfm/sq. ft. of surface area at 1.57 lbf/sq. ft., when tested according to ASTM E2357.

2.3 HIGH-BUILD AIR BARRIERS, VAPOR PERMEABLE

A. High-Build, Vapor-Permeable Air Barrier Modified Bituminous Type: Modified Bituminous membrane with an installed dry film thickness, according to manufacturer's written instructions, of 35 mils or thicker over smooth, void-free substrates.

- B. High-Build, Vapor-Permeable Air Barrier Synthetic Polymer Type: Synthetic polymer membrane with an installed dry film thickness, according to manufacturer's written instructions, of 35 mils or thicker over smooth, void-free substrates.
- C. Physical and Performance Properties:
 - 1. Air Permeance: Maximum 0.004 cfm/sq. ft. of surface area at 1.57-lbf/sq. ft. pressure difference; ASTM E2178.
 - 2. Vapor Permeance: Minimum 5 perms; ASTM E96/E96M, Procedure A, Desiccant Method.
 - 3. Ultimate Elongation: Minimum 200 percent; ASTM D412, Die C.
 - 4. Adhesion to Substrate: Minimum 30 lbf/sq. in. when tested according to ASTM D4541.
 - 5. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly.
 - 6. UV Resistance: Can be exposed to sunlight for 180 days according to manufacturer's written instructions.

2.4 ACCESSORY MATERIALS

- A. Provide primers, transition strips, termination strips, joint reinforcing fabric and strips, joint sealants, counterflashing strips, flashing sheets and metal termination bars, termination mastic, substrate patching materials, adhesives, tapes, foam sealants, lap sealants, and other accessory materials that are recommended in writing by air-barrier manufacturer to produce a complete air-barrier assembly and that are compatible with primary air-barrier material and adjacent construction to which they may seal.
- B. Primer: Liquid waterborne primer recommended for substrate by air-barrier material manufacturer.
- C. Stainless Steel Sheet: ASTM A240/A240M, Type 304, 0.0187 inch thick, and Series 300 stainless steel fasteners.
- D. Preformed Silicone Extrusion: Manufacturer's standard system consisting of cured low-modulus silicone extrusion, sized to fit opening widths, with a single-component, neutral-curing, Class 100/50 (low-modulus) silicone sealant for bonding extrusions to substrates.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 - 1. Verify that substrates are sound and free of oil, grease, dirt, excess mortar, or other contaminants.
 - 2. Verify that substrates have cured and aged for minimum time recommended in writing by air-barrier manufacturer.
 - 3. Verify that substrates are visibly dry and free of moisture.
 - 4. Verify that masonry joints are flush and completely filled with mortar.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

- A. Clean, prepare, treat, fill, and seal substrate and joints and cracks in substrate according to manufacturer's written instructions and details. Provide clean, dust-free, and dry substrate for air-barrier application.
- B. Mask off adjoining surfaces not covered by air barrier to prevent spillage and overspray affecting other construction.
- C. Remove grease, oil, bitumen, form-release agents, paints, curing compounds, and other penetrating contaminants or film-forming coatings from concrete.
- D. Remove fins, ridges, mortar, and other projections and fill honeycomb, aggregate pockets, holes, and other voids in concrete with substrate-patching material.
- E. Remove excess mortar from masonry ties, shelf angles, and other obstructions.
- F. At changes in substrate plane, apply sealant or termination mastic beads at sharp corners and edges to form a smooth transition from one plane to another.
- G. Cover gaps in substrate plane and form a smooth transition from one substrate plane to another with stainless steel sheet mechanically fastened to structural framing to provide continuous support for air barrier.
- H. Bridge isolation joints expansion joints and discontinuous wall-to-wall, deck-to-wall, and deck-to-deck joints with air-barrier accessory material that accommodates joint movement according to manufacturer's written instructions and details.

3.3 ACCESSORIES INSTALLATION

- A. Install accessory materials according to air-barrier manufacturer's written instructions and details to form a seal with adjacent construction and ensure continuity of air and water barrier.
 - 1. Coordinate the installation of air barrier with installation of roofing membrane and base flashing to ensure continuity of air barrier with roofing membrane.
 - 2. Install transition strip on roofing membrane or base flashing so that a minimum of 3 inches of coverage is achieved over each substrate.
 - 3. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
 - 4. Apply primer to substrates at required rate and allow it to dry. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.
- B. Connect and seal exterior wall air-barrier material continuously to roofing-membrane air barrier, concrete below-grade structures, floor-to-floor construction, exterior glazing and window systems, glazed curtain-wall systems, storefront systems, exterior louvers, exterior door framing, and other construction used in exterior wall openings, using accessory materials.
- C. At end of each working day, seal top edge of strips and transition strips to substrate with termination mastic.

- D. Apply joint sealants forming part of air-barrier assembly within manufacturer's recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.
- E. Wall Openings: Prime concealed, perimeter frame surfaces of windows, curtain walls, storefronts, and doors. Apply transition strip so that a minimum of 3 inches of coverage is achieved over each substrate. Maintain 3 inches of full contact over firm bearing to perimeter frames, with not less than 1 inch of full contact.
 - 1. Transition Strip: Roll firmly to enhance adhesion.
- F. Fill gaps in perimeter frame surfaces of windows, curtain walls, storefronts, and doors, and miscellaneous penetrations of air-barrier material with foam sealant.
- G. Seal top of through-wall flashings to air barrier with an additional 6-inch- wide, transition strip.
- H. Seal exposed edges of strips at seams, cuts, penetrations, and terminations not concealed by metal counterflashings or ending in reglets with termination mastic.
- I. Repair punctures, voids, and deficient lapped seams in strips and transition strips. Slit and flatten fishmouths and blisters. Patch with transition strips extending 6 inches beyond repaired areas in strip direction.

3.4 PRIMARY AIR-BARRIER MATERIAL INSTALLATION

- A. Apply air-barrier material to form a seal with strips and transition strips and to achieve a continuous air barrier according to air-barrier manufacturer's written instructions and details. Apply air-barrier material within manufacturer's recommended application temperature ranges.
 - 1. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
 - 2. Limit priming to areas that will be covered by air-barrier material on same day. Reprime areas exposed for more than 24 hours.
 - 3. Where multiple prime coats are needed to achieve required bond, allow adequate drying time between coats.
- B. High-Build Air Barriers: Apply continuous unbroken air-barrier material to substrates according to the following thickness. Apply air-barrier material in full contact around protrusions such as masonry ties.
 - 1. Vapor-Permeable, High-Build Air Barrier: Total dry film thickness as recommended in writing by manufacturer to comply with performance requirements, but not less than 35 mils, applied in one or more equal coats.
- C. Do not cover air barrier until it has been tested and inspected by testing agency.
- D. Correct deficiencies in or remove air barrier that does not comply with requirements; repair substrates and reapply air-barrier components.

3.5 FIELD QUALITY CONTROL

- A. ABAA Quality Assurance Program: Perform examinations, preparation, installation, testing, and inspections under ABAA's Quality Assurance Program.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Inspections: Air-barrier materials, accessories, and installation are subject to inspection for compliance with requirements. Inspections may include the following:
 - 1. Continuity of air-barrier system has been achieved throughout the building envelope with no gaps or holes.
 - 2. Air-barrier dry film thickness.
 - 3. Continuous structural support of air-barrier system has been provided.
 - 4. Site conditions for application temperature and dryness of substrates have been maintained.
 - 5. Maximum exposure time of materials to UV deterioration has not been exceeded.
 - 6. Surfaces have been primed, if applicable.
 - 7. Laps in strips and transition strips have complied with minimum requirements and have been shingled in the correct direction (or mastic has been applied on exposed edges), with no fishmouths.
 - 8. Termination mastic has been applied on cut edges.
 - 9. Strips and transition strips have been firmly adhered to substrate.
 - 10. Compatible materials have been used.
 - 11. Transitions at changes in direction and structural support at gaps have been provided.
 - 12. Connections between assemblies (air-barrier and sealants) have complied with requirements for cleanliness, surface preparation and priming, structural support, integrity, and continuity of seal.
 - 13. All penetrations have been sealed.
- D. Air barriers will be considered defective if they do not pass tests and inspections.
 - 1. Apply additional air-barrier material, according to manufacturer's written instructions, where inspection results indicate insufficient thickness.
 - 2. Remove and replace deficient air-barrier components for retesting as specified above.
- E. Repair damage to air barriers caused by testing; follow manufacturer's written instructions.
- F. Prepare test and inspection reports.

3.6 CLEANING AND PROTECTION

- A. Protect air-barrier system from damage during application and remainder of construction period, according to manufacturer's written instructions.
 - 1. Protect air barrier from exposure to UV light and harmful weather exposure as recommended in writing by manufacturer. If exposed to these conditions for longer than recommended, remove and replace air barrier or install additional, full-thickness, air-barrier application after repairing and preparing the overexposed materials according to air-barrier manufacturer's written instructions.
 - 2. Protect air barrier from contact with incompatible materials and sealants not approved by air-barrier manufacturer.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- B. Clean spills, stains, and soiling from construction that would be exposed in the completed work using cleaning agents and procedures recommended in writing by manufacturer of affected construction.
- C. Remove masking materials after installation.

END OF SECTION 072726

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 074113.16 - STANDING-SEAM METAL ROOF PANELS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes: Standing-seam metal roof panels.
- B. Related Requirements:
 1. Section 074293 "Soffit Panels" for metal panels used in horizontal soffit applications.

1.2 ACTION SUBMITTALS

- A. Shop Drawings:
 - 1. Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
 - 2. Accessories: Include details of the flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches.
- B. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below.
 - 1. Metal Panels: 12 inches long by actual panel width. Include clips, fasteners, closures, and other metal panel accessories.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Test Reports: For standing-seam metal roof panels, for tests performed by a qualified testing agency.
- C. Sample Warranties: For special warranties.
- 1.4 CLOSEOUT SUBMITTALS
 - A. Maintenance Data: For metal panels to include in maintenance manuals.
- 1.5 QUALITY ASSURANCE
 - A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.
- B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.
- C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.
- D. Retain strippable protective covering on metal panels during installation.

1.7 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to manufacturers' written instructions and warranty requirements.

1.8 COORDINATION

- A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.
- B. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of soffits, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including rupturing, cracking, or puncturing.
 - b. Deterioration of metals and other materials beyond normal weathering.
 - 2. Warranty Period: 1 years from date of Substantial Completion.
- B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Delta E units when tested according to ASTM D2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 25 years from date of Substantial Completion.

- C. Special Weathertightness Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace standing-seam metal roof panel assemblies that fail to remain weathertight, including leaks, within specified warranty period.
 - 1. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Energy Performance:
 - 1. Provide roof panels that are listed on the EPA/DOE's ENERGY STAR "Roof Product List" for low-slope roof products.
- B. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E1592:
 - 1. Wind Loads: As indicated on Drawings.
 - 2. Other Design Loads: As indicated on Drawings.
 - 3. Deflection Limits: For wind loads, no greater than 1/180 of the span.
- C. Air Infiltration: Air leakage of not more than 0.06 cfm/sq. ft. when tested according to ASTM E1680 or ASTM E283 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 1.57 lbf/sq. ft..
- D. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E1646 or ASTM E331 at the following test-pressure difference:
 1. Test-Pressure Difference: 2.86 lbf/sq. ft..
- E. Hydrostatic-Head Resistance: No water penetration when tested according to ASTM E2140.
- F. Wind-Uplift Resistance: Provide metal roof panel assemblies that comply with UL 580 for wind-uplift-resistance class indicated.
 - 1. Uplift Rating: UL 90.
- G. FM Global Listing: Provide metal roof panels and component materials that comply with requirements in FM Global 4471 as part of a panel roofing system and that are listed in FM Global's "Approval Guide" for Class 1 or noncombustible construction, as applicable. Identify materials with FM Global markings.
 - 1. Fire/Windstorm Classification: Class 1A- 90.
- H. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

2.2 STANDING-SEAM METAL ROOF PANELS

A. Provide factory-formed metal roof panels designed to be installed by lapping and interconnecting raised side edges of adjacent panels with joint type indicated and mechanically

attaching panels to supports using concealed clips in side laps. Include clips, cleats, pressure plates, and accessories required for weathertight installation.

- 1. Steel Panel Systems: Unless more stringent requirements are indicated, comply with ASTM E1514.
- 2. Aluminum Panel Systems: Unless more stringent requirements are indicated, comply with ASTM E1637.
- B. Trapezoidal-Rib, Seamed-Joint, Standing-Seam Metal Roof Panels **SRS**: Formed with raised trapezoidal ribs at panel edges and intermediate stiffening ribs symmetrically spaced between ribs; designed for sequential installation by mechanically attaching panels to supports using concealed clips located under one side of panels, engaging opposite edge of adjacent panels, and mechanically seaming panels together.
 - 1. of Design Product: Subject to compliance with requirements, provide product by the following or an approved equal:
 - a. MBCI Double-Lok
 - 2. Aluminum Sheet: Coil-coated sheet, ASTM B209, alloy as standard with manufacturer, with temper as required to suit forming operations and structural performance required.
 - a. Thickness: 0.024 inch.
 - b. Surface: Smooth, with minor ribs in pan finish.
 - c. Exterior Finish: Two-coat fluoropolymer.
 - d. Color: Match adjacent building.
 - Clips: Two-piece floating to accommodate thermal movement.
 - a. 0.028-inch- nominal thickness, zinc-coated (galvanized) or aluminum-zinc alloycoated steel sheet.
 - 4. Joint Type: Double folded.
 - 5. Panel Coverage: 18 inches.
 - 6. Panel Height: 3.0 inches.

2.3 MISCELLANEOUS MATERIALS

3.

- A. Miscellaneous Metal Subframing and Furring: ASTM C645; cold-formed, metallic-coated steel sheet, ASTM A653/A653M, G90 hot-dip galvanized coating designation or ASTM A792/A792M, Class AZ50 coating designation unless otherwise indicated. Provide manufacturer's standard sections as required for support and alignment of metal panel system.
- B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, copings, fasciae, mullions, sills, corner units, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.
 - 1. Closures: Provide closures at eaves and ridges, fabricated of same metal as metal panels.
 - 2. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer.
 - 3. Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch- thick, flexible closure strips; cut or premolded to match metal panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.
- C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are

not limited to, eaves, rakes, corners, bases, framed openings, ridges, fasciae, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.

- D. Gutters: Formed from same material as roof panels, complete with end pieces, outlet tubes, and other special pieces as required. Fabricate in minimum 96-inch- long sections, of size and metal thickness according to SMACNA's "Architectural Sheet Metal Manual." Furnish gutter supports spaced a maximum of 36 inches o.c., fabricated from same metal as gutters. Provide wire ball strainers of compatible metal at outlets. Finish gutters to match roof fascia and rake trim.
- E. Downspouts: Formed from same material as roof panels. Fabricate in 10-foot- long sections, complete with formed elbows and offsets, of size and metal thickness according to SMACNA's "Architectural Sheet Metal Manual." Finish downspouts to match gutters.
- F. Roof Curbs: Fabricated from same material as roof panels, 0.024 inch nominal thickness; with bottom of skirt profiled to match roof panel profiles and with welded top box and integral fulllength cricket. Fabricate curb subframing of 0.060-inch- nominal thickness, angle-, C-, or Zshaped steel sheet. Fabricate curb and subframing to withstand indicated loads of size and height indicated. Finish roof curbs to match metal roof panels.
 - 1. Insulate roof curb with 1-inch- thick, rigid insulation.
- G. Panel Fasteners: Self-tapping screws designed to withstand design loads.
- H. Panel Sealants: Provide sealant type recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.
 - 1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch wide and 1/8 inch thick.
 - 2. Joint Sealant: ASTM C920; elastomeric polyurethane or silicone sealant; of type, grade, class, and use classifications required to seal joints in metal panels and remain weathertight; and as recommended in writing by metal panel manufacturer.
 - 3. Butyl-Rubber-Based, Solvent-Release Sealant: ASTM C1311.

2.4 FABRICATION

- A. Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.
- B. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.
- C. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.
- D. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.

- 1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
- 2. Seams for Aluminum: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.
- 3. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flatlock seams. Tin edges to be seamed, form seams, and solder.
- 4. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.
- 5. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
- 6. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.
 - a. Size: As recommended by SMACNA's "Architectural Sheet Metal Manual" or metal panel manufacturer for application, but not less than thickness of metal being secured.

2.5 FINISHES

- A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are unacceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- C. Aluminum Panels and Accessories:
 - 1. Two-Coat Fluoropolymer: AAMA 2605. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - 2. Siliconized Polyester: Epoxy primer and silicone-modified, polyester-enamel topcoat; with a dry film thickness of not less than 0.2 mil for primer and 0.8 mil for topcoat.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.
 - 1. Examine primary and secondary roof framing to verify that rafters, purlins, angles, channels, and other structural panel support members and anchorages have been installed within alignment tolerances required by metal roof panel manufacturer.

- 2. Examine solid roof sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal roof panel manufacturer.
 - a. Verify that air- or water-resistive barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.
- B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C754 and metal panel manufacturer's written recommendations.

3.3 INSTALLATION OF STANDING-SEAM METAL ROOF PANELS

- A. Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.
 - 1. Shim or otherwise plumb substrates receiving metal panels.
 - 2. Flash and seal metal panels at perimeter of all openings. Fasten with self-tapping screws. Do not begin installation until air- or water-resistive barriers and flashings that will be concealed by metal panels are installed.
 - 3. Install screw fasteners in predrilled holes.
 - 4. Locate and space fastenings in uniform vertical and horizontal alignment.
 - 5. Install flashing and trim as metal panel work proceeds.
 - 6. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
 - 7. Align bottoms of metal panels and fasten with blind rivets, bolts, or self-tapping screws. Fasten flashings and trim around openings and similar elements with self-tapping screws.
 - 8. Provide weathertight escutcheons for pipe- and conduit-penetrating panels.
- B. Fasteners:
 - 1. Aluminum Panels: Use aluminum or stainless steel fasteners for surfaces exposed to the exterior; use aluminum or galvanized-steel fasteners for surfaces exposed to the interior.
- C. Anchor Clips: Anchor metal roof panels and other components of the Work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.
- D. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.
- E. Standing-Seam Metal Roof Panel Installation: Fasten metal roof panels to supports with concealed clips at each standing-seam joint at location, spacing, and with fasteners recommended in writing by manufacturer.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 1. Install clips to supports with self-tapping fasteners.
- 2. Install pressure plates at locations indicated in manufacturer's written installation instructions.
- 3. Snap Joint: Nest standing seams and fasten together by interlocking and completely engaging factory-applied sealant.
- 4. Seamed Joint: Crimp standing seams with manufacturer-approved, motorized seamer tool so clip, metal roof panel, and factory-applied sealant are completely engaged.
- 5. Watertight Installation:
 - a. Apply a continuous ribbon of sealant or tape to seal joints of metal panels, using sealant or tape as recommend in writing by manufacturer as needed to make panels watertight.
 - b. Provide sealant or tape between panels and protruding equipment, vents, and accessories.
 - c. At panel splices, nest panels with minimum 6-inch end lap, sealed with sealant and fastened together by interlocking clamping plates.
- F. Clipless Metal Panel Installation: Fasten metal panels to supports with screw fasteners at each lapped joint at location and spacing recommended by manufacturer.
- G. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.
 - 1. Install components required for a complete metal panel system including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal roof panel manufacturers; or, if not indicated, types recommended by metal roof panel manufacturer.
- H. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weather resistant.
 - 1. Install exposed flashing and trim that is without buckling and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and achieve waterproof and weather-resistant performance.
 - 2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet with no joints allowed within 24 inches of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently weather resistant and waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with mastic sealant (concealed within joints).
- I. Gutters: Join sections with riveted and soldered or lapped and sealed joints. Attach gutters to eave with gutter hangers spaced not more than 36 inches o.c. using manufacturer's standard fasteners. Provide end closures and seal watertight with sealant. Provide for thermal expansion.
- J. Downspouts: Join sections with telescoping joints. Provide fasteners designed to hold downspouts securely 1 inch away from walls; locate fasteners at top and bottom and at approximately 60 inches o.c. in between.
 - 1. Provide elbows at base of downspouts to direct water away from building.

STANDING-SEAM METAL ROOF PANELS

- K. Roof Curbs: Install flashing around bases where they meet metal roof panels.
- L. Pipe Flashing: Form flashing around pipe penetration and metal roof panels. Fasten and seal to metal roof panels as recommended by manufacturer.

3.4 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align metal panel units within installed tolerance of 1/4 inch in 20 feet on slope and location lines as indicated and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect metal roof panel installation, including accessories. Report results in writing.
- B. Remove and replace applications of metal roof panels where tests and inspections indicate that they do not comply with specified requirements.
- C. Additional tests and inspections, at Contractor's expense, are performed to determine compliance of replaced or additional work with specified requirements.
- D. Prepare test and inspection reports.

3.6 CLEANING AND PROTECTION

- A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.
- B. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 074113.16

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 074213.13 - FORMED METAL WALL PANELS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:1. Concealed-fastener, lap-seam metal wall panels.
- B. Related Requirements:
 1. Section 074293 "Soffit Panels" for metal panels used in horizontal soffit applications.

1.2 ACTION SUBMITTALS

- A. Product Data: Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.
 - 1. Concealed-fastener, lap-seam metal wall panels.
- B. Shop Drawings:
 - 1. Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
 - 2. Accessories: Include details of the flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches.
- C. Samples for Verification: For each type of exposed finish, prepared on Samples of size indicated below:
 - 1. Metal Panels: 12 inches long by actual panel width. Include fasteners, closures, and other metal panel accessories.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Sample Warranties: For special warranties.
- 1.4 CLOSEOUT SUBMITTALS
 - A. Maintenance Data: For metal panels to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.
- B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.
- C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.
- D. Retain strippable protective covering on metal panels during installation.

1.7 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to manufacturers' written instructions and warranty requirements.

1.8 COORDINATION

A. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of soffits, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.9 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including rupturing, cracking, or puncturing.
 - b. Deterioration of metals and other materials beyond normal weathering.
 - 2. Warranty Period: 1 years from date of Substantial Completion.
- B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Delta E units when tested according to ASTM D2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 40 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E1592:
 - 1. Wind Loads: As indicated on Drawings.
 - 2. Other Design Loads: As indicated on Drawings.
 - 3. Deflection Limits: For wind loads, no greater than 1/180 of the span.
- B. Air Infiltration: Air leakage of not more than 0.06 cfm/sq. ft. when tested according to ASTM E283 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 1.57 lbf/sq. ft..
- C. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E331 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 2.86 lbf/sq. ft..
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.
 - 2. CONCEALED-FASTENER, LAP-SEAM METAL WALL PANELS
- E. Provide factory-formed metal panels designed to be field assembled by lapping and interconnecting side edges of adjacent panels and mechanically attaching through panel to supports using concealed fasteners in side laps. Include accessories required for weathertight installation.
 - 1.
- F. Wide-Reveal-Joint, Concealed-Fastener Metal Wall Panels <MP-1>: Formed with vertical panel edges and a stepped profile between panel edges, resulting in a wide reveal joint between panels.
 - a. Basis of Design Product: Subject to compliance with requirements, provide product by the following or an approved equal: MBCI, Designer Series Fluted
 - 2. Aluminum Sheet: Coil-coated sheet, ASTM B209, alloy as standard with manufacturer, with temper as required to suit forming operations and structural performance required.
 - a. Thickness: 0.020 inch.
 - b. Surface: Smooth, flat finish.
 - c. Exterior Finish: Two-coat fluoropolymer.
 - d. Color: Match adjacent building.

2.2 MISCELLANEOUS MATERIALS

A. Miscellaneous Metal Subframing and Furring: ASTM C645, cold-formed, metallic-coated steel sheet, ASTM A653/A653M, G90 hot-dip galvanized coating designation or ASTM A792/A792M, Class AZ50 aluminum-zinc-alloy coating designation unless otherwise indicated. Provide manufacturer's standard sections as required for support and alignment of metal panel system.

- B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, copings, fasciae, mullions, sills, corner units, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.
 - 1. Closures: Provide closures at eaves and rakes, fabricated of same metal as metal panels.
 - 2. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer.
 - 3. Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch- thick, flexible closure strips; cut or premolded to match metal panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.
- C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, bases, drips, sills, jambs, corners, endwalls, framed openings, rakes, fasciae, parapet caps, soffits, reveals, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.
- D. Panel Fasteners: Self-tapping screws designed to withstand design loads. Provide exposed fasteners with heads matching color of metal panels by means of plastic caps or factory-applied coating. Provide EPDM or PVC sealing washers for exposed fasteners.
- E. Panel Sealants: Provide sealant type recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.
 - 1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch wide and 1/8 inch thick.
 - 2. Joint Sealant: ASTM C920; elastomeric polyurethane or silicone sealant; of type, grade, class, and use classifications required to seal joints in metal panels and remain weathertight; and as recommended in writing by metal panel manufacturer.
 - 3. Butyl-Rubber-Based, Solvent-Release Sealant: ASTM C1311.

2.3 FABRICATION

- A. Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.
- B. On-Site Fabrication: Subject to compliance with requirements of this Section, metal panels may be fabricated on-site using UL-certified, portable roll-forming equipment if panels are of same profile and warranted by manufacturer to be equal to factory-formed panels. Fabricate according to equipment manufacturer's written instructions and to comply with details shown.
- C. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.

- D. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.
- E. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.
 - 1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
 - 2. Seams for Aluminum: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.
 - 3. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flatlock seams. Tin edges to be seamed, form seams, and solder.
 - 4. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.
 - 5. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
 - 6. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.
 - a. Size: As recommended by SMACNA's "Architectural Sheet Metal Manual" or metal wall panel manufacturer for application but not less than thickness of metal being secured.

2.4 FINISHES

- A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- C. Aluminum Panels and Accessories:
 - 1. Two-Coat Fluoropolymer: AAMA 2605. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - 2. Siliconized Polyester: Epoxy primer and silicone-modified, polyester-enamel topcoat; with a dry film thickness of not less than 0.2 mil for primer and 0.8 mil for topcoat.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.
 - 1. Examine wall framing to verify that girts, angles, channels, studs, and other structural panel support members and anchorage have been installed within alignment tolerances required by metal wall panel manufacturer.
 - 2. Examine wall sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal wall panel manufacturer.
 - a. Verify that air- or water-resistive barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.
- B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C754 and metal panel manufacturer's written recommendations.

3.3 INSTALLATION OF METAL PANELS

- A. Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.
 - 1. Shim or otherwise plumb substrates receiving metal panels.
 - 2. Flash and seal metal panels at perimeter of all openings. Fasten with self-tapping screws. Do not begin installation until air- or water-resistive barriers and flashings that will be concealed by metal panels are installed.
 - 3. Install screw fasteners in predrilled holes.
 - 4. Locate and space fastenings in uniform vertical and horizontal alignment.
 - 5. Install flashing and trim as metal panel work proceeds.
 - 6. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
 - 7. Align bottoms of metal panels and fasten with blind rivets, bolts, or self-tapping screws. Fasten flashings and trim around openings and similar elements with self-tapping screws.
 - 8. Provide weathertight escutcheons for pipe- and conduit-penetrating panels.
- B. Fasteners:
 - 1. Aluminum Panels: Use aluminum or stainless steel fasteners for surfaces exposed to the exterior; use aluminum or galvanized-steel fasteners for surfaces exposed to the interior.
- C. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.
- D. Lap-Seam Metal Panels: Fasten metal panels to supports with fasteners at each lapped joint at location and spacing recommended by manufacturer.
 - 1. Lap ribbed or fluted sheets one full rib. Apply panels and associated items true to line for neat and weathertight enclosure.
 - 2. Provide metal-backed washers under heads of exposed fasteners bearing on weather side of metal panels.
 - 3. Locate and space exposed fasteners in uniform vertical and horizontal alignment. Use proper tools to obtain controlled uniform compression for positive seal without rupture of washer.
 - 4. Install screw fasteners with power tools having controlled torque adjusted to compress washer tightly without damage to washer, screw threads, or panels. Install screws in predrilled holes.
 - 5. Flash and seal panels with weather closures at perimeter of all openings.
- E. Watertight Installation:
 - 1. Apply a continuous ribbon of sealant or tape to seal lapped joints of metal panels, using sealant or tape as recommend by manufacturer on side laps of nesting-type panels; and elsewhere as needed to make panels watertight.
 - 2. Provide sealant or tape between panels and protruding equipment, vents, and accessories.
 - 3. At panel splices, nest panels with minimum 6-inch end lap, sealed with sealant and fastened together by interlocking clamping plates.
- F. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.
 - 1. Install components required for a complete metal panel system including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal wall panel manufacturer; or, if not indicated, provide types recommended by metal panel manufacturer.
- G. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that are permanently watertight.
 - 1. Install exposed flashing and trim that is without buckling and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and achieve waterproof performance.
 - 2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet with no joints allowed within 24 inches of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with mastic sealant (concealed within joints).

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect completed metal wall panel installation, including accessories.
- B. Remove and replace metal wall panels where tests and inspections indicate that they do not comply with specified requirements.
- C. Additional tests and inspections, at Contractor's expense, are performed to determine compliance of replaced or additional work with specified requirements.
- D. Prepare test and inspection reports.

3.5 CLEANING AND PROTECTION

- A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.
- B. After metal panel installation, clear weep holes and drainage channels of obstructions, dirt, and sealant.
- C. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 074213.13

SECTION 074293 - SOFFIT PANELS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:1. Metal soffit panels.
- B. Related Sections:
 1. Section 074213.13 "Formed Metal Wall Panels" for lap-seam metal wall panels.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.
- B. Shop Drawings:
 - 1. Include fabrication and installation layouts of metal panels; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
 - 2. Accessories: Include details of flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches.
- C. Samples for Initial Selection: For each type of metal panel indicated with factory-applied color finishes.
 - 1. Include similar Samples of trim and accessories involving color selection.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Test Reports: For each product, tests performed by a qualified testing agency.
- C. Sample Warranties: For special warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For metal panels to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.
- B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.
- C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.
- D. Retain strippable protective covering on metal panels during installation.

1.8 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to manufacturers' written instructions and warranty requirements.

1.9 COORDINATION

A. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of walls, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including rupturing, cracking, or puncturing.
 - b. Deterioration of metals and other materials beyond normal weathering.
 - 2. Warranty Period: Two years from date of Substantial Completion.
- B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Delta E units when tested according to ASTM D2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E1592:
 - 1. Wind Loads: As indicated on Drawings.
 - 2. Other Design Loads: As indicated on Drawings.
 - 3. Deflection Limits: For wind loads, no greater than 1/180 of the span.
- B. Air Infiltration: Air leakage of not more than 0.06 cfm/sq. ft. when tested according to ASTM E283 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 1.57 lbf/sq. ft..
- C. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E331 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 6.24 lbf/sq. ft..
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

2.2 METAL SOFFIT PANELS

- A. Provide metal soffit panels designed to be installed by lapping and interconnecting side edges of adjacent panels and mechanically attaching through panel to supports using concealed fasteners in side laps. Include accessories required for weathertight installation.
- B. Metal Soffit Panels: Match profile and material of metal wall panels.
 - 1. Finish: Match finish and color of metal wall panels.
 - 2. Sealant: Factory applied within interlocking joint.
- C. Flush-Profile Metal Soffit Panels: Solid panels formed with vertical panel edges and a flat pan between panel edges; with flush joint between panels.
 - 1. Basis of Design Product: Subject to compliance with requirements, provide product by the following or an approved equal:
 - a. MBCI Artisan
 - 2. Material: Same material, finish, and color as metal wall panels.
 - 3. Aluminum Sheet: Coil-coated sheet, ASTM B209, alloy as standard with manufacturer, with temper as required to suit forming operations and structural performance required.
 - a. Thickness: 0.024 inch.
 - b. Surface: Smooth, flat finish.
 - c. Exterior Finish: Two-coat fluoropolymer.
 - d. Color: Match adjacent building.
 - 4. Panel Coverage: 12 inches.

5. Panel Height: 1.0 inch.

2.3 MISCELLANEOUS MATERIALS

- A. Miscellaneous Metal Subframing and Furring: ASTM C645, cold-formed, metallic-coated steel sheet, ASTM A653/A653M, G90 coating designation or ASTM A792/A792M, Class AZ50 aluminum-zinc-alloy coating designation unless otherwise indicated. Provide manufacturer's standard sections as required for support and alignment of metal panel system.
- B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.
 - 1. Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch- thick, flexible closure strips; cut or premolded to match metal panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.
- C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Finish flashing and trim with same finish system as adjacent metal panels.
- D. Panel Fasteners: Self-tapping screws designed to withstand design loads. Provide exposed fasteners with heads matching color of metal panels by means of plastic caps or factory-applied coating. Provide EPDM or PVC sealing washers for exposed fasteners.
- E. Panel Sealants: Provide sealant types recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.
 - 1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch wide and 1/8 inch thick.
 - 2. Joint Sealant: ASTM C920; elastomeric polyurethane or silicone sealant; of type, grade, class, and use classifications required to seal joints in metal panels and remain weathertight; and as recommended in writing by metal panel manufacturer.
 - 3. Butyl-Rubber-Based, Solvent-Release Sealant: ASTM C1311.

2.4 FABRICATION

- A. Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.
- B. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.
- C. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weathertight seal and prevent metal-to-metal contact, and that minimize noise from movements.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- D. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.
 - 1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
 - 2. Seams for Aluminum: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.
 - 3. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flatlock seams. Tin edges to be seamed, form seams, and solder.
 - 4. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.
 - 5. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
 - 6. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.
 - a. Size: As recommended by SMACNA's "Architectural Sheet Metal Manual" or metal soffit panel manufacturer for application but not less than thickness of metal being secured.

2.5 FINISHES

- A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- C. Aluminum Panels and Accessories:
 - 1. Two-Coat Fluoropolymer: AAMA 2605. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.
 - 1. Examine framing to verify that girts, angles, channels, studs, and other structural panel support members and anchorage have been installed within alignment tolerances required by metal panel manufacturer.

- 2. Examine sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal panel manufacturer.
 - a. Verify that air- or water-resistive barriers been installed over sheathing or backing substrate to prevent air infiltration or water penetration.
- B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C754 and metal panel manufacturer's written recommendations.
 - 1. Soffit Framing: Wire tie or clip furring channels to supports, as required to comply with requirements for assemblies indicated.

3.3 INSTALLATION

- A. Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.
 - 1. Shim or otherwise plumb substrates receiving metal panels.
 - 2. Flash and seal metal panels at perimeter of all openings. Fasten with self-tapping screws. Do not begin installation until air- or water-resistive barriers and flashings that will be concealed by metal panels are installed.
 - 3. Install screw fasteners in predrilled holes.
 - 4. Locate and space fastenings in uniform vertical and horizontal alignment.
 - 5. Install flashing and trim as metal panel work proceeds.
 - 6. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
 - 7. Provide weathertight escutcheons for pipe- and conduit-penetrating panels.
- B. Fasteners:
 - 1. Aluminum Panels: Use aluminum or stainless steel fasteners for surfaces exposed to the exterior; use aluminum or galvanized-steel fasteners for surfaces exposed to the interior.
- C. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.
- D. Lap-Seam Metal Panels: Fasten metal panels to supports with fasteners at each lapped joint at location and spacing recommended by manufacturer.
 - 1. Apply panels and associated items true to line for neat and weathertight enclosure.
 - 2. Provide metal-backed washers under heads of exposed fasteners bearing on weather side of metal panels.

- 3. Locate and space exposed fasteners in uniform vertical and horizontal alignment. Use proper tools to obtain controlled uniform compression for positive seal without rupture of washer.
- 4. Install screw fasteners with power tools having controlled torque adjusted to compress washer tightly without damage to washer, screw threads, or panels. Install screws in predrilled holes.
- E. Watertight Installation:
 - 1. Apply a continuous ribbon of sealant or tape to seal lapped joints of metal panels, using sealant or tape as recommend by manufacturer on side laps of nesting-type panels and elsewhere as needed to make panels watertight.
 - 2. Provide sealant or tape between panels and protruding equipment, vents, and accessories.
 - 3. At panel splices, nest panels with minimum 6-inch end lap, sealed with sealant and fastened together by interlocking clamping plates.
- F. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.
 - 1. Install components required for a complete metal panel system including trim, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal panel manufacturer; or, if not indicated, provide types recommended by metal panel manufacturer.
- G. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that are permanently watertight.
 - 1. Install exposed flashing and trim that is without buckling, and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and to achieve waterproof performance.
 - 2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet with no joints allowed within 24 inches of corner or intersection. Where lapped expansion provisions cannot be used or would not be waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with mastic sealant (concealed within joints).

3.4 CLEANING AND PROTECTION

- A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.
- B. After metal panel installation, clear weep holes and drainage channels of obstructions, dirt, and sealant.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

C. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 074293

SECTION 076200 - SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Roof-drainage sheet metal fabrications.
- 2. Steep-slope roof sheet metal fabrications.
- 3. Wall sheet metal fabrications.
- 4. Miscellaneous sheet metal fabrications.

B. Related Requirements:

- 1. Section 061000 "Rough Carpentry" for wood nailers, curbs, and blocking.
- 2. Section 074213.13 "Formed Metal Wall Panels" for sheet metal flashing and trim integral with metal wall panels .
- 3. Section 074113.16 "Standing Seam Metal Roof Panels" for materials and installation of sheet metal flashing and trim integral with roofing.
- 4. Section 079513.13 "Interior Expansion Joint Cover Assemblies" for manufactured expansion-joint cover assemblies for interior floors, walls, and ceilings.
- 5. Section 079513.16 "Exterior Expansion Joint Cover Assemblies" for manufactured expansion-joint cover assemblies for exterior building walls, soffits, and parapets.

1.2 COORDINATION

- A. Coordinate sheet metal flashing and trim layout and seams with sizes and locations of penetrations to be flashed, and joints and seams in adjacent materials.
- B. Coordinate sheet metal flashing and trim installation with adjoining roofing and wall materials, joints, and seams to provide leakproof, secure, and noncorrosive installation.

1.3 ACTION SUBMITTALS

- A. Shop Drawings: For sheet metal flashing and trim.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Detail fabrication and installation layouts, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled Work.
 - 3. Include identification of material, thickness, weight, and finish for each item and location in Project.
 - 4. Include details for forming, including profiles, shapes, seams, and dimensions.
 - 5. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
 - 6. Include details of termination points and assemblies.
 - 7. Include details of expansion joints and expansion-joint covers, including showing direction of expansion and contraction from fixed points.
 - 8. Include details of roof-penetration flashing.

- 9. Include details of edge conditions, including eaves, ridges, valleys, rakes, crickets, flashings, and counterflashings.
- 10. Include details of special conditions.
- 11. Include details of connections to adjoining work.
- 12. Detail formed flashing and trim at scale of not less than 1-1/2 inches per 12 inches.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For fabricator.
- B. Product Certificates: For each type of coping and roof edge flashing that is ANSI/SPRI/FM 4435/ES-1 tested and FM Approvals approved.
- C. Product Test Reports: For each product, for tests performed by a qualified testing agency.
- D. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For sheet metal flashing and trim, and its accessories, to include in maintenance manuals.
- B. Special warranty.

1.6 QUALITY ASSURANCE

- A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.
 - 1. For copings and roof edge flashings that are ANSI/SPRI/FM 4435/ES-1 tested and FM Approvals approved, shop is to be listed as able to fabricate required details as tested and approved.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage.
 - 1. Store sheet metal flashing and trim materials away from uncured concrete and masonry.
 - 2. Protect stored sheet metal flashing and trim from contact with water.
- B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to extent necessary for period of sheet metal flashing and trim installation.

1.8 WARRANTY

- A. Special Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Delta E units when tested in accordance with ASTM D2244.
 - b. Chalking in excess of a No. 8 rating when tested in accordance with ASTM D4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 40 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Sheet metal flashing and trim assemblies, including cleats, anchors, and fasteners, are to withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim are not to rattle, leak, or loosen, and are to remain watertight.
- B. Sheet Metal Standard for Flashing and Trim: Comply with NRCA's "The NRCA Roofing Manual: Architectural Metal Flashing, Condensation and Air Leakage Control, and Reroofing" requirements for dimensions and profiles shown unless more stringent requirements are indicated.
- C. SPRI Wind Design Standard: Manufacture and install copings roof edge flashings tested in accordance with ANSI/SPRI/FM 4435/ES-1 and capable of resisting the following design pressure:
 - 1. Design Pressure: As indicated on Drawings.
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 SHEET METALS

- A. Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.
- B. Metallic-Coated Steel Sheet: Provide zinc-coated (galvanized) steel sheet in accordance with ASTM A653/A653M, G90 coating designation or aluminum-zinc alloy-coated steel sheet in accordance with ASTM A792/A792M, Class AZ50 coating designation, Grade 40; prepainted by coil-coating process to comply with ASTM A755/A755M.
 - 1. Surface: Smooth, flat.

SHEET METAL FLASHING AND TRIM

- 2. Exposed Coil-Coated Finish:
 - a. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent polyvinylidene fluoride (PVDF) resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
- 3. Color: As selected by Architect from manufacturer's full range.
- 4. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with minimum total dry film thickness of 0.5 mil.

2.3 MISCELLANEOUS MATERIALS

- A. Provide materials and types of fasteners, solder, protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal or manufactured item unless otherwise indicated.
- B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal or manufactured item.
 - 1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
 - a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.
 - b. Blind Fasteners: High-strength aluminum or stainless steel rivets suitable for metal being fastened.
 - c. Spikes and Ferrules: Same material as gutter; with spike with ferrule matching internal gutter width.
 - 2. Fasteners for Zinc-Coated (Galvanized) or Aluminum-Zinc Alloy-Coated Steel Sheet: Series 300 stainless steel or hot-dip galvanized steel in accordance with ASTM A153/A153M or ASTM F2329.
- C. Solder:
 - 1. For Zinc-Coated (Galvanized) Steel: ASTM B32, Grade Sn50, 50 percent tin and 50 percent lead or Grade Sn60, 60 percent tin and 40 percent lead.
- D. Sealant Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch wide and 1/8 inch thick.
- E. Elastomeric Sealant: ASTM C920, elastomeric polyurethane polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.
- F. Butyl Sealant: ASTM C1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type expansion joints with limited movement.

- G. Epoxy Seam Sealer: Two-part, noncorrosive, aluminum seam-cementing compound, recommended by aluminum manufacturer for exterior nonmoving joints, including riveted joints.
- H. Bituminous Coating: Cold-applied asphalt emulsion in accordance with ASTM D1187/D1187M.
- I. Reglets: Units of type, material, and profile required, formed to provide secure interlocking of separate reglet and counterflashing pieces, and compatible with flashing indicated with interlocking counterflashing on exterior face, of same metal as reglet.
 - 1. Source Limitations: Obtain reglets from single source from single manufacturer.
 - 2. Material: Galvanized steel, 0.022 inch thick.
 - 3. Surface-Mounted Type: Provide with slotted holes for fastening to substrate, with neoprene or other suitable weatherproofing washers, and with channel for sealant at top edge.
 - 4. Accessories:
 - a. Flexible-Flashing Retainer: Provide resilient plastic or rubber accessory to secure flexible flashing in reglet where clearance does not permit use of standard metal counterflashing or where Drawings show reglet without metal counterflashing.
 - b. Counterflashing Wind-Restraint Clips: Provide clips to be installed before counterflashing to prevent wind uplift of counterflashing's lower edge.
 - 5. Finish: With manufacturer's standard color coating.

2.4 FABRICATION, GENERAL

- A. Custom fabricate sheet metal flashing and trim to comply with details indicated and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required.
 - 1. Fabricate sheet metal flashing and trim in shop to greatest extent possible.
 - 2. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.
 - 3. Verify shapes and dimensions of surfaces to be covered and obtain field measurements for accurate fit before shop fabrication.
 - 4. Form sheet metal flashing and trim to fit substrates without excessive oil-canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.
 - 5. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.
- B. Fabrication Tolerances:
 - 1. Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet on slope and location lines indicated on Drawings and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.
 - 2. Fabricate sheet metal flashing and trim that is capable of installation to tolerances specified.
- C. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim.
 - 1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with butyl sealant concealed within joints.

- 2. Use lapped expansion joints only where indicated on Drawings.
- D. Sealant Joints: Where movable, nonexpansion-type joints are required, form metal in accordance with cited sheet metal standard to provide for proper installation of elastomeric sealant.
- E. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.
- F. Fabricate cleats and attachment devices of sizes as recommended by cited sheet metal standard and by FM Global Property Loss Prevention Data Sheet 1-49 for application, but not less than thickness of metal being secured.
- G. Seams:
 - 1. Fabricate nonmoving seams with flat-lock seams. Tin edges to be seamed, form seams, and solder.
 - 2. Fabricate nonmoving seams with flat-lock seams. Form seams and seal with elastomeric sealant unless otherwise recommended by sealant manufacturer for intended use. Rivet joints where necessary for strength.
- H. Do not use graphite pencils to mark metal surfaces.

2.5 ROOF-DRAINAGE SHEET METAL FABRICATIONS

- A. Hanging Gutters:
 - 1. Fabricate to cross section required, complete with end pieces, outlet tubes, and other accessories as required.
 - 2. Fabricate in minimum 96-inch- long sections.
 - 3. Furnish flat-stock gutter brackets and flat-stock gutter spacers and straps fabricated from same metal as gutters, of size recommended by cited sheet metal standard, but with thickness not less than twice the gutter thickness.
 - 4. Fabricate expansion joints, expansion-joint covers, gutter bead reinforcing bars, and gutter accessories from same metal as gutters.
 - 5. Gutter Profile: Style A in accordance with cited sheet metal standard.
 - 6. Expansion Joints: Lap type.
 - 7. Accessories:.
 - 8. Gutters with Girth up to 15 Inches (380 mm): Fabricate from the following materials:
 - 9. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch thick.
- B. Downspouts: Fabricate rectangular downspouts to dimensions indicated on Drawings, complete with mitered elbows. Furnish with metal hangers from same material as downspouts and anchors.
 - 1. Fabricated Hanger Style: in accordance with SMACNA's "Architectural Sheet Metal Manual."
 - 2. Manufactured Hanger Style: 2-piece hanger with U-shaped bracket connected to wall and separate strap around downspout. Connect with corrosion resistant fasteners in accordance with SMACNA's "Architectural Sheet Metal Manual."
 - 3. Fabricate from the following materials:
 - a. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch thick.

2.6 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

- A. Roof Edge Flashing (Gravel Stop) and Fascia Cap: Fabricate in minimum 96-inch- long, but not exceeding 12-foot- long sections. Furnish with 6-inch- wide, joint cover plates.
 - 1. Joint Style: Butted with expansion space and 6-inch- wide, concealed backup plate.
 - 2. Fabricate from the following materials:
 - a. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch thick.
- B. Expansion-Joint Cover: Shop fabricate interior and exterior corners. Fabricate expansion-joint cover from the following materials:
 - 1. Aluminum-Zinc Alloy-Coated Steel: 0.034 inch thick.
- C. Roof-Penetration Flashing: Fabricate from the following materials:
 1. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch thick.
- D. Roof-Drain Flashing: Fabricate from the following materials:
 1. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch (0.71 mm) thick.

2.7 WALL SHEET METAL FABRICATIONS

- A. Through-Wall Flashing: Fabricate continuous flashings in minimum 96-inch- long, but not exceeding 12-foot- long, sections, under copings, and at shelf angles. Fabricate discontinuous lintel, sill, and similar flashings to extend 6 inches beyond each side of wall openings; and form with 2-inch- high, end dams. Fabricate from the following materials:

 Zinc: 0.032 inch thick.
- B. Opening Flashings in Frame Construction: Fabricate head, sill, jamb, and similar flashings to extend 4 inches beyond wall openings. Form head and sill flashing with 2-inch- high, end dams. Fabricate from the following materials:
 - 1. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch thick.
- C. Wall Expansion-Joint Cover: Fabricate from the following materials:1. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch thick.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with installer present, for compliance with requirements for installation tolerances, substrate, and other conditions affecting performance of the Work.
 - 1. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Install sheet metal flashing and trim to comply with details indicated and recommendations of cited sheet metal standard that apply to installation characteristics required unless otherwise indicated on Drawings.
 - 1. Install fasteners, solder, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
 - 2. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of solder.
 - 3. Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement.
 - 4. Install sheet metal flashing and trim to fit substrates and to result in watertight performance.
 - 5. Space individual cleats not more than 12 inches apart. Attach each cleat with at least two fasteners. Bend tabs over fasteners.
 - 6. Install exposed sheet metal flashing and trim with limited oil-canning, and free of buckling and tool marks.
 - 7. Do not field cut sheet metal flashing and trim by torch.
 - 8. Do not use graphite pencils to mark metal surfaces.
- B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressuretreated wood or other corrosive substrates, protect against galvanic action or corrosion by painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.
 - 1. Coat concealed side of sheet metal flashing and trim with bituminous coating where flashing and trim contact wood, ferrous metal, or cementitious construction.
 - 2. Underlayment: Where installing sheet metal flashing and trim directly on cementitious or wood substrates, install underlayment and cover with slip sheet.
- C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim.
 - 1. Space movement joints at maximum of 10 feet with no joints within 24 inches of corner or intersection.
 - 2. Form expansion joints of intermeshing hooked flanges, not less than 1 inch deep, filled with sealant concealed within joints.
 - 3. Use lapped expansion joints only where indicated on Drawings.
- D. Fasteners: Use fastener sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.
- E. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.
- F. Seal joints as required for watertight construction.
 - Use sealant-filled joints unless otherwise indicated.
 - a. Embed hooked flanges of joint members not less than 1 inch into sealant.
 - b. Form joints to completely conceal sealant.
 - c. When ambient temperature at time of installation is between 40 and 70 deg F, set joint members for 50 percent movement each way.
 - d. Adjust setting proportionately for installation at higher ambient temperatures.

1.

- 1) Do not install sealant-type joints at temperatures below 40 deg F.
- 2. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."
- G. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter.
 - 1. Pretin edges of sheets with solder to width of 1-1/2 inches; however, reduce pretinning where pretinned surface would show in completed Work.
 - 2. Do not solder metallic-coated steel sheet.
 - 3. Do not pretin zinc-tin alloy-coated copper.
 - 4. Do not use torches for soldering.
 - 5. Heat surfaces to receive solder, and flow solder into joint.
 - a. Fill joint completely.
 - b. Completely remove flux and spatter from exposed surfaces.

3.3 INSTALLATION OF ROOF-DRAINAGE SYSTEM

- A. Install sheet metal roof-drainage items to produce complete roof-drainage system in accordance with cited sheet metal standard unless otherwise indicated. Coordinate installation of roof perimeter flashing with installation of roof-drainage system.
- B. Hanging Gutters:
 - 1. Join sections with riveted and soldered joints or joints sealed with sealant.
 - 2. Provide for thermal expansion.
 - 3. Attach gutters at eave or fascia to firmly anchor them in position.
 - 4. Provide end closures and seal watertight with sealant.
 - 5. Slope to downspouts.
 - 6. Fasten gutter spacers to front and back of gutter.
 - 7. Anchor and loosely lock back edge of gutter to continuous cleat.
 - 8. Anchor back of gutter that extends onto roof deck with cleats spaced not more than 24 inches apart.
 - 9. Anchor gutter with straps spaced not more than 36 inches apart to roof deck unless otherwise indicated, and loosely lock to front gutter bead.
 - 10. Install gutter with expansion joints at locations indicated on Drawings, but not exceeding, 50 feet apart. Install expansion-joint caps.
- C. Downspouts:
 - 1. Join sections with 1-1/2-inch telescoping joints.
 - 2. Provide hangers with fasteners designed to hold downspouts securely to walls.
 - 3. Locate hangers at top and bottom and at approximately 60 inches o.c.
 - 4. Provide elbows at base of downspout to direct water away from building.
 - 5. Connect downspouts to underground drainage system.
- D. Splash Pans:
 - 1. Install where downspouts discharge on low-slope roofs.
 - 2. Set in elastomeric sealant compatible with the substrate.
- E. Expansion-Joint Covers: Install expansion-joint covers at locations and of configuration indicated on Drawings. Lap joints minimum of 4 inches in direction of water flow.

3.4 INSTALLATION OF ROOF FLASHINGS

- A. Install sheet metal flashing and trim to comply with performance requirements, sheet metal manufacturer's written installation instructions, and cited sheet metal standard.
 - 1. Provide concealed fasteners where possible, and set units true to line, levels, and slopes.
 - 2. Install work with laps, joints, and seams that are permanently watertight and weather resistant.
- B. Roof Edge Flashing:
 - 1. Install roof edge flashings in accordance with ANSI/SPRI/FM 4435/ES-1.
 - 2. Anchor to resist uplift and outward forces in accordance with recommendations in cited sheet metal standard unless otherwise indicated. Interlock bottom edge of roof edge flashing with continuous cleat anchored to substrate at staggered 3-inch centers.
 - 3. Anchor to resist uplift and outward forces in accordance with recommendations in FM Global Property Loss Prevention Data Sheet 1-49 for FM Approvals' listing for required windstorm classification.
- C. Pipe or Post Counterflashing: Install counterflashing umbrella with close-fitting collar with top edge flared for elastomeric sealant, extending minimum of 4 inches over base flashing. Install stainless steel draw band and tighten.
- D. Counterflashing: Coordinate installation of counterflashing with installation of base flashing.
 - 1. Insert counterflashing in reglets or receivers and fit tightly to base flashing.
 - 2. Extend counterflashing 4 inches over base flashing.
 - 3. Lap counterflashing joints minimum of 4 inches.
 - 4. Secure in waterproof manner by means of anchor and washer spaced at 12 inches o.c. along perimeter and 6 inches o.c. at corners areas unless otherwise indicated.
- E. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation of roofing and other items penetrating roof. Seal with elastomeric sealant and clamp flashing to pipes that penetrate roof.

3.5 INSTALLATION OF WALL FLASHINGS

- A. Install sheet metal wall flashing to intercept and exclude penetrating moisture in accordance with cited sheet metal standard unless otherwise indicated. Coordinate installation of wall flashing with installation of wall-opening components such as windows, doors, and louvers.
- B. Opening Flashings in Frame Construction: Install continuous head, sill, and similar flashings to extend 4 inches beyond wall openings.

3.6 INSTALLATION TOLERANCES

A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch in 20 feet on slope and location lines indicated on Drawings and within 1/8-inch offset of adjoining faces and of alignment of matching profiles.

3.7 CLEANING

- A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.
- B. Clean and neutralize flux materials. Clean off excess solder.
- C. Clean off excess sealants.

3.8 **PROTECTION**

- A. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions.
- B. On completion of sheet metal flashing and trim installation, remove unused materials and clean finished surfaces as recommended in writing by sheet metal flashing and trim manufacturer.
- C. Maintain sheet metal flashing and trim in clean condition during construction.
- D. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures, as determined by Architect.

END OF SECTION 076200

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 077129 - MANUFACTURED ROOF EXPANSION JOINTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:1. Aluminum roof expansion joints.
- B. Related Requirements:
 - 1. Section 061000 "Rough Carpentry" for wooden curbs or cants for mounting roof expansion joints.
 - 2. Section 076200 "Sheet Metal Flashing and Trim" for shop- and field-fabricated sheet metal expansion-joint systems, flashing, and other sheet metal items.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Sustainable Design Submittals:
- C. Shop Drawings: For roof expansion joints.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of splices, intersections, transitions, fittings, method of field assembly, and location and size of each field splice.
 - 3. Provide isometric drawings of intersections, terminations, changes in joint direction or planes, and transition to other expansion joint systems depicting how components interconnect with each other and adjacent construction to allow movement and achieve waterproof continuity.
- D. Samples: For each exposed product and for each color specified, 6 inches in size.

1.4 INFORMATIONAL SUBMITTALS

A. Sample Warranties: For special warranties.

1.5 WARRANTY

- A. Special Warranty: Manufacturer and Installer agree to repair or replace roof expansion joints and components that leak, deteriorate beyond normal weathering, or otherwise fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.

MANUFACTURED ROOF EXPANSION JOINTS

2. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, hole elongation, overstressing of components, failure of joint seals, failure of connections, and other detrimental effects.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 ALUMINUM ROOF EXPANSION JOINTS

- A. Aluminum Roof Expansion Joint: Factory-fabricated, continuous, waterproof, joint cover; consisting of a formed or extruded metal cover secured to extruded aluminum frames, with water-resistant gasketing between cover and frames, and with provision for securing assembly to substrate and sealing assembly to roofing membrane or flashing.
 - 1. Joint Movement Capability: Plus and minus 25 percent of joint size.
 - 2. Cover: Formed or extruded aluminum; thickness as recommended by manufacturer.
 - 3. Centering Devices: Snap-on spring clips attached to the cover.
 - 4. Corner, Intersection, and Transition Units: Provide factory-fabricated units for corner and joint intersections and horizontal and vertical transitions including those to other building expansion joints.
 - 5. Accessories: Provide splicing units, adhesives, and other components as recommended by roof-expansion-joint manufacturer for complete installation.
 - 6. Secondary Seal: Continuous, waterproof membrane within joint and attached to substrate on sides of joint below the cover.
 - a. Drain-Tube Assemblies: Equip secondary seal with drain tubes and seals to direct collected moisture to exterior-wall expansion joint cover.

B. Materials:

- 1. Aluminum: ASTM B209 for sheet and plate, ASTM B221 for extrusions; alloy as standard with manufacturer for finish required, with temper to suit forming operations and performance required.
 - a. Apply manufacturer's standard protective coating on aluminum surfaces to be placed in contact with cementitious or preservative-treated wood materials.

2.3 MISCELLANEOUS MATERIALS

- A. Adhesives: As recommended by roof-expansion-joint manufacturer.
- B. Fasteners: Manufacturer's recommended fasteners, suitable for application and designed to withstand design loads.
- C. Bituminous Coating: Cold-applied asphalt emulsion complying with ASTM D1187.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joint openings, substrates, and expansion-control joint systems that interface with roof expansion joints, for suitable conditions where roof expansion joints will be installed.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Comply with manufacturer's written instructions for handling and installing roof expansion joints.
 - 1. Anchor roof expansion joints securely in place, with provisions for required movement. Use fasteners, protective coatings, sealants, and miscellaneous items as required to complete roof expansion joints.
 - 2. Install roof expansion joints true to line and elevation; and without warping, jogs in alignment, buckling, or tool marks.
 - 3. Provide for linear thermal expansion of roof-expansion-joint materials.
 - 4. Provide uniform profile of roof expansion joint throughout its length; do not stretch or squeeze membranes.
 - 5. Provide uniform, neat seams.
 - 6. Install roof expansion joints to fit substrates and to result in watertight performance.
- B. Directional Changes: Install factory-fabricated units at directional changes to provide continuous, uninterrupted, and watertight joints.
- C. Transitions to Other Expansion-Control Joint Assemblies: Coordinate installation of roof expansion joints with other exterior expansion-control joint assemblies specified in Section 079513.16 "Exterior Expansion Joint Cover Assemblies" to result in watertight performance. Install factory-fabricated units at transitions between roof expansion joints and exterior expansion-control joint systems.
- D. Splices: Splice roof expansion joints to provide continuous, uninterrupted, and waterproof joints.
 - 1. Install waterproof splices and prefabricated end dams to prevent leakage of secondaryseal membrane.
- E. Metal Protection: Protect metals against galvanic action by separating dissimilar metals from contact with each other or with corrosive substrates by painting contact surfaces with bituminous coating or by other permanent separation as recommended by manufacturer.

END OF SECTION 077129

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Silicone joint sealants.
- 2. Nonstaining silicone joint sealants.
- 3. Urethane joint sealants.
- 4. Butyl joint sealants.
- 5. Latex joint sealants.

B. Related Requirements:

- 1. Section 079219 "Acoustical Joint Sealants" for sealing joints in sound-rated construction.
- 2. Section 321373 "Concrete Paving Joint Sealants" for sealing joints in paved roads, parking lots, walkways, and curbing.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. Joint sealants.
- B. Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.
 - 2. Joint-sealant manufacturer and product name.
 - 3. Joint-sealant formulation.
 - 4. Joint-sealant color.

1.3 INFORMATIONAL SUBMITTALS

- A. Preconstruction Laboratory Test Reports: For each joint sealant and substrate material to be tested from sealant manufacturer, indicating the following:
 - 1. Materials forming joint substrates and joint-sealant backings have been tested for compatibility and adhesion with joint sealants.
 - 2. Interpretation of test results and written recommendations for primers and substrate preparation are needed for adhesion.
- B. Sample warranties.

1.4 CLOSEOUT SUBMITTALS

- A. Manufacturers' special warranties.
- B. Installer's special warranties.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Authorized representative who is trained and approved by manufacturer.
- B. Testing Agency Qualifications: Qualified in accordance with ASTM C1021 to conduct the testing indicated.

1.6 PRECONSTRUCTION TESTING

- A. Preconstruction Laboratory Testing: Submit to joint-sealant manufacturers, for testing indicated below, samples of materials that will contact or affect joint sealants.
 - 1. Adhesion Testing: Use ASTM C794 to determine whether priming and other specific joint preparation techniques are required to obtain rapid, optimum adhesion of joint sealants to joint substrates.
 - 2. Compatibility Testing: Use ASTM C1087 to determine sealant compatibility when in contact with glazing and gasket materials.
 - 3. Submit manufacturer's recommended number of pieces of each type of material, including joint substrates, joint-sealant backings, and miscellaneous materials.
 - 4. Schedule sufficient time for testing and analyzing results to prevent delaying the Work.
 - 5. For materials failing tests, obtain joint-sealant manufacturer's written instructions for corrective measures, including use of specially formulated primers.
 - 6. Testing will not be required if joint-sealant manufacturers submit data that are based on previous testing, not older than 24 months, of sealant products for adhesion to, staining of, and compatibility with joint substrates and other materials matching those submitted.

1.7 FIELD CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside limits permitted by jointsealant manufacturer or are below 40 deg F.
 - 2. When joint substrates are wet.
 - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 - 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.8 WARRANTY

- A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:
 - 1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
 - 2. Disintegration of joint substrates from causes exceeding design specifications.
 - 3. Mechanical damage caused by individuals, tools, or other outside agents.
 - 4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

- A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.
- B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 SILICONE JOINT SEALANTS

A. Silicone, S, NS, 50, NT: Single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 50, Use NT.

2.3 NONSTAINING SILICONE JOINT SEALANTS

- A. Nonstaining Joint Sealants: No staining of substrates when tested in accordance with ASTM C1248.
 1
- B. Silicone, Nonstaining, S, NS, 50, NT: Nonstaining, single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 50, Use NT.

2.4 URETHANE JOINT SEALANTS

- A. Urethane, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, urethane joint sealant; ASTM C920, Type S, Grade NS, Class 25, Use NT.
- B. Urethane, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT.
- C. Urethane, M, P, 50, T, NT: Multicomponent, pourable, plus 50 percent and minus 50 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C920, Type M, Grade P, Class 50, Uses T and NT.

2.5 BUTYL JOINT SEALANTS

- A. Butyl-Rubber-Based Joint Sealants: ASTM C1311.
- 2.6 LATEX JOINT SEALANTS
 - A. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C834, Type OP, Grade NF.

2.7 JOINT-SEALANT BACKING

- A. Sealant Backing Material, General: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, Type C (closed-cell material with a surface skin) Type O (open-cell material) Type B (bicellular material with a surface skin) or any of the preceding types, as approved in writing by joint-sealant manufacturer for joint application indicated, and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.
- C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.8 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
 - 2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - d. Exterior insulation and finish systems.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
- C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Sealant Installation Standard: Comply with recommendations in ASTM C1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
- C. Install sealant backings of type indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.

- 3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials.
- D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.
- E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 - 1. Remove excess sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 - 3. Provide concave joint profile in accordance with Figure 8A in ASTM C1193 unless otherwise indicated.
 - 4. Provide flush joint profile in accordance with Figure 8B in ASTM C1193.
 - 5. Provide recessed joint configuration of recess depth and in accordance with Figure 8C in ASTM C1193.
 - a. Use masking tape to protect surfaces adjacent to recessed tooled joints.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 **PROTECTION**

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION 079200

SECTION 079219 - ACOUSTICAL JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:1. Acoustical joint sealants.
- B. Related Requirements:
 - 1. Section 079200 "Joint Sealants" for elastomeric, latex, and butyl-rubber-based joint sealants for nonacoustical applications.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. Acoustical joint sealants.
- B. Acoustical Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.
 - 2. Joint-sealant manufacturer and product name.
 - 3. Joint-sealant formulation.
 - 4. Joint-sealant color.

1.3 INFORMATIONAL SUBMITTALS

A. Sample warranties.

1.4 CLOSEOUT SUBMITTALS

- A. Warranty Documentation:
 - 1. Manufacturers' special warranties.
 - 2. Installer's special warranties.

1.5 WARRANTY

- A. Installer's Special Warranty: Installer agrees to repair or replace acoustical joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 ACOUSTICAL JOINT SEALANTS

- A. Acoustical joint-sealant products that effectively reduce airborne sound transmission through perimeter joints and openings in building construction, as demonstrated by testing representative assemblies in accordance with ASTM E90.
- B. Acoustical Sealant for Exposed and Concealed Joints: Manufacturer's standard nonsag, paintable, nonstaining latex acoustical sealant complying with ASTM C834.
 - 1. Colors of Exposed Acoustical Joint Sealants: As selected by Architect from manufacturer's full range of colors.

2.2 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by acoustical joint-sealant manufacturer where required for adhesion of sealant to joint substrates.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive acoustical joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing acoustical joint sealants to comply with joint-sealant manufacturer's written instructions.
- B. Joint Priming: Prime joint substrates where recommended by acoustical joint-sealant manufacturer. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
- C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or

by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF ACOUSTICAL JOINT SEALANTS

- A. Comply with acoustical joint-sealant manufacturer's written installation instructions unless more stringent requirements apply.
- B. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical joint sealant. Install acoustical joint sealants at both faces of partitions, at perimeters, and through penetrations. Comply with ASTM C919, ASTM C1193, and manufacturer's written instructions for closing off soundflanking paths around or through assemblies, including sealing partitions to underside of floor slabs above acoustical ceilings.
- C. Acoustical Ceiling Areas: Apply acoustical joint sealant at perimeter edge moldings of acoustical ceiling areas in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of acoustical joint sealants and of products in which joints occur.

3.5 **PROTECTION**

A. Protect acoustical joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated acoustical joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION 079219

THIS PAGE LEFT INTENTIONALLY BLANK
SECTION 079513.13 - INTERIOR EXPANSION JOINT COVER ASSEMBLIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes interior expansion joint cover assemblies.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for expansion joint cover assemblies.
- B. Shop Drawings: For each expansion joint cover assembly.
 - 1. Include plans, elevations, sections, details, splices, block-out requirement, attachments to other work, and line diagrams showing entire route of each expansion joint.
 - 2. Where expansion joint cover assemblies change planes, provide isometric or clearly detailed drawing depicting how components interconnect.
- C. Samples: For each expansion joint cover assembly and for each color and texture specified, full width by 6 inches long in size.

PART 2 - PRODUCTS

1.

2.1 ASSEMBLY DESCRIPTION

- A. Furnish units in longest practicable lengths to minimize field splicing.
- B. Include factory-fabricated closure materials and transition pieces, T-joints, corners, curbs, crossconnections, and other accessories as required to provide continuous expansion joint cover assemblies.

2.2 PERFORMANCE REQUIREMENTS

- A. Expansion Joint Design Criteria:
 - Type of Movement: Thermal and Wind sway.
 - a. Nominal Joint Width: As indicated on Drawings.
 - b. Minimum Joint Width: As indicated on Drawings.
 - c. Maximum Joint Width: As indicated on Drawings.

2.3 FLOOR EXPANSION JOINT COVERS

A. Metal-Plate Floor Joint Cover: Metal cover plate fixed on one side of joint gap and free to slide on other.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Balco; a CSW Industrials Company.
 - b. Construction Specialties, Inc.
 - c. MM Systems Corporation.
 - d. Nystrom, Inc.
- 2. Application: Floor to floor Floor to wall.
- 3. Installation: Surface mounted.
- 4. Load Capacity:
 - a. Uniform Load: 50 lb/sq. ft..
 - b. Concentrated Load: 300 lb.
 - c. Maximum Deflection: 0.0625 inch.
- 5. Cover-Plate Design: Plain.
- 6. Exposed Metal:
 - a. Aluminum: Manufacturer's standard.

2.4 WALL EXPANSION JOINT COVERS

- A. Metal-Plate Wall Joint Cover: Metal cover plate fixed on one side of joint gap and free to slide on other.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Balco; a CSW Industrials Company.
 - b. Construction Specialties, Inc.
 - c. MM Systems Corporation.
 - d. Nystrom, Inc.
 - 2. Application: Wall to wall Wall to corner.
 - 3. Exposed Metal:
 - a. Aluminum: Manufacturer's standard.

2.5 MATERIALS

- A. Aluminum: ASTM B221, Alloy 6063-T5 for extrusions; ASTM B209, Alloy 6061-T6 for sheet and plate.
 - 1. Apply manufacturer's standard protective coating on aluminum surfaces to be placed in contact with cementitious materials.

2.6 ALUMINUM FINISHES

- A. Mill finish.
- B. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.
- C. Color Anodic Finish: AAMA 611, AA-M12C22A42/A44, Class I, 0.018 mm or thicker.

2.7 ACCESSORIES

A. Manufacturer's standard attachment devices. Include anchors, clips, fasteners, set screws, spacers, and other accessories compatible with material in contact, as indicated or required for complete installations.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine surfaces where expansion joint cover assemblies will be installed for installation tolerances and other conditions affecting performance of the Work.
- B. Notify Architect where discrepancies occur that will affect proper expansion joint cover assembly installation and performance.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Prepare substrates according to expansion joint cover assembly manufacturer's written instructions.
- B. Coordinate and furnish anchorages, setting drawings, and instructions for installing expansion joint cover assemblies. Provide fasteners of metal, type, and size to suit type of construction indicated and to provide for secure attachment of expansion joint cover assemblies.

3.3 INSTALLATION

- A. Comply with manufacturer's written instructions for storing, handling, and installing expansion joint cover assemblies and materials unless more stringent requirements are indicated.
- B. Metal Frames: Perform cutting, drilling, and fitting required to install expansion joint cover assemblies.
 - 1. Repair or grout block out as required for continuous frame support using nonmetallic, shrinkage-resistant grout.
 - 2. Install frames in continuous contact with adjacent surfaces.
 - a. Shimming is not permitted.
 - 3. Install in true alignment and proper relationship to joints and adjoining finished surfaces measured from established lines and levels.
 - 4. Adjust for differences between actual structural gap and nominal design gap due to ambient temperature at time of installation.
 - 5. Cut and fit ends to accommodate thermal expansion and contraction of metal without buckling of frames.
 - 6. Locate anchors at interval recommended by manufacturer, but not less than 3 inches from each end and not more than 24 inches o.c.

- C. Install with hairline mitered corners where expansion joint cover assemblies change direction or abut other materials.
- D. Terminate exposed ends of expansion joint cover assemblies with field- or factory-fabricated termination devices.

3.4 **PROTECTION**

- A. Do not remove protective covering until finish work in adjacent areas is complete. When protective covering is removed, clean exposed metal surfaces to comply with manufacturer's written instructions.
- B. Protect the installation from damage by work of other Sections. Where necessary due to heavy construction traffic, remove and properly store cover plates or seals and install temporary protection over expansion joint cover assemblies. Reinstall cover plates or seals prior to Substantial Completion.

END OF SECTION 079513.13

SECTION 079513.16 - EXTERIOR EXPANSION JOINT COVER ASSEMBLIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Exterior expansion joint covers.
- B. Related Requirements:
 - 1. Section 077129 "Manufactured Roof Expansion Joints" for factory-fabricated roof expansion joint cover assemblies.
 - 2. Section 079100 "Preformed Joint Seals" for preformed foam and extruded-silicone joint seals.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for expansion joint cover assemblies.
- B. Shop Drawings: For each expansion joint cover assembly.
 - 1. Include plans, elevations, sections, details, splices, block-out requirement, attachments to other work, and line diagrams showing entire route of each expansion joint.
 - 2. Where expansion joint cover assemblies change planes, provide isometric or clearly detailed drawing depicting how components interconnect.
- C. Samples: For each exposed expansion joint cover assembly and for each color and texture specified, full width by 6 inches long in size.

PART 2 - PRODUCTS

1

2.1 ASSEMBLY DESCRIPTION

- A. Furnish units in longest practicable lengths to minimize field splicing.
- B. Include factory-fabricated closure materials and transition pieces, T-joints, corners, curbs, crossconnections, and other accessories as required to provide continuous expansion joint cover assemblies.

2.2 PERFORMANCE REQUIREMENTS

- A. Expansion Joint Design Criteria:
 - Type of Movement: Thermal and Wind sway.
 - a. Nominal Joint Width: As indicated on Drawings.
 - b. Minimum Joint Width: As indicated on Drawings.

c. Maximum Joint Width: As indicated on Drawings.

2.3 EXTERIOR EXPANSION JOINT COVERS

- A. Exterior Metal-Plate Joint Cover: Assembly consisting of sliding metal cover plate in continuous contact with gaskets mounted on metal frames fixed to sides of joint gap.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Balco; a CSW Industrials Company.
 - b. Construction Specialties, Inc.
 - c. MM Systems Corporation.
 - d. Nystrom, Inc.
 - 2. Application: Wall to wall.
 - 3. Installation: Surface mounted.
 - 4. Exposed Metal:
 - a. Aluminum: Manufacturer's standard.
 - 1) Color: Match metal wall panel system.

2.4 MATERIALS

- A. Aluminum: ASTM B221, Alloy 6063-T5 for extrusions; ASTM B209, Alloy 6061-T6 for sheet and plate.
 - 1. Apply manufacturer's standard protective coating on aluminum surfaces to be placed in contact with cementitious materials.
- B. Moisture Barrier: Manufacturer's standard, flexible elastomeric material.
- 2.5 ALUMINUM FINISHES
 - A. Mill finish.

2.6 ACCESSORIES

- A. Moisture Barriers: Manufacturer's standard continuous, waterproof membrane within joint and attached to substrate on sides of joint.
 - 1. Provide where indicated on Drawings.
- B. Manufacturer's standard attachment devices. Include anchors, clips, fasteners, set screws, spacers, and other accessories compatible with material in contact, as indicated or required for complete installations.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine surfaces where expansion joint cover assemblies will be installed for installation tolerances and other conditions affecting performance of the Work.
- B. Notify Architect where discrepancies occur that will affect proper expansion joint cover assembly installation and performance.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Prepare substrates according to expansion joint cover assembly manufacturer's written instructions.
- B. Coordinate and furnish anchorages, setting drawings, and instructions for installing expansion joint cover assemblies. Provide fasteners of metal, type, and size to suit type of construction indicated and to provide for secure attachment of expansion joint cover assemblies.

3.3 INSTALLATION

- A. Comply with manufacturer's written instructions for storing, handling, and installing expansion joint cover assemblies and materials unless more stringent requirements are indicated.
- B. Metal Frames: Perform cutting, drilling, and fitting required to install expansion joint cover assemblies.
 - 1. Install in true alignment and proper relationship to joints and adjoining finished surfaces measured from established lines and levels.
 - 2. Adjust for differences between actual structural gap and nominal design gap due to ambient temperature at time of installation.
 - 3. Cut and fit ends to accommodate thermal expansion and contraction of metal without buckling of frames.
 - 4. Install frames in continuous contact with adjacent surfaces.
 - a. Shimming is not permitted.
 - 5. Locate anchors at interval recommended by manufacturer, but not less than 3 inches from each end and not more than 24 inches o.c.
- C. Elastomeric Seals: Install elastomeric seals and membranes in frames to comply with manufacturer's written instructions. Install with minimum number of end joints.
 - 1. Provide in continuous lengths for straight sections.
 - 2. Seal transitions. Vulcanize or heat-weld field-spliced joints as recommended by manufacturer.
 - 3. Mechanically lock seals into frames or adhere to frames with adhesive or pressuresensitive tape as recommended by manufacturer.

3.4 CONNECTIONS

A. Transition to Roof Expansion Joint Covers: Coordinate installation of exterior wall and soffit expansion joint covers with roof expansion joint covers specified in Section 077129 "Manufactured Roof Expansion Joints."

3.5 **PROTECTION**

- A. Do not remove protective covering until finish work in adjacent areas is complete. When protective covering is removed, clean exposed metal surfaces to comply with manufacturer's written instructions.
- B. Protect the installation from damage by work of other Sections.

END OF SECTION 079513.16

SECTION 081113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior standard steel doors and frames.
 - 2. Exterior standard steel doors and frames.
- B. Related Requirements:
 - 1. Section 087100 "Door Hardware" for door hardware for hollow-metal doors.

1.2 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings in accordance with NAAMM-HMMA 803 or ANSI/SDI A250.8.

1.3 COORDINATION

- A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.
- B. Coordinate requirements for installation of door hardware, electrified door hardware, and access control and security systems.

1.4 ACTION SUBMITTALS

- A. Product Data:
 - 1. Interior standard steel doors and frames.
 - 2. Exterior standard steel doors and frames.
- B. Product Data Submittals: For each product.
 - 1. Include construction details, material descriptions, core descriptions.
- C. Shop Drawings: Include the following:
 - 1. Elevations of each door type.
 - 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 - 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 - 4. Locations of reinforcement and preparations for hardware.
 - 5. Details of each different wall opening condition.
 - 6. Details of anchorages, joints, field splices, and connections.
 - 7. Details of accessories.
 - 8. Details of moldings, removable stops, and glazing.

D. Product Schedule: For hollow-metal doors and frames, prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final door hardware schedule.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver hollow-metal doors and frames palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 - 1. Provide additional protection to prevent damage to factory-finished units.
- B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.
- C. Store hollow-metal doors and frames vertically under cover at Project site with head up. Place on minimum 4-inch- high wood blocking. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 HOLLOW METAL DOORS AND FRAMES

2.2 PERFORMANCE REQUIREMENTS

A. Thermally Rated Door Assemblies: Provide door assemblies with U-factor of not more than 0.61 deg Btu/F x h x sq. ft when tested in accordance with ASTM C1363 or ASTM E1423.

2.3 INTERIOR STANDARD STEEL DOORS AND FRAMES

- A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
- B. Heavy-Duty Doors and Frames: ANSI/SDI A250.8, Level 2; ANSI/SDI A250.4, Level B..
 - 1. Doors:
 - a. Type: As indicated in the Door and Frame Schedule on Drawings.
 - b. Thickness: 1-3/4 inches.
 - c. Face: Metallic-coated steel sheet, minimum thickness of 0.042 inch.
 - d. Edge Construction: Model 1, Full Flush.
 - e. Edge Bevel: Provide manufacturer's standard beveled or square edges.
 - f. Core: Manufacturer's standard.
 - 2. Frames:
 - a. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch.
 - b. Construction: Knocked down.
 - 3. Exposed Finish: Prime.

2.4 EXTERIOR STANDARD STEEL DOORS AND FRAMES

- A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
- B. Heavy-Duty Doors and Frames: ANSI/SDI A250.8, Level 2; ANSI/SDI A250.4, Level B..
 1. Doors:
 - a. Type: As indicated in the Door and Frame Schedule on Drawings.
 - b. Thickness: 1-3/4 inches.
 - c. Face: Metallic-coated steel sheet, minimum thickness of 0.042 inch, with minimum A40 coating.
 - d. Edge Construction: Model 1, Full Flush.
 - e. Edge Bevel: Provide manufacturer's standard beveled or square edges.
 - f. Top Edge Closures: Close top edges of doors with flush closures of same material as face sheets. Seal joints against water penetration.
 - g. Bottom Edges: Close bottom edges of doors where required for attachment of weather stripping with end closures or channels of same material as face sheets. Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape.
 - h. Core: Manufacturer's standard.
 - 2. Frames:
 - a. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch, with minimum A40 coating.
 - b. Construction: Knocked down.
 - 3. Exposed Finish: Prime.

2.5 BORROWED LITES

- A. Fabricate of metallic-coated steel sheet, minimum thickness of 0.042 inch.
- B. Construction: Knocked down.
- C. Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as metal as frames.
- D. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.

2.6 HOLLOW-METAL PANELS

A. Provide hollow-metal panels of same materials, construction, and finish as adjacent door assemblies.

2.7 FRAME ANCHORS

A. Jamb Anchors:

HOLLOW METAL DOORS AND FRAMES

- 1. Type: Anchors of minimum size and type required by applicable door and frame standard, and suitable for performance level indicated.
- 2. Quantity: Minimum of three anchors per jamb, with one additional anchor for frames with no floor anchor. Provide one additional anchor for each 24 inches of frame height above 7 feet.
- 3. Postinstalled Expansion Anchor: Minimum 3/8-inch- diameter bolts with expansion shields or inserts, with manufacturer's standard pipe spacer.
- B. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor.
- C. Material: ASTM A879/A879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
 - 1. For anchors built into exterior walls, steel sheet complying with ASTM A1008/A1008M or ASTM A1011/A1011M; hot-dip galvanized in accordance with ASTM A153/A153M, Class B.

2.8 MATERIALS

- A. Cold-Rolled Steel Sheet: ASTM A1008/A1008M, Commercial Steel (CS), Type B; suitable for exposed applications.
- B. Hot-Rolled Steel Sheet: ASTM A1011/A1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
- C. Metallic-Coated Steel Sheet: ASTM A653/A653M, Commercial Steel (CS), Type B.
- D. Inserts, Bolts, and Fasteners: Hot-dip galvanized in accordance with ASTM A153/A153M.
- E. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.
- F. Mineral-Fiber Insulation: ASTM C665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively; passing ASTM E136 for combustion characteristics.
- G. Glazing: Comply with requirements in Section 088000 "Glazing."

2.9 FABRICATION

- A. Hollow-Metal Frames: Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as frames.
 - 1. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 - 2. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 - a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.

- B. Hardware Preparation: Factory prepare hollow-metal doors and frames to receive templated mortised hardware, and electrical wiring; include cutouts, reinforcement, mortising, drilling, and tapping in accordance with ANSI/SDI A250.6, the Door Hardware Schedule on Drawings, and templates.
 - 1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
 - 2. Comply with BHMA A156.115 for preparing hollow-metal doors and frames for hardware.
- C. Glazed Lites: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with mitered hairline joints.
 - 1. Provide stops and moldings flush with face of door, and with beveled stops unless otherwise indicated.
 - 2. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames. Provide loose stops and moldings on inside of hollow-metal doors and frames.
 - 3. Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.
 - 4. Provide stops for installation with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.

2.10 STEEL FINISHES

- A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.
 - 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with ANSI/SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

PART 3 - EXECUTION

3.1 PREPARATION

A. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.2 INSTALLATION

- A. Install hollow-metal doors and frames plumb, rigid, properly aligned, and securely fastened in place. Comply with approved Shop Drawings and with manufacturer's written instructions.
- B. Hollow-Metal Frames: Comply with ANSI/SDI A250.11.
 - 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces without damage to completed Work.
 - a. Where frames are fabricated in sections, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. Touch-up finishes.
 - b. Install frames with removable stops located on secure side of opening.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 2. Floor Anchors: Secure with postinstalled expansion anchors.
 - a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.
- 3. Solidly pack mineral-fiber insulation inside frames.
- 4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout or mortar.
- 5. In-Place Concrete or Masonry Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.
- 6. Installation Tolerances: Adjust hollow-metal frames to the following tolerances:
 - a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 - c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 - d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.
- C. Hollow-Metal Doors: Fit and adjust hollow-metal doors accurately in frames, within clearances specified below.
 - 1. Non-Fire-Rated Steel Doors: Comply with ANSI/SDI A250.8.
- D. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with hollowmetal manufacturer's written instructions.

3.3 REPAIR

- A. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.
- B. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 081113

SECTION 081416 - FLUSH WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Solid-core five-ply flush wood veneer-faced doors for transparent finish.
 - 2. Light frames and louvers.
- B. Related Requirements:
 - 1. Section 088000 "Glazing" for glass view panels in flush wood doors.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. Solid-core five-ply flush wood veneer-faced doors for transparent finish.
 - 2. Light frames and louvers.
- B. Product Data Submittals: For each product, including the following:
 - 1. Door core materials and construction.
 - 2. Door edge construction
 - 3. Door face type and characteristics.
 - 4. Door trim for openings.
 - 5. Door frame construction.
 - 6. Factory-machining criteria.
 - 7. Factory-finishing specifications.
- C. Shop Drawings: Indicate location, size, and hand of each door; elevation of each type of door; construction details not covered in Product Data; and the following:
 - 1. Door schedule indicating door location, type, size, and swing.
 - 2. Door elevations, dimension and locations of hardware, litecutouts, and glazing thicknesses.
 - 3. Details of frame for each frame type, including dimensions and profile.
 - 4. Dimensions and locations of blocking for hardware attachment.
 - 5. Dimensions and locations of mortises and holes for hardware.
 - 6. Clearances and undercuts.
 - 7. Requirements for veneer matching.
 - 8. Doors to be factory finished and application requirements.
- D. Samples for Initial Selection: For factory-finished doors.

1.3 INFORMATIONAL SUBMITTALS

A. Sample Warranty: For special warranty.

1.4 CLOSEOUT SUBMITTALS

A. Special warranties.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Comply with requirements of referenced standard and manufacturer's written instructions.
- B. Package doors individually in plastic bags or cardboard cartons.
- C. Mark each door on bottom rail with opening number used on Shop Drawings.

1.6 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install doors until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, and HVAC system is operating and maintaining temperature and relative humidity at levels designed for building occupants for the remainder of construction period.
 - 2. Do not deliver or install doors until building is enclosed and weathertight, wet work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 17 and 50 percent during remainder of construction period.

1.7 WARRANTY

1

- A. Special Warranty: Manufacturer agrees to repair or replace doors that fail in materials or workmanship within specified warranty period.
 - Failures include, but are not limited to, the following:
 - a. Delamination of veneer.
 - b. Warping (bow, cup, or twist) more than 1/4 inch in a 42-by-84-inch section.
 - c. Telegraphing of core construction in face veneers exceeding 0.01 inch in a 3-inch span.
 - 2. Warranty also includes installation and finishing that may be required due to repair or replacement of defective doors.
 - 3. Warranty Period for Solid-Core Interior Doors: Life of installation.

PART 2 - PRODUCTS

2.1 SOURCE LIMITATIONS

- A. Obtain flush wood doors indicated to be blueprint matched with paneling from single manufacturer.
- 2.2 FLUSH WOOD DOORS AND FRAMES, GENERAL
 - A. Quality Standard: In addition to requirements specified, comply with ANSI/WDMA I.S. 1A.

2.3 SOLID-CORE FIVE-PLY FLUSH WOOD VENEER-FACED DOORS FOR TRANSPARENT FINISH

- A. Interior Doors, Solid-Core Five-Ply Veneer-Faced:
 - 1. Performance Grade: ANSI/WDMA I.S. 1A Heavy Duty.
 - 2. ANSI/WDMA I.S. 1A Quality Grade: Premium.
 - 3. Faces: Single-ply wood veneer not less than 1/50 inch thick.
 - a. Cut: Plain sliced (flat sliced).
 - b. Match between Veneer Leaves: Book match.
 - c. Assembly of Veneer Leaves on Door Faces: Center-balance match.
 - d. Room Match:
 - 1) Match door faces within each separate room or area of building. Corridordoor faces do not need to match where they are separated by 10 feet or more.
 - 4. Exposed Vertical and Top Edges: Applied wood-veneer edges of same species as faces and covering edges of faces.
 - 5. Core for Non-Fire-Rated Doors:
 - a. ANSI A208.1, Grade LD-2 particleboard.
 - 1) Blocking: Provide wood blocking in particleboard-core doors as needed to eliminate through-bolting hardware.
 - 6. Construction: Five plies, hot-pressed bonded (vertical and horizontal edging is bonded to core), with entire unit abrasive planed before veneering.

2.4 LIGHT FRAMES AND LOUVERS

A. Metal Frames for Light Openings in Fire-Rated Doors: Manufacturer's standard frame formed of 0.048-inch- thick, cold-rolled steel sheet; factory primed for paint finish.

2.5 FABRICATION

- A. Factory fit doors to suit frame-opening sizes indicated.
 - 1. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.
 - 2. Comply with NFPA 80 requirements for fire-rated doors.
- B. Factory machine doors for hardware that is not surface applied.
 - 1. Comply with final hardware schedules, door frame Shop Drawings, ANSI/BHMA-156.115-W, and hardware templates.
 - 2. Coordinate with hardware mortises in metal frames, to verify dimensions and alignment before factory machining.
 - 3. For doors scheduled to receive electrified locksets, provide factory-installed raceway and wiring to accommodate specified hardware.
- C. Openings: Factory cut and trim openings through doors.
 - 1. Light Openings: Trim openings with moldings of material and profile indicated.
 - 2. Glazing: Factory install glazing in doors indicated to be factory finished. Comply with applicable requirements in Section 088000 "Glazing."

2.6 FACTORY PRIMING

A. Doors for Opaque Finish: Factory prime faces, all four edges, edges of cutouts, and mortises with one coat of wood primer specified in Section 099123" Interior Painting."

2.7 FACTORY FINISHING

- A. Comply with referenced quality standard for factory finishing.
 - 1. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.
 - 2. Finish faces, all four edges, edges of cutouts, and mortises.
 - 3. Stains and fillers may be omitted on top and bottom edges, edges of cutouts, and mortises.
- B. Factory finish doors.
- C. Transparent Finish:
 - 1. ANSI/WDMA I.S. 1A Grade: Premium.
 - a. TR-8 UV Cured Acrylated Polyester/Urethane.
 - 2. Staining: As selected by Architect from manufacturer's full range.
 - 3. Sheen: Satin.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and installed door frames, with Installer present, before hanging doors.
 - 1. Verify that installed frames comply with indicated requirements for type, size, location, and swing characteristics and have been installed with level heads and plumb jambs.
 - 2. Reject doors with defects.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Hardware: For installation, see Section 087100 "Door Hardware."
- B. Install doors to comply with manufacturer's written instructions and referenced quality standard, and as indicated.
- C. Job-Fitted Doors:
 - 1. Align and fit doors in frames with uniform clearances and bevels as indicated below.
 - 2. Seal edges of doors, edges of cutouts, and mortises after fitting.
 - 3. Clearances:
 - a. Provide 1/8 inch at heads, jambs, and between pairs of doors.
 - b. Provide 1/8 inch from bottom of door to top of decorative floor finish or covering unless otherwise indicated on Drawings.

- c. Where threshold is shown or scheduled, provide 1/4 inch from bottom of door to top of threshold unless otherwise indicated.
- 4. Bevel non-fire-rated doors 1/8 inch in 2 inches at lock and hinge edges.
- D. Factory-Finished Doors: Restore finish before installation if fitting or machining is required at Project site.

3.3 ADJUSTING

- A. Operation: Rehang or replace doors that do not swing or operate freely.
- B. Finished Doors: Replace doors that are damaged or that do not comply with requirements. Doors may be repaired or refinished if Work complies with requirements and shows no evidence of repair or refinishing.

END OF SECTION 081416

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 083113 - ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:1. Access doors and frames.
- B. Related Requirements:
 - 1. Section 233300 "Air Duct Accessories" for heating and air-conditioning duct access doors.
- 1.2 ALLOWANCES

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details material descriptions, dimensions of individual components and profiles, and finishes.
- PART 2 PRODUCTS

2.1 ACCESS DOORS AND FRAMES

- A. Flush Access Doors with Concealed Flanges:
 - 1. Description: Face of door flush with frame; with concealed flange for gypsum board installation and concealed hinge.
 - 2. Locations: Ceiling.
 - 3. Door Size: 36" x 36".
 - 4. Uncoated Steel Sheet for Door: Nominal 0.060 inch, 16 gage, factory primed.
 - 5. Frame Material: Same material and thickness as door.
 - 6. Latch and Lock: Cam latch, screwdriver operated.

2.2 MATERIALS

- A. Steel Plates, Shapes, and Bars: ASTM A36/A36M.
- B. Steel Sheet: Uncoated or electrolytic zinc coated, ASTM A879/A879M, with cold-rolled steel sheet substrate complying with ASTM A1008/A1008M, Commercial Steel (CS), exposed.
- C. Frame Anchors: Same material as door face.
- D. Inserts, Bolts, and Anchor Fasteners: Hot-dip galvanized steel according to ASTM A153/ A153M or ASTM F2329.

2.3 FABRICATION

- A. General: Provide access door and frame assemblies manufactured as integral units ready for installation.
- B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.
- C. Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish mounting holes, attachment devices and fasteners of type required to secure access doors to types of supports indicated.
 - 1. For concealed flanges with drywall bead, provide edge trim for gypsum panels securely attached to perimeter of frames.
 - 2. For concealed flanges with plaster bead for full-bed plaster applications, provide zinccoated expanded-metal lath and exposed casing bead welded to perimeter of frames.
- D. Latch and Lock Hardware:
 - 1. Quantity: Furnish number of latches and locks required to hold doors tightly closed.

2.4 FINISHES

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- D. Painted Finishes: Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.
 - 1. Factory Primed: Apply manufacturer's standard, lead- and chromate-free, universal primer immediately after surface preparation and pretreatment.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

3.2 INSTALLATION

A. Comply with manufacturer's written instructions for installing access doors and frames.

3.3 ADJUSTING

A. Adjust doors and hardware, after installation, for proper operation.

END OF SECTION 083113

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 084113 - ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:1. Aluminum-framed entrance and storefront systems.

1.2 ACTION SUBMITTALS

- A. Product Data:1. Aluminum-framed entrance and storefront systems.
- B. Product Data Submittals: For each product.
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Operating characteristics, electrical characteristics, and furnished accessories.
- C. Shop Drawings:
 - 1. Plans, elevations, sections, full-size details, and attachments to other work.
 - 2. Connection to and continuity with adjacent thermal, weather, air, and vapor barriers.
- D. Samples for Initial Selection: Manufacturer's standard color sheets, showing full range of available colors for each type of exposed finish.
- E. Entrance Door Hardware Schedule: Prepared by or under supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams. Coordinate final entrance door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of entrance door hardware.

1.3 INFORMATIONAL SUBMITTALS

- A. Energy Performance Certificates: For aluminum-framed entrance and storefront systems, accessories, and components, from manufacturer.
 - 1. Basis for Certification: NFRC-certified energy performance values for each aluminumframed entrance and storefront system.
- B. Product Test Reports: For aluminum-framed entrance and storefront systems, for tests performed by a qualified testing agency.
- C. Preconstruction Test Reports: For aluminum-framed entrance and storefront systems.
 - 1. Test Reports: Prepared by a qualified preconstruction testing agency for each preconstruction test.
- D. Source Quality-Control Reports: For aluminum-framed entrance and storefront systems.

- E. Field Quality-Control Reports: For aluminum-framed entrance and storefront systems.
- F. Sample Warranties: For aluminum-framed entrance and storefront systems.
- 1.4 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For aluminum-framed entrance and storefront systems.
 - B. Maintenance Data for Structural Sealant: For structural-sealant-glazed storefront. Include ASTM C1401 recommendations for post-installation-phase quality-control program.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Entity that employs installers and supervisors who are trained and approved by manufacturer.
- B. Testing Agency Qualifications: Qualified in accordance with ASTM E699 for testing indicated.
- C. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
 - 1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.6 WARRANTY

- A. Special Warranty: Manufacturer and Installer agree to repair or replace components of aluminum-framed entrance and storefront systems that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Failure to meet performance requirements.
 - b. Structural failures including excessive deflection, water leakage, condensation, and air infiltration.
 - c. Faulty operation of movable sash and hardware.
 - d. Deterioration of materials and finishes beyond normal weathering.
 - e. Failure of insulating glass.
 - 2. Warranty Period: Five years from date of Substantial Completion.
- B. Special Finish Warranty, Factory-Applied Finishes: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Delta E units when tested in accordance with ASTM D2244.
 - b. Chalking in excess of a No. 8 rating when tested in accordance with ASTM D4214.

- c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
- 2. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SOURCE LIMITATIONS

A. Obtain all components of aluminum-framed entrance and storefront system, including framing and accessories, from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrance and storefront systems representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.
 - 1. Aluminum-framed entrance and storefront systems to withstand movements of supporting structure, including, but not limited to, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.
 - 2. Failure also includes the following:
 - a. Thermal stresses transferring to building structure.
 - b. Glass breakage.
 - c. Noise or vibration created by wind and thermal and structural movements.
 - d. Loosening or weakening of fasteners, attachments, and other components.
 - e. Failure of operating units.
- B. Structural Loads:
 - 1. Wind Loads: As indicated on Drawings.
 - 2. Other Design Loads: As indicated on Drawings.
- C. Deflection of Framing Members Supporting Glass: At design wind load, as follows:
 - 1. Deflection Normal to Wall Plane: Limited to 1/175 of clear span for spans of up to 13 feet 6 inches and to 1/240 of clear span plus 1/4 inch for spans greater than 13 feet 6 inches.
- D. Structural: Test in accordance with ASTM E330/E330M as follows:
 - 1. When tested at positive and negative wind-load design pressures, storefront assemblies, including entrance doors, do not evidence deflection exceeding specified limits.
 - 2. When tested at 150 percent of positive and negative wind-load design pressures, storefront assemblies, including entrance doors and anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.
 - 3. Test Durations: As required by design wind velocity, but not less than 10 seconds.
- E. Water Penetration under Static Pressure: Test in accordance with ASTM E331 as follows:
 - 1. No evidence of water penetration through fixed glazing and framing areas, including entrance doors, when tested in accordance with a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than 10 lbf/sq. ft..

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- F. Energy Performance: Certified and labeled by manufacturer for energy performance as follows: 1. Thermal Transmittance (U-factor):
 - a. Fixed Glazing and Framing Areas: U-factor for the system of not more than 0.46 Btu/sq. ft. x h x deg F as determined in accordance with NFRC 100.
 - b. Entrance Doors: U-factor of not more than 0.77 Btu/sq. ft. x h x deg F as determined in accordance with NFRC 100.
 - 2. Solar Heat-Gain Coefficient (SHGC):
 - a. Fixed Glazing and Framing Areas: SHGC for the system of not more than 0.33 as determined in accordance with NFRC 200.
 - b. Entrance Doors: SHGC of not more than 0.33 as determined in accordance with NFRC 200.
 - 3. Air Leakage:
 - a. Fixed Glazing and Framing Areas: Air leakage for the system of not more than 0.06 cfm/sq. ft. at a static-air-pressure differential of 6.24 lbf/sq. ft. when tested in accordance with ASTM E283.
 - b. Entrance Doors: Air leakage of not more than 1.0 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft..
- G. Noise Reduction: Test in accordance with ASTM E90, with ratings determined by ASTM E1332, as follows.
 - 1. Outdoor-Indoor Transmission Class: Minimum 26.
- H. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.
 - 2. Thermal Cycling: No buckling; stress on glass; sealant failure; excess stress on framing, anchors, and fasteners; or reduction of performance when tested in accordance with AAMA 501.5.
 - a. High Exterior Ambient-Air Temperature: That which produces an exterior metalsurface temperature of 180 deg F.
 - b. Low Exterior Ambient-Air Temperature: 0 deg F.
 - c. Interior Ambient-Air Temperature: 75 deg F.

2.3 ALUMINUM-FRAMED ENTRANCE AND STOREFRONT SYSTEMS

- A. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.
 - 1. Exterior Framing Construction: Thermally broken Insert description.
 - 2. Glazing System: Retained mechanically with gaskets on four sides.
 - 3. Glazing Plane: Front.
 - 4. Finish: Baked-enamel or powder-coat finish.
 - 5. Fabrication Method: Field-fabricated stick system.
 - 6. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
- B. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.

- C. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.
- D. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing or automatic operation.
 - 1. Door Construction: 2-inch overall thickness, with minimum 0.188-inch- thick, extrudedaluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.
 - a. Thermal Construction: High-performance plastic connectors separate aluminum members exposed to the exterior from members exposed to the interior.
 - 2. Door Design: Wide stile; 5-inch nominal width.
 - 3. Glazing Stops and Gaskets: Beveled, snap-on, extruded-aluminum stops and preformed gaskets.

a. Provide nonremovable glazing stops on outside of door.

4. Finish: Match adjacent storefront framing finish.

2.4 ENTRANCE DOOR HARDWARE

- A. Entrance Door Hardware: Hardware not specified in this Section is specified in Section 087100 "Door Hardware."
- B. General: Provide entrance door hardware and entrance door hardware sets indicated in door schedule for each entrance door, to comply with requirements in this Section.
 - 1. Opening-Force Requirements:
 - a. Egress Doors: Not more than 15 lbf to release the latch and not more than 30 lbf to set the door in motion and not more than 15 lbf to open the door to its minimum required width.
- C. Pivot Hinges: BHMA A156.4, Grade 1.
 - 1. Offset-Pivot Hinges: Provide top, bottom, and intermediate offset pivots at each door leaf.
- D. Cylinders:
 - 1. As specified in Section 087100 "Door Hardware."
- E. Strikes: Provide strike with black-plastic dust box for each latch or lock bolt; fabricated for aluminum framing.
- F. Operating Trim: BHMA A156.6.
- G. Closers: BHMA A156.4, Grade 1, with accessories required for a complete installation, sized as required by door size, exposure to weather, and anticipated frequency of use; adjustable to comply with field conditions and requirements for opening force.
- H. Door Stops: BHMA A156.16, Grade 1, floor or wall mounted, as appropriate for door location indicated, with integral rubber bumper.
- I. Weather Stripping: Manufacturer's standard replaceable components.

- 1. Compression Type: Made of ASTM D2000 molded neoprene or ASTM D2287 molded PVC.
- J. Weather Sweeps: Manufacturer's standard exterior-door bottom sweep with concealed fasteners on mounting strip.
- K. Thresholds: BHMA A156.21 raised thresholds beveled with a slope of not more than 1:2, with maximum height of 1/2 inch.
- 2.5 GLAZING
 - A. Glazing: Comply with Section 088000 "Glazing."
 - B. Glazing Gaskets:
 - C. Glazing Sealants: As recommended by manufacturer.

2.6 ACCESSORIES

- A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 - 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 - 2. Reinforce members as required to receive fastener threads.
 - 3. Use exposed fasteners with countersunk Phillips screw heads, finished to match framing system.
- B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
 - 1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A123/A123M or ASTM A153/A153M requirements.
- C. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials.
- D. Bituminous Paint: Cold-applied asphalt-mastic paint containing no asbestos, formulated for 30mil thickness per coat.

2.7 FABRICATION

- A. Form or extrude aluminum shapes before finishing.
- B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
- C. Fabricate components that, when assembled, have the following characteristics:
 - 1. Profiles that are sharp, straight, and free of defects or deformations.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 2. Accurately fitted joints with ends coped or mitered.
- 3. Physical and thermal isolation of glazing from framing members.
- 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
- 5. Provisions for field replacement of glazing from exterior.
- 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.
- D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.
- E. Storefront Framing: Fabricate components for assembly using screw-spline system.
- F. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.
 - 1. At exterior doors, provide compression weather stripping at fixed stops.
- G. Entrance Doors: Reinforce doors as required for installing entrance door hardware.
 1. At exterior doors, provide weather sweeps applied to door bottoms.
- H. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.
- I. After fabrication, clearly mark components to identify their locations in Project in accordance with Shop Drawings.

2.8 ALUMINUM FINISHES

- A. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 1.5 mils. Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.
 - 1. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF ALUMINUM-FRAMED ENTRANCE AND STOREFRONT SYSTEMS

- A. Comply with manufacturer's written instructions.
- B. Do not install damaged components.

- C. Fit joints to produce hairline joints free of burrs and distortion.
- D. Rigidly secure nonmovement joints.
- E. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
- F. Seal perimeter and other joints watertight unless otherwise indicated.
- G. Metal Protection:
 - 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
 - 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
- H. Set continuous sill members and flashing in full sealant bed, as specified in Section 079200 "Joint Sealants," to produce weathertight installation.
- I. Install joint filler behind sealant as recommended by sealant manufacturer.
- J. Install components plumb and true in alignment with established lines and grades.
- K. Install operable units level and plumb, securely anchored, and without distortion. Adjust weather-stripping contact and hardware movement to produce proper operation.
- L. Install entrance doors to produce smooth operation and tight fit at contact points.
 - 1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.
 - 2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware in accordance with entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.
- M. Install glazing as specified in Section 088000 "Glazing."

3.3 ERECTION TOLERANCES

- A. Install aluminum-framed entrance and storefront systems to comply with the following maximum tolerances:
 - 1. Plumb: 1/8 inch in 10 feet; 1/4 inch in 40 feet.
 - 2. Level: 1/8 inch in 20 feet; 1/4 inch in 40 feet.
 - 3. Alignment:
 - a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch wide, limit offset from true alignment to 1/16 inch.
 - b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch wide, limit offset from true alignment to 1/8 inch.
 - c. Where surfaces are separated by reveal or protruding element of 1 inch wide or more, limit offset from true alignment to 1/4 inch.
 - 4. Location: Limit variation from plane to 1/8 inch in 12 feet; 1/2 inch over total length.

3.4 MAINTENANCE SERVICE

- A. Entrance Door Hardware Maintenance:
 - 1. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of entrance door hardware.
 - 2. Initial Maintenance Service: Beginning at Substantial Completion, provide six months' full maintenance by skilled employees of entrance door hardware Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper entrance door hardware operation at rated speed and capacity. Use parts and supplies that are the same as those used in the manufacture and installation of original equipment.

3.5 ENTRANCE DOOR HARDWARE SETS

A. Refer to door hardware schedule, Section 087100.

END OF SECTION 084113

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 085113 - ALUMINUM WINDOWS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes aluminum windows for exterior locations.
- B. Related Requirements:
 - 1. Section 084113 "Aluminum-Framed Entrances and Storefronts" for coordinating finish among aluminum fenestration units.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, glazing and fabrication methods, dimensions of individual components and profiles, hardware, and finishes for aluminum windows.
- B. Shop Drawings: For aluminum windows.
 - 1. Include plans, elevations, sections, hardware, accessories, insect screens, operational clearances, and details of installation, including anchor, flashing, and sealant installation.
- C. Samples for Initial Selection: For units with factory-applied finishes.
 1. Include Samples of hardware and accessories involving color selection.
- D. Product Schedule: For aluminum windows. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: For each type of aluminum window, for tests performed by a qualified testing agency.
- B. Field quality-control reports.
- C. Sample Warranties: For manufacturer's warranties.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An installer acceptable to aluminum window manufacturer for installation of units required for this Project.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace aluminum windows that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Failure to meet performance requirements.
 - b. Structural failures including excessive deflection, water leakage, condensation, and air infiltration.
 - c. Faulty operation of movable sash and hardware.
 - d. Deterioration of materials and finishes beyond normal weathering.
 - e. Failure of insulating glass.
 - 2. Warranty Period:
 - a. Window: Five years from date of Substantial Completion.
 - b. Glazing Units: 10 years from date of Substantial Completion.
 - c. Aluminum Finish: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain aluminum windows from single source from single manufacturer.

2.2 WINDOW PERFORMANCE REQUIREMENTS

- A. Product Standard: Comply with AAMA/WDMA/CSA 101/I.S.2/A440 for definitions and minimum standards of performance, materials, components, accessories, and fabrication unless more stringent requirements are indicated.
- B. Thermal Transmittance: NFRC 100 maximum whole-window U-factor of 0.46 Btu/sq. ft. x h x deg F.
- C. Solar Heat-Gain Coefficient (SHGC): NFRC 200 maximum whole-window SHGC of 0.33.
- D. Thermal Movements: Provide aluminum windows, including anchorage, that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change: 120 deg F ambient; 180 deg F material surfaces.
- E. Sound Transmission Class (STC): Rated for not less than 26 STC when tested for laboratory sound transmission loss according to ASTM E90 and determined by ASTM E413.

2.3 ALUMINUM WINDOWS

A. Types: Provide the following types in locations indicated on Drawings:1. Fixed.
TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- B. Frames and Sashes: Aluminum extrusions complying with AAMA/WDMA/CSA 101/ I.S.2/A440.
 - 1. Thermally Improved Construction: Fabricate frames, sashes, and muntins with an integral, concealed, low-conductance thermal barrier located between exterior materials and window members exposed on interior side in a manner that eliminates direct metal-to-metal contact.
- C. Glazing: Comply with Section 088000 "Glazing."
- D. Glazing Gaskets: Comply with Section 088000 "Glazing."
- E. Glazing Sealants: Comply with Section 088000 "Glazing." Fasteners: Noncorrosive and compatible with window members, trim, hardware, anchors, and other components.
 - 1. Exposed Fasteners: Do not use exposed fasteners to greatest extent possible. For application of hardware, use fasteners that match finish hardware being fastened.

2.4 FABRICATION

- A. Fabricate aluminum windows in sizes indicated. Include a complete system for assembling components and anchoring windows.
- B. Glaze aluminum windows in the factory.
- C. Weep Holes: Provide weep holes and internal passages to conduct infiltrating water to exterior.
- D. Mullions: Provide mullions and cover plates, matching window units, complete with anchors for support to structure and installation of window units. Allow for erection tolerances and provide for movement of window units due to thermal expansion and building deflections. Provide mullions and cover plates capable of withstanding design wind loads of window units.
- E. Complete fabrication, assembly, finishing, hardware application, and other work in the factory to greatest extent possible. Disassemble components only as necessary for shipment and installation.

2.5 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM's "Metal Finishes Manual" for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 ALUMINUM FINISHES

- A. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
- B. Baked-Enamel Finish: AA-C12C42R1x (Chemical Finish: cleaned with inhibited chemicals; Chemical Finish: acid-chromate-fluoride-phosphate conversion coating; Organic Coating: as specified below). Apply baked enamel complying with paint manufacturer's written instructions for cleaning, conversion coating, and painting.
 - 1. Organic Coating: Thermosetting, modified-acrylic or polyester enamel primer/topcoat system complying with AAMA 2603, except with a minimum dry film thickness of 1.5 mils, medium gloss.
 - 2. Color: As selected by Architect from full range of industry colors and color densities.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine openings, substrates, structural support, anchorage, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Verify rough opening dimensions, levelness of sill plate, and operational clearances.
- C. Examine wall flashings, vapor retarders, water and weather barriers, and other built-in components to ensure weathertight window installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with manufacturer's written instructions for installing windows, hardware, accessories, and other components. For installation procedures and requirements not addressed in manufacturer's written instructions, comply with installation requirements in ASTM E2112.
- B. Install windows level, plumb, square, true to line, without distortion or impeding thermal movement, anchored securely in place to structural support, and in proper relation to wall flashing and other adjacent construction to produce weathertight construction.
- C. Install windows and components to drain condensation, water penetrating joints, and moisture migrating within windows to the exterior.
- D. Separate aluminum and other corrodible surfaces from sources of corrosion or electrolytic action at points of contact with other materials.

3.3 ADJUSTING, CLEANING, AND PROTECTION

- A. Adjust operating sashes and hardware for a tight fit at contact points and weather stripping for smooth operation and weathertight closure.
- B. Clean exposed surfaces immediately after installing windows. Avoid damaging protective coatings and finishes. Remove excess sealants, glazing materials, dirt, and other substances.
 1. Keep protective films and coverings in place until final cleaning.
- C. Remove and replace glass that has been broken, chipped, cracked, abraded, or damaged during construction period.
- D. Protect window surfaces from contact with contaminating substances resulting from construction operations. If contaminating substances do contact window surfaces, remove contaminants immediately according to manufacturer's written instructions.

END OF SECTION 085113

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 085653 - SECURITY WINDOWS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Sliding, transaction security windows. 1.
- Β. **Related Requirements:**
 - Section 099113 "Exterior Painting" for field painting exterior security windows. Section 099123 "Interior Painting" for field painting interior security windows. 1.
 - 2.

1.2 COORDINATION

Coordinate installation of anchorages for security windows. Furnish setting drawings, A. templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in adjacent construction.

ACTION SUBMITTALS 1.3

- Product Data: For each type of product. A.
 - Include construction details, material descriptions, dimensions of individual components 1. and profiles, weights and finishes for window units.
- B. Shop Drawings: For security windows.
 - Include plans, elevations, sections, and attachment details. 1.
 - 2. Full-size section details of framing members, including internal armoring, reinforcement, and stiffeners.
 - 3. Location of weep holes.
 - 4. Hardware for sliding window units.
 - Glazing details. 5.
 - Details of transaction counter. 6.
- C. Samples for Verification: For each type of exposed finish required, prepared on Samples of sizes indicated below:
 - 1. Framing: 12-inch- long sections of frame members.

1.4 INFORMATIONAL SUBMITTALS

Sample Warranty: For special warranty. A.

1.5 **QUALITY ASSURANCE**

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer for installation of units required for this Project.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Pack security windows in wood crates for shipment. Crate glazing separate from frames unless factory glazed.
- B. Label security window packaging with drawing designation.
- C. Store crated security windows on raised blocks to prevent moisture damage.

1.7 FIELD CONDITIONS

A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace security windows that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including deflections exceeding 1/4 inch.
 - b. Failure of welds.
 - c. Faulty operation of sliding window hardware.
 - d. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 - 2. Warranty Period: Three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

2.2 SLIDING, TRANSACTION SECURITY WINDOWS

- A. Provide sliding, transaction security windows.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Armortex.
 - 2. C.R. Laurence Co., Inc.; CRH Americas, Inc.
 - 3. Krieger Specialty Products Company.
 - 4. Protective Structures, Ltd.
 - 5. Quikserv, Inc.
 - 6. Ready Access.
 - 7. SABIC Innovative Plastics IP BV.
- C. Configuration: Two glazed panels that slide horizontally and meet at center of security window.
- D. Operation: Manual open/manual closing.

- E. Framing: Fabricate perimeter framing, mullions, and glazing stops from stainless steel or aluminum as follows:
 - 1. Profile: Manufacturer's standard, with minimum face dimension indicated.
 - a. Minimum Face Dimension: 1-1/4 inches.
 - 2. Depth: Manufacturer's standard.
- F. Sliding Window Hardware: Provide roller track designed for overhead support of manufacturer's standard carrier supporting horizontal-sliding glazed panel with manufacturer's standard self-closing mechanism mounted in header. Provide manufacturer's standard pull and lock with two keys for each horizontal-sliding glazed panel.
- G. Glazing and Glazing Materials: Comply with requirements in Section 088853 "Security Glazing."
 - 1. Glazing Meeting Edges: Polished glazing.
- H. Materials:
 - 1. Aluminum Extrusions: ASTM B221. Provide alloy and temper recommended by manufacturer for strength, corrosion resistance, and application of required finish, but not less than 22,000-psi ultimate tensile strength.
 - 2. Aluminum Sheet and Plate: ASTM B209.

2.3 FABRICATION

- A. General: Fabricate security windows to provide a complete system for assembly of components and anchorage of window units.
 - 1. Provide units that are reglazable from the secure side without dismantling the attack side of framing.
 - 2. Prepare security windows for field glazing unless preglazing at the factory is indicated.
- B. Framing: Miter or cope corners the full depth of framing; weld and dress smooth.
 - 1. Fabricate framing with manufacturer's standard, internal opaque armoring in thicknesses required for security windows to comply with ballistics-resistance performance indicated.
- C. Glazing Stops: Finish glazing stops to match security window framing.
 - 1. Attack-Side (Exterior) Glazing Stops: Welded or integral to framing.
 - 2. Secure-Side (Interior) Glazing Stops: Removable, coordinated with glazing indicated.
- D. Welding: Weld components to comply with referenced AWS standard. To greatest extent possible, weld before finishing and in concealed locations to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
- E. Metal Protection: Separate dissimilar metals to protect against galvanic action by painting contact surfaces with primer or by applying sealant or tape recommended by manufacturer for this purpose.
- F. Factory-cut openings in glazing for speaking apertures.

G. Preglazed Fabrication: Preglaze window units at factory, where required for applications indicated. Installation orientation of glazing to meet performance requirements. Comply with requirements in Section 088853 "Security Glazing."

2.4 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM/NOMMA 500 for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.5 ALUMINUM FINISHES

- A. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 1.5 mils. Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.
 - 1. Color and Gloss: Black.

2.6 ACCESSORIES

- A. Concealed Bolts: ASTM A307, Grade A unless otherwise indicated.
- B. Embedded Plate Anchors: Fabricated from mild steel shapes and plates, minimum 3/16 inch thick; with minimum 1/2-inch- diameter, headed studs welded to back of plate.
- C. Welding Rods and Bare Electrodes: Select in accordance with AWS specifications for metal alloy welded.
- D. Miscellaneous Glazing Materials: Provide material, size, and shape complying with requirements of glass manufacturers and with a proven record of compatibility with surfaces contacted in installation.
 - 1. Cleaners, Primers, and Sealers: Type recommended by sealant or gasket manufacturer.
 - 2. Setting Blocks: Elastomeric material with a Shore A durometer hardness of 85, plus or minus 5.
 - 3. Spacers: Elastomeric blocks or continuous extrusions with a Shore A durometer hardness required by glass manufacturer to maintain glass lites in place for installation indicated.
 - 4. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).
- E. Anchors, Clips, and Window Accessories: Stainless steel; hot-dip, zinc-coated steel or iron, complying with ASTM B633; provide sufficient strength to withstand design pressures indicated.
- F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.

G. Sealants: For sealants required within fabricated security windows, provide type recommended by manufacturer for joint size and movement. Sealant remains permanently elastic, nonshrinking, and nonmigrating.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of security windows.
- B. Examine roughing-in for embedded and built-in anchors to verify actual locations of security window connections before security window installation.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of security windows.
- D. Inspect built-in and cast-in anchor installations, before installing security windows, to verify that anchor installations comply with requirements. Prepare inspection reports.
 - 1. Remove and replace anchors where inspections indicate that they do not comply with specified requirements. Reinspect after repairs or replacements are made.
 - 2. Perform additional inspections to determine compliance of replaced or additional work. Prepare anchor inspection reports.
- E. For factory-installed glazing materials whose orientation (secure or attack side) is critical for performance, verify installation orientation.
- F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Coordination: Furnish layouts for cast-in-place anchors, clips, and other security window anchors whose installation is specified in other Sections.
 - 1. Furnish cast-in-place anchors and similar devices to other trades for installation well in advance of time needed for coordinating other work.

3.3 INSTALLATION

- A. Fastening to In-Place Construction: Provide anchorage devices and fasteners where necessary for securing security windows to in-place construction. Include threaded fasteners for inserts, security fasteners, and other connectors.
- B. Removable Glazing Stops and Trim: Fasten components with security fasteners.
- C. Fasteners: Install security windows using fasteners recommended by manufacturer with head style appropriate for installation requirements, strength, and finish of adjacent materials.

- D. Sealants: Comply with requirements in Section 079200 "Joint Sealants" for installing sealants, fillers, and gaskets.
- E. Metal Protection: Where dissimilar metals will contact each other, protect against galvanic action by painting contact surfaces with primer or by applying sealant or tape recommended in writing by manufacturer for this purpose. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

3.4 ADJUSTING

- A. Remove and replace defective work, including security windows that are warped, bowed, or otherwise unacceptable.
- 3.5 CLEANING AND PROTECTION
 - A. Clean surfaces promptly after installation of security windows. Take care to avoid damaging the finish. Remove excess glazing and sealant compounds, dirt, and other substances.
 - B. Clean glass of preglazed security windows promptly after installation. Comply with requirements in Section 088853 "Security Glazing" for cleaning and maintenance.
 - C. Provide temporary protection to ensure that security windows are without damage at time of Substantial Completion.

END OF SECTION 085653

SECTION 087100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Hinges.
 - 2. Bored locks.
 - 3. Mortise locks.
 - 4. Exit devices and auxiliary items.
 - 5. Lock cylinders.
 - 6. Operating trim.
 - 7. Astragals.
 - 8. Surface closers.
 - 9. Wall- and floor-mounted stops.
 - 10. Door gasketing.
 - 11. Thresholds.
 - 12. Metal protective trim units.
- B. Related Requirements:
 - 1. Section 064116 "Plastic-Laminate-Clad Architectural Cabinets" for cabinet door hardware provided with cabinets.
 - 2. Section 081113 "Hollow Metal Doors and Frames" for astragals provided as part of labeled fire-rated assemblies and for door silencers provided as part of hollow-metal frames.
 - 3. Section 081213 "Hollow Metal Frames" for door silencers provided as part of hollowmetal frames.
 - 4. Section 081416 "Flush Wood Doors" for integral intumescent seals provided as part of labeled fire-rated assemblies.
 - 5. Section 083113 "Access Doors and Frames" for access door hardware, except cylinders.
 - 6. Section 084113 "Aluminum-Framed Entrances and Storefronts" for entrance door hardware, except cylinders.

1.2 COORDINATION

- A. Installation Templates: Distribute for doors, frames, and other work specified to be factory prepared. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.
- B. Existing Openings: Where hardware components are scheduled for application to existing construction or where modifications to existing door hardware are required, field-verify existing conditions and coordinate installation of door hardware to suit opening conditions and to provide proper door operation.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Door Hardware Schedule: Prepared by or under the supervision of Installer's Architectural Hardware Consultant. Coordinate door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.
 - 1. Submittal Sequence: Submit door hardware schedule concurrent with submissions of product data, Samples, and Shop Drawings. Coordinate submission of door hardware schedule with scheduling requirements of other work to facilitate the fabrication of other work that is critical in Project construction schedule.
 - 2. Format: Use same scheduling sequence and format and use same door numbers as in door hardware schedule in the Contract Documents.
 - 3. Content: Include the following information:
 - a. Identification number, location, hand, fire rating, size, and material of each door and frame.
 - b. Locations of each door hardware set, cross-referenced to Drawings on floor plans and to door and frame schedule.
 - c. Complete designations, including name and manufacturer, type, style, function, size, quantity, function, and finish of each door hardware product.
 - d. Fastenings and other installation information.
 - e. Explanation of abbreviations, symbols, and designations contained in door hardware schedule.
 - f. Mounting locations for door hardware.
 - g. List of related door devices specified in other Sections for each door and frame.
- C. Keying Schedule: Prepared by or under the supervision of Installer's Architectural Hardware Consultant, detailing Owner's final keying instructions for locks. Include schematic keying diagram and index each key set to unique door designations that are coordinated with the Contract Documents.

1.5 INFORMATIONAL SUBMITTALS

A. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of door hardware to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Supplier of products and an employer of workers trained and approved by product manufacturers and of an Architectural Hardware Consultant who is available during the course of the Work to consult Contractor, Architect, and Owner about door hardware and keying.
 - 1. Warehousing Facilities: In Project's vicinity.
 - 2. Scheduling Responsibility: Preparation of door hardware and keying schedule.
- B. Architectural Hardware Consultant Qualifications: A person who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project and who is currently certified by DHI as a Door and Hardware Specification Consultant (DHSC).

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Inventory door hardware on receipt and provide secure lockup for door hardware delivered to Project site.
- B. Tag each item or package separately with identification coordinated with the final door hardware schedule, and include installation instructions, templates, and necessary fasteners with each item or package.
- C. Deliver keys to manufacturer of key control system for subsequent delivery to Owner.
- D. Deliver keys to Owner by registered mail or overnight package service.

1.9 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures, including excessive deflection, cracking, or breakage.
 - b. Faulty operation of doors and door hardware.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 - 2. Warranty Period: Three years from date of Substantial Completion unless otherwise indicated below:
 - a. Exit Devices: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SOURCE LIMITATIONS

A. Obtain each type of door hardware from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Means of Egress Doors: Latches do not require more than 15 lbf to release the latch. Locks do not require use of a key, tool, or special knowledge for operation.
- B. Accessibility Requirements: For door hardware on doors in an accessible route, comply with ICC A117.1 and Texas Accessibility Standards, 2012 edition.
 - 1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf.
 - 2. Comply with the following maximum opening-force requirements:
 - a. Interior, Non-Fire-Rated Hinged Doors: 5 lbf applied perpendicular to door.

2.3 HINGES

A. Hinges: ANSI/BHMA A156.1. Provide template-produced hinges for hinges installed on hollow-metal doors and hollow-metal frames.

2.4 MECHANICAL LOCKS AND LATCHES

- A. Lock Functions: As indicated in door hardware schedule.
- B. Lock Throw: Comply with testing requirements for length of bolts required for labeled fire doors, and as follows:
 - 1. Mortise Locks: Minimum 3/4-inch latchbolt throw.
- C. Lock Backset: 2-3/4 inches unless otherwise indicated.
- D. Lock Trim:
 - 1. Description: As indicated on Drawings.
 - 2. Levers: Cast.
 - 3. Escutcheons (Roses): Forged.
- E. Dummy Trim: Match lever lock trim and escutcheonsStrikes: Provide manufacturer's standard strike for each lock bolt or latchbolt complying with requirements indicated for applicable lock or latch and with strike box and curved lip extended to protect frame; finished to match lock or latch.
 - 1. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer.
- F. Mortise Locks: ANSI/BHMA A156.13, Operational Grade 1; stamped steel case with steel or brass parts; Series 1000.

2.5 EXIT DEVICES AND AUXILIARY ITEMS

A. Exit Devices and Auxiliary Items: ANSI/BHMA A156.3.

2.6 LOCK CYLINDERS

- A. Lock Cylinders: Tumbler type, constructed from brass or bronze, stainless steel, or nickel silver. Provide cylinder from same manufacturer of locking devices.
- B. Standard Lock Cylinders: ANSI/BHMA A156.5, Grade 1 permanent cores; face finished to match lockset.
 - 1. Core Type: Interchangeable.
- C. Construction Cores: Provide construction cores that are replaceable by permanent cores. Provide 10 construction master keys.

2.7 KEYING

- 1. Master Key System: Change keys and a master key operate cylinders.
 - a. Provide three cylinder change keys and five master keys.
- 2. Existing System:
 - a. Master key or grand master key locks to Owner's existing system.
 - b. Re-key Owner's existing master key system into new keying system.
- 3. Keyed Alike: Key all cylinders to same change key.
- B. Keys: Brass.
 - 1. Stamping: Permanently inscribe each key with a visual key control number and include the following notation:
 - a. Notation: Information to be furnished by Owner.

2.8 OPERATING TRIM

A. Operating Trim: ANSI/BHMA A156.6; stainless steel unless otherwise indicated.

2.9 ACCESSORIES FOR PAIRS OF DOORS

A. Astragals: ANSI/BHMA A156.22.

2.10 SURFACE CLOSERS

A. Surface Closers: ANSI/BHMA A156.4; rack-and-pinion hydraulic type with adjustable sweep and latch speeds controlled by key-operated valves and forged-steel main arm. Comply with manufacturer's written instructions for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force.

2.11 MECHANICAL STOPS AND HOLDERS

A. Wall- and Floor-Mounted Stops: ANSI/BHMA A156.16.

2.12 DOOR GASKETING

- A. Door Gasketing: ANSI/BHMA A156.22; with resilient or flexible seal strips that are easily replaceable and readily available from stocks maintained by manufacturer.
- B. Maximum Air Leakage: When tested in accordance with ASTM E283/E283M with tested pressure differential of 0.3 inch wg, as follows:
 - 1. Smoke-Rated Gasketing: 0.3 cfm/sq. ft. of door opening.
 - 2. Gasketing on Single Doors: 0.3 cfm/sq. ft. of door opening.

2.13 THRESHOLDS

A. Thresholds: ANSI/BHMA A156.21; fabricated to full width of opening indicated.

2.14 METAL PROTECTIVE TRIM UNITS

A. Metal Protective Trim Units: ANSI/BHMA A156.6; fabricated from 0.050-inch- thick stainless steel; with manufacturer's standard machine or self-tapping screw fasteners.

2.15 FABRICATION

- A. Manufacturer's Nameplate: Do not provide products that have manufacturer's name or trade name displayed in a visible location except in conjunction with required fire-rating labels and as otherwise approved by Architect.
 - 1. Manufacturer's identification is permitted on rim of lock cylinders only.
- B. Base Metals: Produce door hardware units of base metal indicated, fabricated by forming method indicated, using manufacturer's standard metal alloy, composition, temper, and hardness. Furnish metals of a quality equal to or greater than that of specified door hardware units and ANSI/BHMA A156.18.
- C. Fasteners: Provide door hardware manufactured to comply with published templates prepared for machine, wood, and sheet metal screws. Provide screws that comply with commercially recognized industry standards for application intended; however, aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware unless otherwise indicated.
 - 1. Concealed Fasteners: For door hardware units that are exposed when door is closed, except for units already specified with concealed fasteners. Do not use through bolts for installation where bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the door hardware. Where through bolts are used on hollow door and frame construction, provide sleeves for each through bolt.
 - 2. Fire-Rated Applications:
 - a. Wood or Machine Screws: For the following:
 - 1) Hinges mortised to doors or frames.
 - 2) Strike plates to frames.
 - 3) Closers to doors and frames.
 - b. Steel Through Bolts: For the following unless door blocking is provided:
 - 1) Surface hinges to doors.
 - 2) Closers to doors and frames.

- 3) Surface-mounted exit devices.
- 3. Spacers or Sex Bolts: For through bolting of hollow-metal doors.
- 4. Gasketing Fasteners: Provide noncorrosive fasteners for exterior applications and elsewhere as indicated.

2.16 FINISHES

- A. Provide finishes complying with ANSI/BHMA A156.18 as indicated in door hardware schedule.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire-rated door assembly construction, wall and floor construction, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Steel Doors and Frames: For surface-applied door hardware, drill and tap doors and frames in accordance with ANSI/SDI A250.6.
- B. Wood Doors: Comply with door and hardware manufacturers' written instructions.

3.3 INSTALLATION

- A. Mounting Heights: Mount door hardware units at heights to comply with the following unless otherwise indicated or required to comply with governing regulations.
 - 1. Standard Steel Doors and Frames: ANSI/SDI A250.8.
 - 2. Wood Doors: DHI's "Recommended Locations for Architectural Hardware for Wood Flush Doors."
- B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface

protective trim units with finishing work. Do not install surface-mounted items until finishes have been completed on substrates involved.

- 1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation.
- 2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors in accordance with industry standards.
- C. Hinges: Install types and in quantities indicated in door hardware schedule, but not fewer than the number recommended by manufacturer for application indicated or one hinge for every 30 inches of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.
- D. Lock Cylinders: Install construction cores to secure building and areas during construction period.

1. Replace construction cores with permanent cores as directed by Owner.

- E. Thresholds: Set thresholds for exterior doors and other doors indicated in full bed of sealant complying with requirements specified in Section 079200 "Joint Sealants."
- F. Stops: Provide floor stops for doors unless wall or other type stops are indicated in door hardware schedule. Do not mount floor stops where they will impede traffic.
- G. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.1. Do not notch perimeter gasketing to install other surface-applied hardware.
- H. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.
- I. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

3.4 ADJUSTING

- A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.
 - 1. Door Closers: Adjust sweep period to comply with accessibility requirements and requirements of authorities having jurisdiction.
 - 2. Spring Hinges: Adjust to achieve positive latching when door is allowed to close freely from an open position of 70 degrees and so that closing time complies with accessibility requirements of authorities having jurisdiction.
 - 3. Electric Strikes: Adjust horizontal and vertical alignment of keeper to properly engage lock bolt.

3.5 CLEANING AND PROTECTION

- A. Clean adjacent surfaces soiled by door hardware installation.
- B. Clean operating items as necessary to restore proper function and finish.

C. Provide final protection and maintain conditions that ensure that door hardware is without damage or deterioration at time of Substantial Completion.

3.6 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.

3.7 DOOR HARDWARE SCHEDULE

Hardware Set: 1 Storefront Entry – Locked Doors: 100A

1 ¹ / ₂ Pair Offset Hinges	Door Manuf.'s Standard
1 Closer	C02021
1 Push/Pull	J505
1 Lot Weatherstripping & Sweeps	Door Manuf.'s Standard
1 Threshold	Door Manuf.'s Standard
1 Stop	L02161
1 Deadbolt	F17

Hardware Set: 2

Exit Only Doors: 108B

1 ¹ / ₂ Pair Hinges	A5112
1 Exit Device	Type 3, Function 08
1 Closer	C02021
1 Lot Weatherstripping	R3C194
1 Threshold	J36130
1 Stop	L02161
1 Door Bottom	R0Y536
1 Rain Drip	R0Y976
1 Rain Drop	R0Y936
1 Kick Plate	J102

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

Hardware Set: 3

Pair Exterior- Service Doors: 112

3 Pair Hinges	A5112
1 Mortise Lockset	F07
1 Bolts	L04251
2 Closer	C02061
2 Stop	L02161
1 Threshold	J36130
1 Lot Weatherstripping	R3C194
1 Astragal	R3Y634
2 Door Bottom	R0Y536
2 Rain Drip	R0Y076
2 Rain Drip	R0Y936
2 Kick Plate	J102

Hardware Set: 4

Exterior - Service Doors: 113

1 ¹ / ₂ Pair Hinges	A5112
1 Mortise Lockset	F07
1 Bolts	L04251
1 Closer	C02061
1 Stop	L02161
1 Threshold	J36130
1 Lot Weatherstripping	R3C194
1 Door Bottom	R0Y536
1 Rain Drip	R0Y076
1 Rain Drip	R0Y936
1 Kick Plate	J102

Hardware Set: 5

Steel Entry - Locked Doors: 117A, 117B, 127A

1 ¹ / ₂ Pair Offset Hinges	A5112
1 Mortise Lockset	F07
1 Closer	C02021
1 Exit Device	S1250
1 Lot Weatherstripping	R3C194
1 Threshold	J36130
1 Stop	L02161
1 Door Bottom Sweep	R0Y536
1 Kick Plate	J102
1 Rain Drop	R0Y976
1 Rain Drop	R0Y936
1 Latch Protection Plate	

Hardware Set: 6

Int - Steel Entry Doors: 127B

1 ¹ / ₂ Pair Offset Hinges	A8112
1 Pull	J401
1 Push Plate	J301
1 Stop	L02161
1 Kick Plate	J102
1 Mop Plate	J103

Hardware Set: 7

Int – Locked Offices Doors: 100B, 104, 108A, 115, 116, 123, 124, 125, 126

1 ¹ / ₂ Pair Offset Hinges	A8112
1 Mortise Lockset	F01
1 Stop	L02161
1 Kick Plate	J102
1 Mop Plate	J103
1 Lot Sound Seal (Perimeter)	Door Manuf.'s Standard
1 Door Bottom	R0Y406

Hardware Set: 8

Int – Locked Storage Doors: 103, 110A, 120, 121

1 ¹ / ₂ Pair Offset Hinges	A8112
1 Mortise Lockset	F07
1 Stop	L02161
1 Kick Plate	J102
1 Mop Plate	J103
1 Closer	C02011

Hardware Set: 9

Int – Unlocked Storage Doors: 107, 114

A8112
J301
J401
L02161
J102
J103
C02051

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

Hardware Set: 10

Int – Public Restrooms Doors: 110, 111

1 ¹ / ₂ Pair Offset Hinges	A8112
1 Pull	J401
1 Push Plate	J301
1 Stop	L02161
1 Kick Plate	J102
1 Mop Plate	J103

Hardware Set: 11

Int – Locked with Vacancy Indicator Doors: 101, 122

1 ¹ / ₂ Pair Offset Hinges	A8112
1 Stop	L02161
1 Mortise Lock	F22
1 Kick Plate	J102
1 Mop Plate	J103
1 Closer	C02011
1 Vacancy Indicator	

Hardware Set: 12

Int – Locked Doors: 129

1 ¹ ⁄ ₂ Pair Offset Hinges	A8112
1 Stop	L02161
1 Mortise Lock	F12
1 Kick Plate	J102
1 Closer	C02011
1 Mop Plate	J103

END OF SECTION 087100

SECTION 088000 - GLAZING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Glass products.
 - 2. Insulating glass.
 - 3. Glazing sealants.
 - 4. Glazing tapes.
 - 5. Miscellaneous glazing materials.
- B. Related Requirements:
 - 1. Section 088300 "Mirrors."

1.2 DEFINITIONS

- A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.
- B. Glass Thicknesses: Indicated by thickness designations in millimeters in accordance with ASTM C1036.
- C. IBC: International Building Code.
- D. Interspace: Space between lites of an insulating-glass unit.

1.3 COORDINATION

A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances to achieve proper safety margins for glazing retention under each design load case, load case combination, and service condition.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: For glass.

- B. Product Test Reports: For fabricated glass and glazing sealants, for tests performed by a qualified testing agency.
 - 1. For glazing sealants, provide test reports based on testing current sealant formulations within previous 36-month period.
- C. Sample Warranties: For special warranties.
- 1.6 QUALITY ASSURANCE
 - A. Fabricated-Glass Manufacturer Qualifications: A qualified manufacturer of fabricated glass units who is approved by primary glass manufacturer.
 - B. Installer Qualifications: A qualified glazing contractor for this Project who is certified under the North American Contractor Certification Program (NACC) for Architectural Glass & Metal (AG&M) contractors.
 - C. Glass Testing Agency Qualifications: A qualified independent testing agency accredited according to the NFRC CAP 1 Certification Agency Program.
 - D. Sealant Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021 to conduct the testing indicated.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Protect glazing materials in accordance with manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.
- B. Comply with insulating-glass manufacturer's written instructions for venting and sealing units to avoid hermetic seal ruptures due to altitude change.

1.8 FIELD CONDITIONS

- A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
 - 1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or are below 40 deg F.

1.9 WARRANTY

- A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- B. Manufacturer's Special Warranty for Insulating Glass: Manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is obstruction of vision by dust, moisture, or film on interior surfaces of glass.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Source Limitations for Glass: Obtain tinted glass from single source from single manufacturer.
- B. Source Limitations for Glazing Accessories: For each product and installation method, obtain from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.
- B. Structural Performance: Glazing shall withstand the following design loads within limits and under conditions indicated determined in accordance with the IBC and ASTM E1300:
 - 1. Design Wind Pressures: As indicated on Drawings.
 - 2. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch, whichever is less.
 - 3. Thermal Loads: Design glazing to resist thermal stress breakage induced by differential temperature conditions and limited air circulation within individual glass lites and insulated glazing units.
- C. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.
- D. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:
 - 1. For monolithic-glass lites, properties are based on units with lites 6 mm thick.
 - 2. For insulating-glass units, properties are based on units of thickness indicated for overall unit and for each lite.
 - 3. U-Factors: Center-of-glazing values, in accordance with NFRC 100 and based on most current non-beta version of LBL's WINDOW computer program, expressed as Btu/sq. ft. x h x deg F.

- 4. SHGC and Visible Transmittance: Center-of-glazing values, in accordance with NFRC 200 and based on most current non-beta version of LBL's WINDOW computer program.
- 5. Visible Reflectance: Center-of-glazing values, in accordance with NFRC 300.

2.3 GLASS PRODUCTS, GENERAL

- A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.
 - 1. NGA Publications: "Glazing Manual."
 - 2. AAMA Publications: AAMA GDSG-1, "Glass Design for Sloped Glazing," and AAMA TIR A7, "Sloped Glazing Guidelines."
 - 3. IGMA Publication for Sloped Glazing: IGMA TB-3001, "Guidelines for Sloped Glazing."
 - 4. IGMA Publication for Insulating Glass: SIGMA TM-3000, "North American Glazing Guidelines for Sealed Insulating Glass Units for Commercial and Residential Use."
- B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction or manufacturer. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.
- C. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of the IGCC.
- D. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than thickness indicated.
 - 1. Minimum Glass Thickness for Exterior Lites: 6 mm.
 - 2. Thickness of Tinted Glass: Provide same thickness for each tint color indicated throughout Project.
- E. Strength: Where annealed float glass is indicated, provide annealed float glass, heatstrengthened float glass, or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened float glass is indicated, provide heatstrengthened float glass or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where fully tempered float glass is indicated, provide fully tempered float glass.

2.4 GLASS PRODUCTS

- A. Clear Annealed Float Glass: ASTM C1036, Type I, Class 1 (clear), Quality-Q3.
- B. Fully Tempered Float Glass: ASTM C1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 - 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

2.5 INSULATING GLASS

- A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified in accordance with ASTM E2190.
 - 1. Sealing System: Dual seal, with manufacturer's standard primary and secondary sealants.
 - 2. Perimeter Spacer: Manufacturer's standard spacer material and construction Desiccant: Molecular sieve or silica gel, or a blend of both.

2.6 GLAZING SEALANTS

- A. General:
 - 1. Compatibility: Compatible with one another and with other materials they contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
 - 2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
 - 3. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range of industry colors.
- B. Neutral-Curing Silicone Glazing Sealant, Class 100/50: Complying with ASTM C920, Type S, Grade NS, Use NT.

2.7 GLAZING TAPES

- A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C1281 and AAMA 800 for products indicated below:
 - 1. AAMA 804.3 tape, where indicated.
 - 2. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.
- B. Expanded Cellular Glazing Tapes: Closed-cell, PVC foam tapes; factory coated with adhesive on both surfaces; and complying with AAMA 800 for the following types:
 - 1. AAMA 810.1, Type 1, for glazing applications in which tape acts as primary sealant.
 - 2. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.

2.8 MISCELLANEOUS GLAZING MATERIALS

- A. General: Provide products of material, size, and shape complying with referenced glazing standard, recommended in writing by manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.
- B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

C. Setting Blocks:1. Type recommended in writing by sealant or glass manufacturer.

- D. Spacers:1. Type recommended in writing by sealant or glass manufacturer.
- E. Edge Blocks:1. Type recommended in writing by sealant or glass manufacturer.

2.9 FABRICATION OF GLAZING UNITS

- A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.
 - 1. Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.
 - a. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.
- B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites to produce square edges with slight chamfers at junctions of edges and faces.
- C. Grind smooth and polish exposed glass edges and corners.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:
 - 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 - 2. Presence and functioning of weep systems.
 - 3. Minimum required face and edge clearances.
 - 4. Effective sealing between joints of glass-framing members.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.
- B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.3 GLAZING, GENERAL

- A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.
- B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.
- C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.
- D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.
- E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.
- F. Provide spacers for glass lites where length plus width is larger than 50 inches.
 - 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 - 2. Provide 1/8-inch- minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.
- G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and in accordance with requirements in referenced glazing publications.
- H. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.
- I. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

3.4 TAPE GLAZING

- A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.
- B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.
- C. Cover vertical framing joints by applying tapes to heads and sills first, then to jambs. Cover horizontal framing joints by applying tapes to jambs, then to heads and sills.
- D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.

- E. Do not remove release paper from tape until right before each glazing unit is installed.
- F. Apply heel bead of elastomeric sealant.
- G. Center glass lites in openings on setting blocks, and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.
- H. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.5 GASKET GLAZING (DRY)

- A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.
- B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.
- C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended in writing by gasket manufacturer.
- D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended in writing by gasket manufacturer.
- E. Install gaskets so they protrude past face of glazing stops.

3.6 SEALANT GLAZING (WET)

- A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.
- B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.
- C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.7 CLEANING AND PROTECTION

A. Immediately after installation, remove nonpermanent labels and clean surfaces.

- B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.
 - 1. If, despite such protection, contaminating substances do contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.
- C. Remove and replace glass that is damaged during construction period.
- D. Wash glass on both exposed surfaces not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

3.8 MONOLITHIC GLASS SCHEDULE

- A. Clear Glass Type (MG-1): Fully tempered float glass.1. Minimum Thickness: 6 mm.
- B. Clear Glass Type (MG-2): Fully tempered float glass.
 - 1. Minimum Thickness: 6 mm.
 - 2. Safety glazing required.

3.9 INSULATING GLASS SCHEDULE

- A. Low-E-Coated, Tinted Insulating Glass Type (IG-1):
 - 1. Overall Unit Thickness: 1 inch.
 - 2. Minimum Thickness of Each Glass Lite: 6 mm.
 - 3. Outdoor Lite: Tinted fully tempered float glass.
 - 4. Tint Color: Gray.
 - 5. Interspace Content: Air.
 - 6. Indoor Lite: Clear fully tempered float glass.
 - 7. Low-E Coating: Pyrolytic or sputtered on second or third surface.
 - 8. U-Factor: 0.46 maximum.
 - 9. SGHC: 0.33 maximum.
- B. Low-E-Coated, Tinted Insulating Glass Type (IG-2):
 - 1. Overall Unit Thickness: 1 inch.
 - 2. Minimum Thickness of Each Glass Lite: 6 mm.
 - 3. Outdoor Lite: Tinted fully tempered float glass.
 - 4. Tint Color: Gray.
 - 5. Interspace Content: Air.
 - 6. Indoor Lite: Clear fully tempered float glass.
 - 7. Low-E Coating: Pyrolytic or sputtered on second or third surface.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- 8. U-Factor: 0.46 maximum.
- 9. SGHC: 0.33 maximum.
- 10. Safety glazing required.

END OF SECTION 088000

SECTION 088300 - MIRRORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes: Silvered flat glass mirrors.
- B. Related Requirements:
 - 1. Section 088000 "Glazing" for glass with reflective coatings used for vision and spandrel lites.
 - 2. Section 102800 "Toilet, Bath, and Laundry Accessories" for metal-framed mirrors.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Mirrors: Include description of materials and process used to produce each type of silvered flat glass mirror specified that indicates sources of glass, glass coating components, edge sealer, and quality-control provisions.
- B. Shop Drawings: Include mirror elevations, edge details, mirror hardware, and attachment details.
- C. Samples: For each type of the following:
 - 1. Mirrors: 12 inches square, including edge treatment on two adjoining edges.
 - 2. Mirror Clips: Full size.
 - 3. Mirror Trim: 12 inches long.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Certificates: For each type of mirror.
- C. Sample Warranty: For special warranty.
- 1.4 CLOSEOUT SUBMITTALS
 - A. Maintenance Data: For mirrors to include in maintenance manuals.
- 1.5 QUALITY ASSURANCE
 - A. Installer Qualifications: A qualified Installer, who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Protect mirrors in accordance with mirror manufacturer's written instructions and as needed to prevent damage to mirrors from moisture, condensation, temperature changes, direct exposure to sun, or other causes.
- B. Comply with mirror manufacturer's written instructions for shipping, storing, and handling mirrors as needed to prevent deterioration of silvering, damage to edges, and abrasion of glass surfaces and applied coatings. Store indoors.

1.7 FIELD CONDITIONS

A. Environmental Limitations: Do not install mirrors until ambient temperature and humidity conditions are maintained at levels indicated for final occupancy.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to replace mirrors that deteriorate within specified warranty period. Deterioration of mirrors is defined as defects developed from normal use that are not attributed to mirror breakage or to maintaining and cleaning mirrors contrary to manufacturer's written instructions. Defects include discoloration, black spots, and clouding of the silver film.
 - 1. Warranty Period: Fifteen years from date of purchase.

PART 2 - PRODUCTS

2.1 SOURCE LIMITATIONS

- A. Source Limitations for Mirrors: Obtain mirrors from single source from single manufacturer.
- B. Source Limitations for Mirror Accessories: Obtain mirror-glazing accessories from single source.
- 2.2 SILVERED FLAT GLASS MIRRORS
 - A. Refer to Sheet A-705 in drawing set for specified manufacturer and product.
- 2.3 FABRICATION
 - A. Shop fabricate mirrors to greatest extent possible.
 - B. Fabricate cutouts for notches and holes in mirrors without marring visible surfaces. Locate and size cutouts, so they fit closely around penetrations in mirrors.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, over which mirrors are to be mounted, with Installer present, for compliance with installation tolerances, substrate preparation, and other conditions affecting performance of the Work.
- B. Verify compatibility with and suitability of substrates, including compatibility of existing finishes or primers with mirror mastic.
- C. Proceed with installation only after unsatisfactory conditions have been corrected and surfaces are dry.

3.2 INSTALLATION

- A. General: Install mirrors to comply with mirror manufacturer's written instructions and with referenced National Glass Association (NGA) publications. Mount mirrors accurately in place in a manner that avoids distorting reflected images.
 - 1. NGA Publications: "Laminated Glazing Reference Manual," "Glazing Manual" and "Installation Techniques Designed to Prolong the Life of Flat Glass Mirrors."
- B. Provide a minimum airspace of 1/8 inch between back of mirrors and mounting surface for air circulation between back of mirrors and face of mounting surface.
- C. Install mirrors with mirror hardware. Attach mirror hardware securely to mounting surfaces with mechanical fasteners installed with anchors or inserts as applicable. Install fasteners so heads do not impose point loads on backs of mirrors.

3.3 CLEANING AND PROTECTION

- A. Protect mirrors from breakage and contaminating substances resulting from construction operations.
- B. Do not permit edges of mirrors to be exposed to standing water.
- C. Maintain environmental conditions that prevent mirrors from being exposed to moisture from condensation or other sources for continuous periods of time.
- D. Clean exposed surface of mirrors not more than four days before date scheduled for inspections that establish date of Substantial Completion. Clean mirrors as recommended in writing by mirror manufacturer and NGA's publication "Proper Procedures for Cleaning Flat Glass Mirrors."

END OF SECTION 088300

THIS PAGE LEFT INTENTIONALLY BLANK
SECTION 089119 - FIXED LOUVERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:1. Fixed extruded-aluminum louvers.
- B. Related Requirements:
 1. Section 099113 "Exterior Painting" for field painting exterior louvers.

1.2 DEFINITIONS

- A. Louver Terminology: Definitions of terms for metal louvers contained in AMCA 501 apply to this Section unless otherwise defined in this Section or in referenced standards.
- B. Horizontal Louver: Louver with horizontal blades (i.e., the axis of the blades are horizontal).
- C. Vertical Louver: Louver with vertical blades (i.e., the axis of the blades are vertical).
- D. Drainable-Blade Louver: Louver with blades having gutters that collect water and drain it to channels in jambs and mullions, which carry it to bottom of unit and away from opening.
- E. Wind-Driven-Rain-Resistant Louver: Louver that provides specified wind-driven-rain performance, as determined by testing in accordance with AMCA 500-L.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.
- B. Shop Drawings: For louvers and accessories. Include plans, elevations, sections, details, and attachments to other work. Show frame profiles and blade profiles, angles, and spacing.
 - 1. Show weep paths, gaskets, flashings, sealants, and other means of preventing water intrusion.
 - 2. Show mullion profiles and locations.

1.4 INFORMATIONAL SUBMITTALS

A. Sample Warranties: For manufacturer's special warranties.

1.5 QUALITY ASSURANCE

1.6 FIELD CONDITIONS

A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

1.7 WARRANTY

- A. Special Finish Warranty, Factory-Applied Finishes: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of baked enamel, powder coat, or organic finishes within specified warranty period.
 - 1. Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Delta E units when tested in accordance with ASTM D2244.
 - b. Chalking in excess of a No. 8 rating when tested in accordance with ASTM D4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain fixed louvers from single source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.

2.2 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Louvers withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise or metal fatigue caused by louver-blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures are considered to act normal to the face of the building.
 - 1. Wind Loads:
 - a. Determine loads based on pressures as indicated on Drawings.
- B. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer's stock units identical to those provided, except for length and width in accordance with AMCA 500-L.
- C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.
- D. SMACNA Standard: Comply with recommendations in SMACNA's "Architectural Sheet Metal Manual" for fabrication, construction details, and installation procedures.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

2.3 FIXED EXTRUDED-ALUMINUM LOUVERS

A. Horizontal Drainable-Blade Louver, Extruded Aluminum:

- 1. Louver Depth: 6 inches.
- 2. Frame and Blade Nominal Thickness: Not less than 0.080 inch.
- 3. Mullion Type: Exposed.
- 4. Louver Performance Ratings:
 - a. Refer to drawings.
- 5. AMCA Seal: Mark units with AMCA Certified Ratings Seal.

2.4 PENTHOUSE LOUVERS

- A. Horizontal Drainable-Blade Louver, Extruded Aluminum:
 - 1. Louver Blade Length: 4 inches.
 - 2. Frame and Blade Nominal Thickness: Not less than 0.080 inch.
 - 3. Mullion Type: Exposed.
 - 4. Fasteners: Stainless Steel
 - 5. Louver Performance Ratings:
 - a. Refer to drawings.
 - 6. AMCA Seal: Mark units with AMCA Certified Ratings Seal.

2.5 LOUVER SCREENS

- A. General: Provide screen at each exterior louver.
 - 1. Screen Location for Fixed Louvers: Interior face.
 - 2. Screening Type: Insect screening.
- B. Secure screen frames to louver frames with machine screws with heads finished to match louver, spaced a maximum of 6 inches from each corner and at 12 inches o.c.
- C. Louver Screen Frames: Fabricate with mitered corners to louver sizes indicated.
 - 1. Metal: Same type and form of metal as indicated for louver to which screens are attached.
 - 2. Finish: Mill finish unless otherwise indicated.
 - 3. Type: Rewirable frames with a driven spline or insert.
- D. Louver Screening for Aluminum Louvers:
 - 1. Insect Screening, Aluminum: 18-by-16 mesh, 0.012-inch wire.

2.6 MATERIALS

- A. Aluminum Extrusions: ASTM B221, Alloy 6063-T5, T-52, or T6.
- B. Aluminum Sheet: ASTM B209, Alloy 3003 or 5005, with temper as required for forming, or as otherwise recommended by metal producer for required finish.
- C. Fasteners: Use types and sizes to suit unit installation conditions.
 - 1. Use hex-head or Phillips pan-head screws for exposed fasteners unless otherwise indicated.
 - 2. For fastening aluminum, use aluminum or 300 series stainless steel fasteners.

- 3. For color-finished louvers, use fasteners with heads that match color of louvers.
- D. Postinstalled Fasteners for Concrete and Masonry: Torque-controlled expansion anchors, fabricated from stainless steel components, with allowable load or strength design capacities calculated in accordance with ICC-ES AC193 and ACI 318 greater than or equal to the design load, as determined by testing in accordance with ASTM E488/E488M conducted by a qualified testing agency.
- E. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.

2.7 FABRICATION

- A. Factory assemble louvers to minimize field splicing and assembly. Disassemble units as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.
- B. Maintain equal louver blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.
- C. Fabricate frames, including integral sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
- D. Include supports, anchorages, and accessories required for complete assembly.
 - 1. Exterior Corners: Prefabricated corner units with mitered blades with concealed closefitting splices and with fully recessed mullions at corners.
- E. Provide subsills made of same material as louvers or extended sills for recessed louvers.
- F. Join frame members to each other and to fixed louver blades with fillet welds, threaded fasteners, or both, as standard with louver manufacturer unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary.

2.8 ALUMINUM FINISHES

- A. Finish louvers after assembly.
- B. Color Anodic Finish: AAMA 611, AA-M12C22A42/A44, Class I, 0.018 mm or thicker.
 1. Color: Match adjacent building.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and openings, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorages that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.

3.3 INSTALLATION

- A. Locate and place louvers level, plumb, and at indicated alignment with adjacent work.
- B. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.
- C. Form closely fitted joints with exposed connections accurately located and secured.
- D. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
- E. Protect unpainted galvanized- and nonferrous-metal surfaces that are in contact with concrete, masonry, or dissimilar metals from corrosion and galvanic action by applying a heavy coating of bituminous paint or by separating surfaces with waterproof gaskets or nonmetallic flashing.
- F. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Section 079200 "Joint Sealants" for sealants applied during louver installation.

3.4 ADJUSTING AND CLEANING

- A. Clean exposed louver surfaces that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate during construction period.
- B. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Thoroughly rinse surfaces and dry.
- C. Restore louvers damaged during installation and construction, so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.
 - 1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating.

END OF SECTION 089119

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 092216 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Framing systems.
 - 2. Suspension systems.
 - 3. Grid suspension systems.

B. Related Requirements:

1. Section 054000 "Cold-Formed Metal Framing" for exterior and interior load-bearing and exterior non-load-bearing wall studs; floor joists; and roof rafters and ceiling joists.

1.2 ACTION SUBMITTALS

A. Product Data:

- 1. Framing systems.
- 2. Suspension systems.
- 3. Grid suspension systems.

1.3 INFORMATIONAL SUBMITTALS

A. Evaluation Reports: For steel studs and tracks, from ICC-ES or other qualified testing agency acceptable to authorities having jurisdiction.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Notify manufacturer of damaged materials received prior to installation.
- B. Deliver materials in manufacturer's original, unopened, undamaged containers with identification labels intact.
- C. Protect cold-formed metal framing from corrosion, deformation, and other damage during delivery, storage, and handling as required by AISI S202, "Code of Standard Practice for Cold-Formed Steel Structural Framing."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated on Drawings, in accordance with ASTM E90 and classified in accordance with ASTM E413 by an independent testing agency.

B. Horizontal Deflection: For wall assemblies, limited to 1/240 of the wall height based on horizontal loading of 5 lbf/sq. ft..

2.2 FRAMING SYSTEMS

- A. Framing Members, General: Comply with AISI S220 for conditions indicated.
 - 1. Steel Sheet Components: Comply with AISI S220 requirements for metal unless otherwise indicated
 - 2. Protective Coating: Comply with AISI S220; ASTM A653/A653M, G40; or coating with equivalent corrosion resistance. Galvannealed products are unacceptable.
 - a. Coating demonstrates equivalent corrosion resistance with an evaluation report acceptable to authorities having jurisdiction.
- B. Studs and Track: AISI S220.
 - 1. Minimum Base-Steel Thickness: As required by performance requirements for horizontal deflection.
 - 2. Depth: As indicated on Drawings.
- C. Slip-Type Head Joints: Where indicated, provide one of the following:
 - 1. Single Long-Leg Track System: Top track with 2-inch- deep flanges in thickness not less than indicated for studs, installed with studs friction fit into top track and with continuous bridging located within 12 inches of the top of studs to provide lateral bracing.
 - 2. Double-Track System: Top outer tracks, inside track with 2-inch- deep flanges in thickness not less than indicated for studs and fastened to studs, and outer track sized to friction-fit over inner track.
 - 3. Deflection Track: Steel sheet top track manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.
- D. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.
 1. Minimum Base-Steel Thickness: As indicated on Drawings.
- E. Cold-Rolled Channel Bridging: Steel, 0.0538-inch minimum base-steel thickness, with minimum 1/2-inch- wide flanges.
 - 1. Depth: As indicated on Drawings.
 - 2. Clip Angle: Not less than 1-1/2 by 1-1/2 inches, 0.068-inch- thick, galvanized steel.
- F. Cold-Rolled Furring Channels: 0.053-inch uncoated-steel thickness, with minimum 1/2-inchwide flanges.
 - 1. Depth: As indicated on Drawings.
 - 2. Furring Brackets: Adjustable, corrugated-edge-type steel sheet with minimum uncoatedsteel thickness of 0.0329 inch.
 - 3. Tie Wire: ASTM A641/A641M, Class 1 zinc coating, soft temper, 0.062-inch- diameter wire, or double strand of 0.048-inch- diameter wire.
- G. Z-Shaped Furring: With slotted or nonslotted web, face flange of 1-1/4 inches, wall attachment flange of 3/4 inch, minimum uncoated-steel thickness of 0.0179 inch, and depth required to fit insulation thickness indicated.

2.3 SUSPENSION SYSTEMS

- A. Tie Wire: ASTM A641/A641M, Class 1 zinc coating, soft temper, 0.062-inch- diameter wire, or double strand of 0.048-inch- diameter wire.
- B. Wire Hangers: ASTM A641/A641M, Class 1 zinc coating, soft temper, 0.16 inch in diameter.
- C. Carrying Channels (Main Runners): Cold-rolled, commercial-steel sheet with a base-steel thickness of 0.0538 inch and minimum 1/2-inch- wide flanges.
 - 1. Depth: As indicated on Drawings.
- D. Furring Channels (Furring Members):
 - 1. Cold-Rolled Channels: 0.0538-inch uncoated-steel thickness, with minimum 1/2-inchwide flanges, 3/4 inch deep.
 - 2. Steel Studs and Tracks:
 - a. Minimum Base-Steel Thickness: As indicated on Drawings.
 - b. Depth: As indicated on Drawings.

2.4 GRID SUSPENSION SYSTEMS

A. Grid Suspension Systems for Gypsum Board Ceilings: ASTM C645, direct-hung system composed of main beams and cross-furring members that interlock.

2.5 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards.
 - 1. Fasteners for Steel Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.
- B. Isolation Strip at Exterior Walls: Provide one of the following:
 - 1. Asphalt-Saturated Organic Felt: ASTM D226/D226M, Type I (No. 15 asphalt felt), nonperforated.
 - 2. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch thick, in width to suit steel stud size.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.
- 3.3 INSTALLATION, GENERAL
 - A. Installation Standard: ASTM C754.
 - 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C840 that apply to framing installation.
 - B. Install framing and accessories plumb, square, and true to line, with connections securely fastened.
 - C. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.
 - D. Install bracing at terminations in assemblies.
 - E. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLATION OF FRAMING SYSTEMS

- A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
- B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.
- C. Install studs so flanges within framing system point in same direction.
- D. Install tracks at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts that penetrate partitions above ceiling.
 - 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 - 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install track section (for cripple studs) at head and secure to jamb studs.
 - a. Install two studs at each jamb unless otherwise indicated.
 - b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 - 3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.

- 4. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.
- E. Direct Furring:
 - 1. Screw to wood framing.
 - 2. Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches o.c.
- F. Z-Shaped Furring Members:
 - 1. Erect insulation, specified in Section 072100 "Thermal Insulation," vertically and hold in place with Z-shaped furring members spaced 24 inches o.c.
 - 2. Except at exterior corners, securely attach narrow flanges of furring members to wall with concrete stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches o.c.
 - 3. At exterior corners, attach wide flange of furring members to wall with short flange extending beyond corner; on adjacent wall surface, screw-attach short flange of furring channel to web of attached channel. At interior corners, space second member no more than 12 inches from corner and cut insulation to fit.
- G. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

3.5 INSTALLATION OF SUSPENSION SYSTEMS

- A. Install suspension system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 - 1. Hangers: 48 inches o.c.
 - 2. Carrying Channels (Main Runners): 48 inches o.c.
 - 3. Furring Channels (Furring Members): 16 inches o.c.
- B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.
- C. Suspend hangers from building structure as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 - a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 - a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.
 - 3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 - 4. Do not attach hangers to permanent metal forms. Furnish cast-in-place hanger inserts that extend through forms.
 - 5. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.

6. Do not connect or suspend steel framing from ducts, pipes, or conduit.

3.6 INSTALLATION OF GRID SUSPENSION SYSTEMS

A. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.

3.7 FIELD QUALITY CONTROL

A. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION 092216

SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior gypsum board.
 - 2. Tile backing panels.
- B. Related Requirements:
 - 1. Section 061600 "Sheathing" for gypsum sheathing for exterior walls.
 - 2. Section 079219 "Acoustical Joint Sealants" for acoustical joint sealants installed in gypsum board assemblies.
 - 3. Section 092216 "Non-Structural Metal Framing" for non-structural steel framing and suspension systems that support gypsum board panels.
 - 4. Section 093013 "Ceramic Tiling" for cementitious backer units installed as substrates for ceramic tile.

1.2 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Gypsum wallboard.
 - 2. Gypsum board, Type X.
 - 3. Gypsum ceiling board.
 - 4. Cementitious backer units.
 - 5. Sound-attenuation blankets.

1.3 DELIVERY, STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.4 FIELD CONDITIONS

- A. Environmental Limitations: Comply with ASTM C840 requirements or gypsum board manufacturer's written instructions, whichever are more stringent.
- B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.
- C. Do not install panels that are wet, moisture damaged, and mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated in accordance with ASTM E90 and classified in accordance with ASTM E413 by an independent testing agency.
- 2.2 GYPSUM BOARD, GENERAL
 - A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

- A. Gypsum Wallboard: ASTM C1396/C1396M.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Gypsum.
 - b. CertainTeed; SAINT-GOBAIN.
 - c. Georgia-Pacific Gypsum LLC.
 - d. PABCO Gypsum.
 - e. USG Corporation.
 - 2. Thickness: 1/2 inch.
 - 3. Long Edges: Tapered.
- B. Gypsum Board, Type X: ASTM C1396/C1396M.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Gypsum.
 - b. CertainTeed; SAINT-GOBAIN.
 - c. Georgia-Pacific Gypsum LLC.
 - d. PABCO Gypsum.
 - e. Panel Rey.
 - f. USG Corporation.
 - 2. Thickness: 5/8 inch.
 - 3. Long Edges: Tapered.
- C. Gypsum Ceiling Board: ASTM C1396/C1396M.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Gypsum.
 - b. CertainTeed; SAINT-GOBAIN.
 - c. Georgia-Pacific Gypsum LLC.
 - d. PABCO Gypsum.
 - e. Panel Rey.
 - 2. Thickness: 1/2 inch.
 - 3. Long Edges: Tapered.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

2.4 TILE BACKING PANELS

- A. Cementitious Backer Units: ANSI A118.9 and ASTM C1288 or ASTM C1325, with manufacturer's standard edges.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. C-Cure.
 - b. Custom Building Products.
 - c. FinPan, Inc.
 - d. USG Corporation.
 - 2. Thickness: 1/2 inch.
 - 3. Mold Resistance: ASTM D3273, score of 10 as rated in accordance with ASTM D3274.

2.5 TRIM ACCESSORIES

- A. Interior Trim: ASTM C1047.
 - 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc [Paper-faced galvanized-steel sheet].
 - 2. Shapes:
 - a. Cornerbead.
 - b. Bullnose bead.
 - c. LC-Bead: J-shaped; exposed long flange receives joint compound.
 - d. L-Bead: L-shaped; exposed long flange receives joint compound.
 - e. U-Bead: J-shaped; exposed short flange does not receive joint compound.
 - f. Expansion (control) joint.
 - g. Curved-Edge Cornerbead: With notched or flexible flanges.

2.6 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C475/C475M.
- B. Joint Tape:
 - 1. Interior Gypsum Board: Paper.
 - 2. Tile Backing Panels: As recommended by panel manufacturer.
- C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
 - 1. Prefilling: At open joints and damaged surface areas, use setting-type taping compound.
 - 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
 - a. Use setting-type compound for installing paper-faced metal trim accessories.
 - 3. Fill Coat: For second coat, use setting-type, sandable topping compound.
- D. Joint Compound for Tile Backing Panels:
 - 1. Cementitious Backer Units: As recommended by backer unit manufacturer.

2.7 AUXILIARY MATERIALS

- A. Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.
 1.
- B. Steel Drill Screws: ASTM C1002 unless otherwise indicated.
 - 1. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.
- C. Sound-Attenuation Blankets: ASTM C665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 - 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
- D. Acoustical Sealant: As specified in Section 079219 "Acoustical Joint Sealants."

2.8 TEXTURE FINISHES

A. Primer: As recommended by textured finish manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
- B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION AND FINISHING OF PANELS, GENERAL

- A. Comply with ASTM C840.
- B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
- C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.
- D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered

edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.

- E. Form control and expansion joints with space between edges of adjoining gypsum panels.
- F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 - 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 - 2. Fit gypsum panels around ducts, pipes, and conduits.
 - 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch- wide joints to install sealant.
- G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch- wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
- H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.
- I. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C919 and with manufacturer's written instructions for locating edge trim and closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings.
- J. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.3 INSTALLATION OF INTERIOR GYPSUM BOARD

- A. Install interior gypsum board in the following locations:
 - 1. Wallboard Type: Vertical surfaces unless otherwise indicated.
 - 2. Type X: Vertical surfaces unless otherwise indicated.
 - 3. Ceiling Type: As indicated on Drawings.
- B. Single-Layer Application:
 - 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 - 2. On partitions/walls, apply gypsum panels horizontally (perpendicular to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 - a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 - 3. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

3.4 INSTALLATION OF TILE BACKING PANELS

- A. Cementitious Backer Units: ANSI A108.11, at locations indicated to receive tile.
- B. Where tile backing panels abut other types of panels in same plane, shim surfaces to produce a uniform plane across panel surfaces.

3.5 INSTALLATION OF TRIM ACCESSORIES

- A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
- B. Control Joints: Install control joints in accordance with ASTM C840 and in specific locations approved by Architect for visual effect.
- C. Interior Trim: Install in the following locations:
 - 1. Cornerbead: Use at outside corners.
 - 2. LC-Bead: Use at exposed panel edges.

3.6 FINISHING OF GYPSUM BOARD

- A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
- B. Prefill open joints and damaged surface areas.
- C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.
- D. Gypsum Board Finish Levels: Finish panels to levels indicated below and in accordance with ASTM C840:
 - 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 - 2. Level 2: Panels that are substrate for tile.
 - 3. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 - a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."

3.7 **PROTECTION**

- A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.
- B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
- C. Remove and replace panels that are wet, moisture damaged, and mold damaged.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
- 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 092900

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 093000 - TILING

PART 1 - GENERAL

1.1 ACTION SUBMITTALS

- A. Shop drawings: Submit for tile pattern work indicated. Indicate control and expansion joint locations. Include tile layout, setting bed thicknesses, joint widths, control and expansion joint sizes and sections.
- B. Product data: Submit manufacturer's printed product description and installation instructions for each type of tile and for use of manufactured mortars, grouts, adhesives, sealants, latex/polymer additives, and accessory products. Include mortar and grout proportioning and mixing instructions for latex/polymer additives.
- C. Samples; submit the following:
 - 1. 1'-0" by 1'-0" panel of each type and color tile selected, grouted as specified.
 - 2. Samples of each trim shape required.
 - 3. 1'-0" length of threshold.
 - 4. Samples of each accessory required.
 - 5. Submit samples of color sealant materials for Architect's approval.

1.2 INFORMATIONAL SUBMITTALS

- A. Master grade certificates: Indicate that tile materials conform to ANSI A137.1. Certificates shall indicate grade, kind of tile, identification for tile packages and name and location of project. Tile manufacturer shall issue certificates at time of shipping.
- B. Certification: Submit written certification that crack isolation membrane is approved for use with specified mortars.

1.3 QUALITY ASSURANCE

- A. Applicable standards:
 - 1. Standards of the following, as referenced herein:
 - a. American National Standards Institute (ANSI).
 - b. ASTM International (ASTM).
 - c. Marble Institute of America, Version VII (MIA).
 - 2. Tile Council of North America (TCNA), "Handbook for Ceramic, Glass, and Stone Tile Installation," 2021 Edition.
- B. For each type of setting material and grouting material specified, only one brand shall be used throughout project.
- C. Allowable tolerances: Plumb, level and true to line, meeting ANSI A108.02 as follows:
 - 1. For tile with all dimensions less than 15": Maximum 1/16" in 1'-0" and maximum 1/4" in 10'-0".

2. For tile with any dimension greater than 15": Maximum 1/16" in 2'-0" and maximum 1/8" in 10'-0".

1.4 DELIVERY, STORAGE AND HANDLING

- A. Deliver materials in original containers with labels legible and intact, identifying brand name and contents.
 - 1. Tile cartons shall be grade-sealed by manufacturer in accord with ANSI A137.1 and ANSI A137.2, with grade seals unbroken.
 - 2. Manufactured mortars, adhesives and grouts shall bear hallmarks certifying compliance with specified standards.

1.5 JOB CONDITIONS

- A. Environmental requirements:
 - 1. For field-mixed mortar and grout, set and grout tile when ambient temperature is at least 50° F. and rising.
 - 2. For manufactured mortar, adhesive and grout, comply with minimum temperature recommendations of manufacturers.

1.6 MAINTENANCE

- A. Extra materials:
 - 1. Provide not less than 3% of installed total of each type, size and color of tile specified and 3% of each type, size and color of accessory, for Owner's maintenance.
 - 2. Store tile and accessory units where indicated by Owner.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

- A. Factory blending: For tile exhibiting color variations within ranges, blend tile in factory and package so tile units taken from one package show same range in colors as those taken from other packages and match approved Samples.
- B. Mounting: For factory-mounted tile, provide back- or edge-mounted tile assemblies as standard with manufacturer unless otherwise indicated.
 - 1. Where tile is indicated for installation in wet areas, do not use back- or edge-mounted tile assemblies unless tile manufacturer specifies in writing that this type of mounting is suitable for installation indicated and has a record of successful in-service performance.
- C. Where tile is indicated for installation on exteriors or in wet areas, do not use back- or edgemounted tile assemblies unless tile manufacturer specifies in writing that this type of mounting is suitable for installation indicated and has a record of successful in-service performance.
- D. Factory-applied temporary protective coating: Where indicated under tile type, protect exposed surfaces of tile against adherence of mortar and grout by pre-coating with continuous film of

release agent as recommended by mortar and grout manufacturer or a hot-applied petroleum paraffin wax. Do not coat backs or sides of tile surfaces.

- E. ANSI Ceramic Tile Standard: Provide tile that complies with ANSI A137.1 for types, compositions, and other characteristics indicated.
 - 1. Provide tile complying with Standard grade requirements unless otherwise indicated.
- F. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI A108.02, ANSI standards referenced in other Part 2 articles, ANSI standards referenced by TCA installation methods specified in tile installation schedules, and other requirements specified.
- G. Provide products in this Section with low VOCs and emissions.
- 2.2 TILE
 - A. Basis of design for each type of tile. Refer to Drawings for selections, sizes and installation locations, including but not necessarily limited to:
 - 1. Porcelain Tiles:
 - a. Porcelain tile:
 - 1) Meeting ANSI A137.1, Section 4.1 Impervious Class, and Section 6.1 Table 10, Standard Grade.
 - b. Characteristics:
 - 1) Nominal face size: Indicated in drawings.
 - 2) Thickness: Indicated in drawings.
 - c. Dynamic coefficient of friction (DCOF) for floor tile:
 - 1) Tested in accord with the DCOF AccuTest, and meeting ANSI A137.1 and recommendations of ADA Accessibility Guidelines.
 - 2) DCOF minimum: 0.42.
 - d. Trim shapes: Matching tile in color and size. Include coved base, coved bullnose base, bullnose caps, beads and corner units, as required.

2.3 SETTING MATERIALS AND ACCESSORIES

- A. Premium latex-modified thinset mortar for walls:
 - 1. Acceptable products:
 - a. Custom Building Products, Prolite Premium Mortar.
 - b. H.B. Fuller Construction Products, TEC 3N1 Performance Mortar.
 - c. Mapei Corp., UltraFlex LFT.
 - d. Basis of design; Laticrete, 254 Platinum.
 - 2. Characteristics: Non-sag, pre-sanded, polymer-modified Portland cement and additives meeting ANSI A118.4, ANSI A118.11 and ANSI A118.15, non-sag, minimum 400 psi shear strength for porcelain tile at 28 days.
- B. Premium polymer-modified thinset mortar for floor tile with all dimensions less than 15":
 - 1. Acceptable products:
 - a. Custom Building Products, ProLite Premium Mortar.
 - b. H.B. Fuller Construction Products, TEC IsoLight Crack Isolation Mortar.
 - c. Mapei Corp., UltraFlex 3.

2. Characteristics: Pre-sanded, polymer-modified Portland cement and additives meeting ANSI A118.4 and ANSI A118.11, minimum 200 psi shear strength for porcelain tile at 28 days.

2.4 GROUTING MATERIALS

- A. Grout for all locations except where epoxy grout is used:
 - 1. Basis of design; Custom Building Products, Fusion ProTM Single Component GroutTM.
 - 2. Characteristics: Single component advanced acrylic plus silicone resin with silica fillers and inorganic pigments grout with stain resistance and color consistency; meeting ANSI A118.7 and A118.3.
 - 3. Color: As selected by Architect, or indicated in Finish Schedule in Drawings.
- B. Epoxy grout for all floor tile and for wall tile in showers and other wetareas:
 - 1. Acceptable products; standard epoxy grout:
 - a. Custom Building Products, CEG-Lite 100% Solids Commercial Epoxy Grout.
 - b. H. B. Fuller Construction Products, TEC AccuColor EFX Epoxy Special Effects Grout.
 - c. Mapei Corp., Kerapoxy or Kerapoxy CQ.
 - d. Laticrete, Spectralock Pro Grout.
 - 2. Characteristics: 100% epoxy, two-part or three-part composition meeting ANSI A118.3, with a VOC content of 65 g/L or less when calculated according to 40 CFR 59, Subpart D; colors selected by Architect, or as indicated in Finish Schedule in Drawings.
 - 3. Grout release agent: Provide grout manufacturer's recommended grout release agent, for application prior to grouting tile to receive epoxy grout.

2.5 CONTROL AND EXPANSION JOINT MATERIALS

- A. Acceptable products:
 - 1. Custom Building Products, 100% Silicone Caulk.
 - 2. Tremco, Inc., Dymeric.
 - 3. Mapei, Mapeflex p1 sl (urethane).
 - 4. Mapei, Mapesil T (silicone).
 - 5. MBCC Group (Master Builders Construction Chemicals), MasterSeal NP-2.
 - 6. Pecora Corp., Dynatrol II.
- B. Characteristics:
 - 1. Type; Contractor's option:
 - a. Urethane: Two-part, polyurethane-based sealant with separate pre-packaged color agent; VOC Content of not more than 250 g/L when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Silicone: One-part silicone caulk meeting ASTM C920, Shore A Hardness of 35+, Type S, Grade NS, Class 25, Use T, I, M & G and ASTM C794 properties.
 - 2. Colors: Colors as scheduled on the drawings.
- C. Primer: Types recommended by sealant manufacturer:
 - 1. Sealant primers for nonporous substrates: 250 g/L.
 - 2. Sealant primers for porous substrates: 775 g/L.

D. Backup material: Flexible, non-compressive foam type as recommended by sealant manufacturer.

2.6 ACCESSORY MATERIALS

- A. Marble thresholds: Meeting MIA Group A, honed finish, in sizes and shapes indicated; types and colors as selected by Architect.
- B. Trim and transition profiles: Refer to Finish Schedule in drawings for selections and installation locations.
 1. TS-2; RENO-U, 3/8".
- C. Cleaning materials and methods for face of epoxy-grouted tile: Provide grout cleaning materials and methods in accord with manufacturer's product data.
- D. Grout sealer except at epoxy grout joints: Manufacturer's standard grout sealer which does not change color or appearance of grout. Subject to compliance with requirements of this specification, provide named products and systems or comparable products and systems by one of following manufacturers:
 - 1. Bostik Findley; "CeramaSeal® Magic Seal™ Grout Sealer".
 - 2. Custom Building Products; "TileLab® SurfaceGard® Penetrating Sealer".
 - 3. Southern Grouts & Mortars, Inc; "Grout Sealer-Premium Stain Blocker".
 - 4. Summitville Tiles, Inc.; "SL-99 SummitSeal II".
- E. Leveling compound; acceptable products: Portland based, free flowing, self-leveling compound.
 1. Acceptable products:
 - a. Custom Building Products, LevelQuik RS.
 - b. Euclid Chemical Co., Super Flo-Top.
 - c. H.B. Fuller Construction Products, TEC Level Set 200.
 - d. Mapei, Ultraplan 1 Plus.
 - 2. Characteristics: Fast-setting, self-leveling underlayment, minimum 28-day compressive strength of 4,000 psi.
 - 3. Provide primers for leveling compound as recommended or required by leveling compound manufacturer's product data.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Subfloor curing:
 - 1. Concrete subfloors shall be moisture-cured or cured using a curing compound in accord with the requirements of the Section 033000 Cast-In-Place Concrete.
 - 2. If a curing compound has been used, Contractor shall verify that compound is compatible with flooring manufacturer's installation materials.
 - 3. If the curing compound is not compatible, or if compatibility is unknown, Contractor shall remove curing compound by shot-blasting or other methods approved by floor finish manufacturer.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- B. Concrete moisture vapor emission, humidity levels and pH testing: Perform one or more of the following tests, as required by flooring manufacturer's product data, using the following methods:
 - 1. Moisture vapor emissions: Perform tests on subfloors in accord with ASTM F1869 calcium chloride test and flooring manufacturer's product data, to determine if surfaces are acceptable to receive specified flooring products.
 - 2. Humidity level: Perform on subfloors in accord with ASTM F2170 *in situ* probe and flooring manufacturer's product data, to determine if surfaces are acceptable to receive specified flooring products.
 - 3. Concrete pH level: Perform on subfloors to verify that surfaces are acceptable to receive specified flooring products.
 - 4. Correction of conditions: Prior to installation, correct conditions that do not meet flooring manufacture's requirements, or that may be detrimental to flooring installation.
- C. Leveling compound:
 - 1. Acceptable substrates: Concrete shall be fully cured, scarified, and shall accept water penetration. Test by sprinkling water on various areas of the substrate.
 - a. If water penetrates, then a good bond can be achieved.
 - b. If water beads, surface contaminants are present, and loss of adhesion may occur. Contaminants shall be mechanically removed before installation.
 - c. Concrete shall be free of efflorescence and not subject to hydrostatic pressure. Concrete slabs shall have a broomed or brushed finish to enhance the bond. Smooth concrete slabs shall be mechanically abraded to ensure a good bond.
 - d. Prior to leveling compound installation, prime surfaces with primer recommended by leveling compound manufacturer's product data.
 - 2. Installation:
 - a. Priming: Apply primer in accord with manufacturer's product data.
 - b. Leveling compound: Install leveling compound in accord with manufacturer's product data. Install to thicknesses indicated on approved shop drawings.
 - c. Joints: If leveling compound spans any type of joint, bring joint through leveling compound by sawcutting leveling compound when it has reached walkable hardness.
- D. Conditions of surfaces to receive tile:
 - 1. Surfaces shall be firm, dry, clean and free of oily or waxy films.
 - 2. Grounds, anchors, plugs, hangers, bucks, electrical and mechanical work in or behind tile shall be installed prior to proceeding with tile work.

3.2 GENERAL TILE INSTALLATION

- A. Install tile in accord with ANSI A108.1 through A108.11 and as specified herein.
- B. Layout:
 - 1. Center tile within areas to avoid tiles of unequal widths at opposite walls and tiles of less than 1/2 tile width.
 - 2. Align tile joints straight and parallel to walls.
 - 3. Align joints in floor and base or wall tile.
 - 4. Locate accessories, control joints and expansion joints before installing tile.

C. Cutting and fitting:

- 1. Cut and drill tiles without damaging exposed tile face. Rub cut edges smooth with Carborundum stone.
- 2. Grind and fit tile at intersections, against trim and at built-in fixtures and accessories.
- 3. Fit tile around outlets, pipes, fixtures and fittings so that tile edges are concealed under applied escutcheons, collars or plates.
- 4. Miter coved and bullnose tile in corners or use special trim shapes to maintain uniform joint widths.

D. Joints:

- 1. Provide uniform joint 1/8" widths equal to pre-spaced tile for ceramic tile and glazed wall tile.
- 2. Provide 1/4" wide joints for unglazed paver porcelain tile.
- 3. In internal vertical corners of wall tile and where tile abuts dissimilar materials, form joints using control joint filled with sealant in lieu of grout.
- E. Control and expansion joints:
 - 1. Ascertain that control and expansion joints are located in accord with approved shop drawings, TCNA EJ171-21, and as approved in advance by Architect.
 - 2. Provide control joints, perimeter control joints and expansion joints through tile and setting bed.
 - a. Field of floor control joints shall be located as follows:
 - 1) Spacing indicated, but not less than the following:
 - a) Interior dry areas: 20'-0" to 25'-0" o. c. in each direction.
 - b) Interior wet areas: 8'-0" to 12'-0" o. c. in each direction.
 - 2) Over cold joints and saw-cut control joints.
 - b. Provide control joints at all perimeters.
 - c. Locations of joints shall be as approved in advance by Architect. Width of joints shall match width of grout joints, except control joint shall be not less than 1/8" wide.
 - 3. Prime joints in accord with sealant manufacturer's product data. Following tile work completion, seal joints in accord with TCNA EJ171-21, using specified sealant.
- F. Tolerances:
 - 1. Allowable lippage: Comply with ANSI A108.02 as follows:
 - a. Glazed wall tile/mosaic tile: 1/32".
 - b. Pressed floor tile and porcelain tiles, joint width less than 1/4": 1/32".
 - c. Pressed floor tile and porcelain tiles, joint width 1/4" or greater: 1/16".
 - 2. Allowable site installation tolerances: Plumb, level and true to line, meeting ANSI A108.02 as follows:
 - a. For tile with all dimensions less than 15": Maximum 1/16" in 1'-0" and maximum 1/4" in 10'-0".
 - b. For tile with any dimension greater than 15": Maximum 1/16" in 2'-0" and maximum 1/8" in 10'-0".
- G. Grout release agent: Prior to grouting tile to receive epoxy grout, apply specified grout release agent to face of tile only. Do not allow agent to migrate into joints.

3.3 TILE INSTALLATION

- A. Floor tile, with all dimensions less than 15", thinset, interior:
 - 1. Setting method: Premium polymer-modified thinset mortar.
 - 2. Standard installation method: Generally in accord with TCNA F115-21/TCNA F115A-21 for epoxy grout.
 - 3. Grout type: Epoxy grout. Apply grout release agent prior to grouting tile to receive epoxy grout.
- B. Wall tile and base, thinset over gypsum board, interior:
 - 1. Setting method: Premium latex-modified thinset mortar.
 - 2. Standard installation method: TCNA W243-21.
 - 3. Grout types:
 - a. Dry areas: Polymer modified unsanded cement grout for joints up to 1/8" wide.
 - b. Dryareas: Polymer modified sanded cement grout for joints over 1/8" wide.
- C. Wall tile and base, thinset over cement backer board, interior:
 - 1. Setting method: Premium latex-modified thinset mortar on coated glass mat gypsum backer board over studs.
 - 2. Standard installation method: TCNA W244C-21.
 - 3. Grout types:
 - a. Dry areas: Polymer modified unsanded cement grout for joints up to 1/8" wide.
 - b. Dryareas: Polymer modified sanded cement grout for joints over 1/8" wide.
 - c. Wet areas: Epoxy grout.

3.4 CLEANING AND PROTECTION

- A. Clean tile as work progresses, preventing accumulation of setting and grouting materials or debris on tile faces.
- B. Immediately remove stains, grout release agent, excess mortar, grout and sealant from faces of tile; comply with manufacturer's product data.
- C. Glazed tile: Clean glazed tile using a solution of detergent and water only. Use no acids to clean glazed tile.
- D. Unglazed tile:
 - 1. Allow tile work to cure a minimum of 14 days prior to acid cleaning.
 - 2. Saturate grout joints with clean water at least two hours prior to beginning acid cleaning. Apply a grease coating to metal and vitreous surfaces subject to contact with acid solution.
 - 3. Utilize a solution of one pound sulfamic acid to five gallons clean water for cleaning in accord with ANSI A137.1, Section 3.5.3. Work in areas not exceeding 20 sq. ft., scrubbing tile surfaces to remove residue. Do not scrub grout joints.
 - 4. Flush cleaned areas with water immediately after cleaning. Scrub surfaces with clean water to remove remaining film.
 - 5. Do not reuse cleaning solutions. Discard solutions containing residue and debris from cleaning operations so as not to contaminate or stain adjacent work.

- E. Grout sealer except epoxy grout: Apply grout sealer to cementitious grout joints in compliance with grout sealer manufacturer's written instructions. As soon as grout sealer has penetrated grout joints, remove excess sealer and sealer that has gotten onto tile faces by wiping with soft cloth.
- F. Protection: Protect installed tile work until Date of Substantial Completion by covering with kraft paper.

END OF SECTION 093000

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 095113 - ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Acoustical panels.
- 2. Metal suspension system.
- 3. Metal edge moldings and trim.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. Acoustical panels.
 - 2. Metal suspension system.
 - 3. Metal edge moldings and trim.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For finishes to include in maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Acoustical Ceiling Units: Full-size panels equal to 2 percent of quantity installed.
 - 2. Suspension-System Components: Quantity of each exposed component equal to 2 percent of quantity installed.
 - 3. Hold-Down Clips: Equal to 2 percent of quantity installed.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver acoustical panels, suspension-system components, and accessories to Project site and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.
- B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.
- C. Handle acoustical panels carefully to avoid chipping edges or damaging units in any way.

1.6 FIELD CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

PART 2 - PRODUCTS

2.1 SOURCE LIMITATIONS

A. Source Limitations for Ceiling System: Obtain each type of acoustical ceiling panel and its supporting suspension system from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: Class A in accordance with ASTM E1264.
 - 2. Smoke-Developed Index: 50 or less.
- B. Fire-Resistance Ratings: Comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Indicate design designations from UL or from the listings of another qualified testing agency.

2.3 ACOUSTICAL PANELS ACT

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. American Gypsum.
 - 2. CertainTeed; SAINT-GOBAIN.
 - 3. Rockfon; ROCKWOOL International.
 - 4. USG Corporation.
- B. Acoustical Panel Standard: Provide manufacturer's standard panels in accordance with ASTM E1264 and designated by type, form, pattern, acoustical rating, and light reflectance unless otherwise indicated.
- C. Classification: Provide fire-resistance-rated panels as follows:
 - 1. Type and Form, Type III: Mineral base with painted finish; Form 1, nodular.
 - 2. Pattern: CE (perforated, small holes and lightly textured).
- D. Color: White.
- E. Light Reflectance (LR): Not less than 0.85.

- F. Ceiling Attenuation Class (CAC): Not less than 35.
- G. Noise Reduction Coefficient (NRC): Not less than 0.75.
- H. Edge/Joint Detail: Reveal sized to fit flange of exposed suspension-system members.
- I. Thickness: 1. 5/8 inch.
- J. Modular Size: 24 by 24 inches.
- K. Antimicrobial Treatment: Manufacturer's standard broad spectrum, antimicrobial formulation that inhibits fungus, mold, mildew, and gram-positive and gram-negative bacteria and showing no mold, mildew, or bacterial growth when tested in accordance with ASTM D3273, ASTM D3274, or ASTM G21 and evaluated in accordance with ASTM D3274 or ASTM G21.

2.4 METAL SUSPENSION SYSTEM

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Armstrong Ceiling & Wall Solutions.
 - 2. CertainTeed; SAINT-GOBAIN.
 - 3. Rockfon; ROCKWOOL International.
 - 4. USG Corporation.
- B. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized, G30 coating designation; with prefinished 15/16-inch- wide metal caps on flanges.
 - 1. Structural Classification: Heavy-duty system.
 - 2. End Condition of Cross Runners: Override (stepped) type.
 - 3. Face Design: Flat, flush.
 - 4. Cap Material: Cold-rolled steel.
 - 5. Cap Finish: Painted white.

2.5 ACCESSORIES

- A. Attachment Devices: Size for five times the design load indicated in ASTM C635/C635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.
- B. Wire Hangers, Braces, and Ties: Provide wires as follows:
 - 1. Zinc-Coated, Carbon-Steel Wire: ASTM A641/A641M, Class 1 zinc coating, soft temper.
 - 2. Size: Wire diameter sufficient for its stress at three times hanger design load (ASTM C635/C635M, Table 1, "Direct Hung") will be less than yield stress of wire, but not less than 0.106-inch- diameter wire.
- C. Hold-Down Clips: Manufacturer's standard hold-down.

2.6 METAL EDGE MOLDINGS AND TRIM

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Armstrong Ceiling & Wall Solutions.
 - 2. CertainTeed; SAINT-GOBAIN.
 - 3. Rockfon; ROCKWOOL International.
 - 4. USG Corporation.
- B. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that comply with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension-system runners.
 - 1. Edge moldings to fit acoustical panel edge details and suspension systems indicated and match width and configuration of exposed runners unless otherwise indicated.
 - 2. For lay-in panels with reveal edge details, provide stepped edge molding that forms reveal of same depth and width as that formed between edge of panel and flange at exposed suspension member.
 - 3. For circular penetrations of ceiling, provide edge moldings fabricated to diameter required to fit penetration exactly.

2.7 ACOUSTICAL SEALANT

A. Acoustical Sealant: As specified in Section 079219 "Acoustical Joint Sealants."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.
- B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders unless otherwise indicated, and comply with layout shown on reflected ceiling plans.
- B. Layout openings for penetrations centered on the penetrating items.

3.3 INSTALLATION OF ACOUSTICAL PANEL CEILINGS

- A. Install acoustical panel ceilings in accordance with ASTM C636/C636M and manufacturer's written instructions.
- B. Suspend ceiling hangers from building's structural members and as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
 - 2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
 - 4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly to structure or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
 - 5. Secure flat, angle, channel, and rod hangers to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices that are secure and appropriate for both the structure to which hangers are attached and the type of hanger involved. Install hangers in a manner that will not cause them to deteriorate or fail due to age, corrosion, or elevated temperatures.
 - 6. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.
 - 7. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.
 - 8. Do not attach hangers to steel roof deck. Attach hangers to structural members.
 - 9. Space hangers not more than 48 inches o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.
 - 10. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards.
- C. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.
 - 1. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.
 - 2. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends. Miter corners accurately and connect securely.
 - 3. Do not use exposed fasteners, including pop rivets, on moldings and trim.
- D. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.
- E. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide precise fit.

- 1. For reveal-edged panels on suspension-system runners, install panels with bottom of reveal in firm contact with top surface of runner flanges.
- 2. Paint cut edges of panel remaining exposed after installation; match color of exposed panel surfaces using coating recommended in writing for this purpose by acoustical panel manufacturer.

3.4 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension-system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage.

END OF SECTION 095113
SECTION 096513 - RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Thermoset-rubber base.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples for Verification: For each type of product indicated and for each color, texture, and pattern required in manufacturer's standard-size Samples, but not less than 12 inches long.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Furnish not less than 10 linear feet for every 500 linear feet or fraction thereof, of each type, color, pattern, and size of resilient product installed.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F.

1.6 FIELD CONDITIONS

- A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 65 deg F or more than 85 deg F, in spaces to receive resilient products during the following periods:
 - 1. 48 hours before installation.
 - 2. During installation.
 - 3. 48 hours after installation.
- B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 65 deg F or more than 85 deg F.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

C. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 THERMOSET-RUBBER BASE RB

- A. Basis-of-Design Product: Subject to compliance with requirements, provide products by one of the following:
 - 1. Roppe Corporation; Roppe Holding Company Pinnacle
- B. Product Standard: ASTM F1861, Type TS (rubber, vulcanized thermoset), Group I (solid, homogeneous).
 - 1. Style and Location:
 - a. Style A, Straight: Provide in areas with carpet.
 - b. Style B, Cove: Provide in areas with resilient floor coverings.
- C. Thickness: 0.125 inch.
- D. Height: 4 inches.
- E. Lengths: Coils in manufacturer's standard length.
- F. Outside Corners: Job formed.
- G. Inside Corners: Job formed.
- H. Colors: 114 Lunar Dust.

2.2 INSTALLATION MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.
- B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 - 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
1. Installation of resilient products indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.
- B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
- C. Do not install resilient products until materials are the same temperature as space where they are to be installed.
 - 1. At least 48 hours in advance of installation, move resilient products and installation materials into spaces where they will be installed.
- D. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient products.

3.3 RESILIENT BASE INSTALLATION

- A. Comply with manufacturer's written instructions for installing resilient base.
- B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.
- C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.
- D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.
- E. Do not stretch resilient base during installation.
- F. Job-Formed Corners:
 - 1. Outside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches in length.
 - a. Form without producing discoloration (whitening) at bends.
 - 2. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches in length.
 - a. Miter or cope corners to minimize open joints.

3.4 CLEANING AND PROTECTION

- A. Comply with manufacturer's written instructions for cleaning and protecting resilient products.
- B. Perform the following operations immediately after completing resilient-product installation:
 1. Remove adhesive and other blemishes from surfaces.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.
- D. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION 096513

SECTION 096519 - RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Solid vinyl floor tile.

1.3 ACTION SUBMITTALS

- A. Product Data: Indicate product characteristics and installation requirements, including manufacturer's recommended adhesives and maintenance instructions.
- B. Samples: Submit full-size units of each color, texture, and pattern of floor tile and accessory required.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are competent in techniques required by manufacturer for floor tile installation and seaming method indicated.
- B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
 - 1. Size: Minimum 100 sq. ft. for each type, color, and pattern in locations directed by Architect.
 - 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

1.5 DELIVERY, STORAGE, AND HANDLING

A. Store floor tile and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F. Store floor tiles on flat surfaces.

1.6 FIELD CONDITIONS

- A. Maintain ambient temperatures within range recommended by manufacturer, but not less than **70 deg F** or more than **95 deg F**, in spaces to receive floor tile during the following periods:
 - 1. 48 hours before installation.
 - 2. During installation.
 - 3. 48 hours after installation.
- B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than **55 deg F** or more than **95 deg F**.
- C. Close spaces to traffic during floor tile installation.
- D. Close spaces to traffic for 48 hours after floor tile installation.
- E. Install floor tile after other finishing operations, including painting, have been completed.
- F. Protect finished flooring, base and accessories from staining, marring or other physical damage by work of other trades. Cover or mask surfaces as required.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For resilient floor tile, as determined by testing identical products according to ASTM E648 or NFPA 253 by a qualified testing agency.

2.2 SOLID VINYL FLOOR TILE

- A. Refer to Drawings for LVT material and application.
- B. Thickness: 5 mm.
- C. Size: 24 by 24 inches.
- D. Installation Method: Direct Glue
 - 1. Adhesive options: S150-95 Resilient Tile Spray, 4200 Resilient Tile 4 Gallon, 2200 Resilient Tile 4 Gallon, 4151 Multi-Use Premium 4 Gallon

2.3 INSTALLATION MATERIALS

- A. Leveling Compounds:
 - 1. Acceptable products:
 - a. Custom Building Products, LevelQuik RS.
 - b. H.B. Fuller Construction Products, TEC Level Set 200.
 - c. Mapei, Ultraplan 1 Plus.
 - 2. Characteristics: Fast-setting, self-leveling underlayment, minimum 28-day compressive strength of 4,000 psi.
 - 3. Provide primers for leveling compound as recommended or required by leveling compound manufacturer's product data.
- B. Adhesives: Water-resistant types and brands of adhesive recommended by flooring material manufacturer's product data for installation conditions indicated. Adhesives shall follow VOC content limits listed below.
 - 1. LVT Adhesives: Not more than 50g/L.
 - 2. Cove Base Adhesives: Not more than 50 g/L.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 - 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of floor tile.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Prepare surfaces according to floor tile manufacturer's written instructions to ensure adhesion of resilient products.
- B. Grind high areas and fill depressions with leveling compound where required to produce smooth installation and for proper alignment of resilient flooring with adjacent flooring materials.
- C. Perform bond and moisture tests on subfloors in accord with ASTM F2170-11 and resilient flooring manufacturer's product data, to determine if surfaces are acceptable to receive specified resilient flooring products. Correct conditions detrimental to resilient flooring installation prior to starting installation.
- D. Remove dirt, oil, grease or other foreign matter from surfaces to receive floor covering or accessories.

3.3 APPLICATION OF ADHESIVES:

- A. Mix and apply adhesives in accord with resilient material manufacturer's product data. Apply with notched trowel or other tools as recommended by adhesive manufacturer.
- B. Provide safety precautions during mixing and applications as recommended by adhesive manufacturer.
- C. Apply adhesive to only that area which can be covered by resilient material within the recommended working time of the adhesive.
 - 1. Remove adhesive which dries or films over.
 - 2. Do not soil walls, bases or adjacent areas with adhesives
 - 3. Remove spilled or misplaced materials.

3.4 FLOOR TILE INSTALLATION

- A. Comply with manufacturer's written instructions for installing floor tile.
- B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
- C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.
- D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
- E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.
- F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent marking device.

3.5 INSTALLATION OF BASE:

- A. Workmanship:
 - 1. Unroll base material and allow to relax for 24 hours, minimum, prior to installation. Cut into lengths for minimum number of joints. Double-cut adjoining lengths.
 - 2. Install with tight butt joints with no joint widths greater than 1/64".
- B. Butt type cove base:
 - 1. Install base prior to installation of border tile.
 - 2. Apply adhesive and adhere to wall surfaces.
 - 3. Press down and set bottom edge to floor surface profile.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- 4. Form internal corners by coping and bending sufficient length around corner for anchorage.
- 5. Form external corners using pre-molded corners.
- 6. Scribe base to abutting materials.

3.6 ACCESSORY INSTALLATION:

- A. Cut materials to lengths and sizes indicated.
- B. Resilient reducers:
 - 1. Apply adhesives and bond to substrate.
 - 2. Center reducers in door openings.
 - 3. Fit edge to door frame jambs without visible gaps or cracks.
 - 4. Fit edges to abutting floor materials for flush fit.

3.7 CLEANING AND PROTECTION

- A. Comply with manufacturer's written instructions for cleaning and protecting floor tile.
- B. Perform the following operations immediately after completing floor tile installation:
 - 1. Remove adhesive and other blemishes from surfaces.
 - 2. Sweep and vacuum surfaces thoroughly.
 - 3. Damp-mop surfaces to remove marks and soil.
- C. Protect floor tile from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.
- D. Cover floor tile until Substantial Completion.

END OF SECTION 096519

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 096813 - TILE CARPETING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Modular carpet tile.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include manufacturer's written data on physical characteristics, durability, and fade resistance.
 - 2. Include manufacturer's written installation recommendations for each type of substrate.
- B. Shop Drawings: Show columns, doorways, enclosing walls and partitions, built-in cabinets, and locations where cutouts are required in carpet. Indicate the following:
 - 1. Columns, doorways, enclosing walls or partitions, built-in cabinets, and locations where cutouts are required in carpet tiles.
 - 2. Carpet tile type, color, and dye lot.
 - 3. Type of subfloor.
 - 4. Type of installation.
 - 5. Pattern of installation.
 - 6. Pattern type, location, and direction.
 - 7. Pile direction.
 - 8. Type, color, and location of insets and borders.
 - 9. Type, color, and location of edge, transition, and other accessory strips.
 - 10. Transition details to other flooring materials.
- C. Samples: For each of the following products and for each color and texture required. Label each Sample with manufacturer's name, material description, color, pattern, and designation indicated on Drawings and in schedules.
 - 1. Carpet Tile: Full-size Sample.
 - 2. Exposed Edge, Transition, and Other Accessory Stripping: 12-inch- long Samples.

1.4 INFORMATIONAL SUBMITTALS

A. Certificates: Carpet shall be certified for compliance with specification requirements. Submit certificates from carpet manufacturer at time of carpet delivery to project site. Each certificate shall be signed by authorized officer of carpet manufacturing company and shall contain the

name and address of the Contractor, the project location and the quantities and date or dates of shipment or delivery to which certificates apply.

1.5 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For carpet tiles to include in maintenance manuals. Include the following:
 - 1. Methods for maintaining carpet tile, including cleaning and stain-removal products and procedures and manufacturer's recommended maintenance schedule.
 - 2. Precautions for cleaning materials and methods that could be detrimental to carpet tile.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Carpet Tile: Full-size units equal to Five percent of amount installed for each type indicated, but not less than 10 sq. yd..

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who is certified by the International Certified Floorcovering Installers Association at the Commercial II certification level.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Comply with the Carpet and Rug Institute's CRI 104.
- B. Deliver materials in manufacturer's original mill wrappings, with carpet having register tag number attached. Deliver only after building is enclosed and spaces have controlled temperature and humidity.
- C. Store materials under cover, off floor, in ventilated space. Protect from damage, staining and moisture. Stand no roll material on end.

1.9 FIELD CONDITIONS

- A. Comply with the Carpet and Rug Institute's CRI 104 for temperature, humidity, and ventilation limitations.
- B. Environmental Limitations: Do not deliver or install carpet tiles until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, and ambient temperature and humidity conditions are maintained at levels planned for building occupants during the remainder of the construction period.
- C. Do not install carpet tiles over concrete slabs until slabs have cured and are sufficiently dry to bond with adhesive and concrete slabs have pH range recommended by carpet tile manufacturer.

D. Where demountable partitions or other items are indicated for installation on top of carpet tiles, install carpet tiles before installing these items.

1.10 WARRANTY

- A. Carpet tile warranty: Provide manufacturer's standard warranty for carpet tile stating that tile will remain dimensionally stable, colorfast and static-resistant and will not lose more than 15% by weight of face yarn, will not edge ravel or separate. Warranty period shall be 15 years, beginning at Date of Substantial Completion.
 - 1. Warranty does not include deterioration or failure of carpet tile due to unusual traffic, failure of substrate, vandalism, or abuse.

PART 2 - PRODUCTS

2.1 CARPET TILE

A. Refer to drawings for manufacturer and product selection.

2.2 INSTALLATION ACCESSORIES

- A. Adhesives: Water-resistant, mildew-resistant, non-staining, pressure-sensitive type to suit products and subfloor conditions indicated, that comply with flammability requirements for installed carpet tile, and are recommended by carpet tile manufacturer for releasable installation.
 1. Adhesive shall have a VOC content of 50 g/L or less.
- B. Metal Edge/Transition Strips: Extruded aluminum with mill finish of profile and width shown, of height required to protect exposed edge of carpet, and of maximum lengths to minimize running joints.
- C. Leveling Compound:
 - 1. Acceptable products:
 - a. Custom Building Products, LevelQuik RS.
 - b. H.B. Fuller Construction Products, TEC Level Set 200.
 - c. Mapei, Ultraplan 1 Plus.
 - 2. Characteristics: Fast-setting, self-leveling underlayment, minimum 28-day compressive strength of 4,000 psi.
 - 3. Provide primers for leveling compound as recommended or required by leveling compound manufacturer's product data.
- D. Miscellaneous materials: Furnish fiberglass seaming tape, thread and similar accessories required for carpet installation.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for maximum moisture content, alkalinity range, installation tolerances, and other conditions affecting carpet tile performance.
- B. Examine carpet tile for type, color, pattern, and potential defects.
- C. Concrete Slabs: Verify that finishes comply with requirements specified in Section 033000 "Cast-in-Place Concrete" and that surfaces are free of cracks, ridges, depressions, scale, and foreign deposits.
 - 1. Moisture Testing: Perform tests so that each test area does not exceed 200 sq ft, and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 - a. Anhydrous Calcium Chloride Test: ASTM F1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 - b. Relative Humidity Test: Using in situ probes, ASTM F2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.
 - c. Perform additional moisture tests recommended in writing by adhesive and carpet tile manufacturers. Proceed with installation only after substrates pass testing.

3.2 PREPARATION

- A. General: Comply with the Carpet and Rug Institute's CRI 104 and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile.
- B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks, holes and depressions 1/8 inch wide or wider, and protrusions more than 1/32 inch unless more stringent requirements are required by manufacturer's written instructions.
- C. Concrete Substrates: Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using solvents. Use mechanical methods recommended in writing by adhesive and carpet tile manufacturers.
- D. Metal Substrates: Clean grease, oil, soil and rust, and prime if recommended in writing by adhesive manufacturer. Rough sand painted metal surfaces and remove loose paint. Sand aluminum surfaces, to remove metal oxides, immediately before applying adhesive.
- E. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.3 INSTALLATION

- A. General: Comply with the Carpet and Rug Institute's CRI 104, Section 10, "Carpet Tile," and with carpet tile manufacturer's written installation instructions.
- B. Installation Method: As recommended in writing by carpet tile manufacturer.
- C. Maintain dye-lot integrity. Do not mix dye lots in same area.
- D. Maintain pile-direction patterns recommended in writing by carpet tile manufacturer.
- E. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.
- F. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.
- G. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on carpet tile as marked on subfloor. Use nonpermanent, nonstaining marking device.
- H. Install pattern parallel to walls and borders.

3.4 CLEANING AND PROTECTION

- A. Perform the following operations immediately after installing carpet tile:
 - 1. Remove excess adhesive and other surface blemishes using cleaner recommended by carpet tile manufacturer.
 - 2. Remove yarns that protrude from carpet tile surface.
 - 3. Vacuum carpet tile using commercial machine with face-beater element.
- B. Protect installed carpet tile to comply with the Carpet and Rug Institute's CRI 104, Section 13.7.
- C. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION 096813

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 097200 - WALL COVERINGS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:1. Vinyl wall covering.

1.2 ACTION SUBMITTALS

- A. Refer to Drawings for Wallcovering specified and areas of application.
- B. Product data: Indicate manufacturer's product description, recommended installation procedures, primers and adhesives.
- C. Samples for Verification: Submit samples for each type of wall covering and for each color, pattern, texture, and finish specified for approval by Architect. Samples shall be full width by not less than 3'-0" in length.
- D. Shop Drawings: Show location and extent of each wall-covering type. Indicate seams and termination points.

1.3 QUALITY ASSURANCE

- A. Applicable standards: Standards of ASTM International, as referenced herein.
- B. Mockups: Build mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and to set quality standards for installation.
 - 1. Build mockups for each type of wall covering on each substrate required. Comply with requirements in ASTM F1141 for appearance shading characteristics.
 - 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.4 FIELD CONDITIONS

- A. Environmental Limitations: Do not deliver or install wall coverings until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and HVAC system is operating and maintaining ambient temperature and humidity conditions at levels intended for occupants after Project completion during the remainder of the construction period.
 - 1. Remove wall covering materials from packaging and allow to acclimatize to the area of installation 24 hours before application.

- 2. Maintain constant minimum temperature at 65 deg F in spaces for at least 48 hours before, during and 48 hours after application.
- B. Lighting: Do not install wall covering until lighting that matches conditions intended for occupants after Project completion is provided on the surfaces to receive wall covering.
- C. Ventilation: Provide continuous ventilation during installation and for not less than the time recommended by wall-covering manufacturer for full drying or curing.

1.5 WARRANTY:

A. Provide wall covering manufacturer's standard material warranty against separation of backing, support of mildew growth and staining or bleeding due to material impurities. Warranty period shall be five years, beginning at Date of Substantial Completion.

PART 2 - PRODUCTS

2.1 VINYL WALL COVERING

A. Refer to Drawings for Wallcovering specified and areas of application. Provide vinyl products in rolls from same production run.

2.2 INSTALLATION MATERIALS:

- A. Adhesive: Mildew-resistant, breathable, nonstaining, strippable adhesive, for use with specific wall covering and substrate application indicated and as recommended in writing by wall-covering manufacturer.
 - 1. Adhesive shall have VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesive shall allow stripping without damage to primed wall surface.
- B. Primer/Sealer: Mildew resistant, breathable primer/sealer complying with requirements in Section 099124 Interior Painting and recommended in writing by primer/sealer and wall-covering manufacturers for intended substrate.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation surfaces being true in plane and vertical and horizontal alignment, maximum moisture content, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions for surface preparation.
- B. Clean substrates of substances that could impair bond of wall covering, including dirt, oil, grease, mold, and mildew.
- C. Maintain 60 deg. To 80 deg. F. and relative humidity of 50% or less, minimum seven days prior to and after installation.
- D. Prepare substrates to achieve a smooth, dry, clean, structurally sound surface free of flaking, unsound coatings, cracks, and defects.
 - 1. Moisture Content: Maximum of 5 percent on new plaster, concrete, and concrete masonry units when tested with an electronic moisture meter.
 - 2. Plaster: Allow plaster to cure for at least 90 days. Neutralize areas of high alkalinity. Apply primer/sealer as recommended in writing by primer/sealer manufacturer and wall-covering manufacturer.
 - 3. Gypsum Board: Apply primer/sealer as recommended in writing by primer/sealer manufacturer and wall-covering manufacturer. Gypsum board substrates shall have Level 5 finish.
 - 4. Painted Surfaces:
 - a. Check for pigment bleeding. Apply primer/sealer to areas susceptible to pigment bleeding as recommended in writing by primer/sealer manufacturer.
 - b. Sand gloss, semigloss, and eggshell finishes with fine sandpaper.
- E. Remove hardware and hardware accessories, electrical plates and covers, light fixture trims, and similar items.
- F. Acclimatize wall-covering materials by removing them from packaging in the installation areas not less than 24 hours before installation.

3.3 INSTALLATION OF WALL COVERING

- A. Comply with wall-covering manufacturers' written installation instructions applicable to products and applications indicated.
- B. Cut wall-covering strips in roll number sequence. Change the roll numbers at partition breaks and corners.
- C. Install strips in same order as cut from roll.
- D. Install wall covering without lifted or curling edges and without visible shrinkage.
- E. Match pattern 72 inches above the finish floor.
- F. Install seams vertical and plumb at least 6 inches from outside corners and 6" from inside corners unless a change of pattern or color exists at corner. Horizontal seams are not permitted.
- G. Trim edges and seams for color uniformity, pattern match, and tight closure. Butt seams without overlaps or gaps between strips.

H. Fully bond wall covering to substrate. Remove air bubbles, wrinkles, blisters, and other defects.

3.4 CLEANING

- A. Remove excess adhesive at seams, perimeter edges, and adjacent surfaces.
- B. Use cleaning methods recommended in writing by wall-covering manufacturer.
- C. Replace strips that cannot be cleaned.
- D. Reinstall hardware and hardware accessories, electrical plates and covers, light fixture trims, and similar items.

END OF SECTION 097200

SECTION 099114 - EXTERIOR PAINTING (MPI STANDARDS)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Surface preparation and application of paint systems on the following exterior substrates: a. Steel
 - b. Galvanized metal.
- B. Related Requirements:
 - 1. Section 051200 "Structural Steel Framing" for shop priming of metal substrates.
 - 2. Section 055000 "Metal Fabrications" for shop priming metal fabrications.

1.3 DEFINITIONS

- A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D523.
- B. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.
- C. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D523.
- D. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D523.
- E. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D523.
- F. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D523.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include preparation requirements and application instructions.
 - 2. Include printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
 - 3. Indicate VOC content.
- B. Sustainable Design Submittals:

- C. Samples for Verification: For each type of paint system and each color and gloss of topcoat.
 - 1. Submit Samples on rigid backing, 8 inches square.
 - 2. Apply coats on Samples in steps to show each coat required for system.
 - 3. Label each coat of each Sample.
 - 4. Label each Sample for location and application area.
- D. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in the Exterior Painting Schedule to cross-reference paint systems specified in this Section. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint: 5 percent, but not less than 1 gal. of each material and color applied.

1.6 QUALITY ASSURANCE

- A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
 - 1. Architect will select one surface to represent surfaces and conditions for application of each paint system.
 - a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft..
 - b. Other Items: Architect will designate items or areas required.
 - 2. Final approval of color selections will be based on mockups.
 - a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

- A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.
- B. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Behr Paint Company; Behr Process Corporation.
 - 2. Benjamin Moore & Co.
 - 3. California Paints; ICP Building Solutions Group.
 - 4. Coronado Paint; Benjamin Moore & Co.
 - 5. Diamond Vogel Paint Company.
 - 6. Dunn-Edwards Corporation (a Nippon Paint Holdings Co. Ltd. company).
 - 7. Hempel (USA), Inc.
 - 8. Insl-X Products; Benjamin Moore & Co.
 - 9. Kelly-Moore Paints.
 - 10. McCormick Paints.
 - 11. Pratt & Lambert; a subsidiary of The Sherwin-Williams Company.
 - 12. Rodda Paint Co.
 - 13. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
 - 14. Valspar; a brand of The Sherwin-Williams Company.
 - 15. Vista Paint Corporation.
 - 16. Zinsser; Rust-Oleum Corporation.
- B. Source Limitations: Obtain paint from single source from single manufacturer.

2.2 PAINT PRODUCTS

- A. MPI Standards: Provide products complying with MPI standards indicated and listed in its "MPI Approved Products List."
- B. Material Compatibility:
 - 1. Provide materials for use within each paint system that are compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, provide products recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
- C. Colors: As indicated in a color schedule.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:

- C. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.
- D. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Manual" applicable to substrates and paint systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.
- C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.
- D. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer but not less than the following:
 1. SSPC-SP 2.
- E. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.
- F. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

3.3 INSTALLATION

- A. Apply paints in accordance with manufacturer's written instructions and recommendations in "MPI Manual."
 - 1. Use applicators and techniques suited for paint and substrate indicated.
 - 2. Paint surfaces behind movable items same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed items with prime coat only.
 - 3. Paint both sides and edges of exterior doors and entire exposed surface of exterior door frames.
 - 4. Paint entire exposed surface of window frames and sashes.
 - 5. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 - 6. Primers specified in the Exterior Painting Schedule may be omitted on items that are factory primed or factory finished if compatible with intermediate and topcoat coatings and acceptable to intermediate and topcoat paint manufacturers.

- B. Tint undercoats same color as topcoat, but tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Provide sufficient difference in shade of undercoats to distinguish each separate coat.
- C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.
- D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
- E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 - 1. Paint the following work where exposed to view:
 - a. Equipment, including panelboards and switch gear.
 - b. Uninsulated metal piping.
 - c. Uninsulated plastic piping.
 - d. Pipe hangers and supports.
 - e. Metal conduit.
 - f. Plastic conduit.
 - g. Tanks that do not have factory-applied final finishes.

3.4 FIELD QUALITY CONTROL

- A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
 - 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 - 2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written instructions, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written instructions.

3.5 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
 - 1. Do not clean equipment with free-draining water and prevent solvents, thinners, cleaners, and other contaminants from entering into waterways, sanitary and storm drain systems, and ground.
 - 2. Dispose of contaminants in accordance with requirements of authorities having jurisdiction.
 - 3. Allow empty paint cans to dry before disposal.
 - 4. Collect waste paint by type and deliver to recycling or collection facility.
- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 EXTERIOR PAINTING SCHEDULE

- A. Concrete Substrates, Nontraffic Surfaces:
 - 1. Latex System MPI EXT 3.1A:
 - a. Prime Coat: Primer, alkali resistant, water based, MPI #3.
 - b. Intermediate Coat: Latex, exterior, matching topcoat.
 - c. Low-Sheen Topcoat: Latex, exterior, low sheen (MPI Gloss Level 3-4), MPI #15.
- B. Steel Substrates:
 - 1. Alkyd System MPI EXT 5.1D:
 - a. Alkyd Prime Coat: Primer, alkyd, anticorrosive, for metal, MPI #79.
 - b. Shop Prime Coat: Shop primer specified in Section where substrate is specified.
 - c. Intermediate Coat: Exterior, alkyd enamel, matching topcoat.
 - d. Semigloss Topcoat: Alkyd, exterior, semigloss (MPI Gloss Level 5), MPI #94.
- C. Galvanized-Metal Substrates:
 - 1. Latex System MPI EXT 5.3A:
 - a. Prime Coat: Primer, galvanized metal, as recommended in writing by topcoat manufacturer for exterior use on galvanized-metal substrates with topcoat indicated.
 - b. Intermediate Coat: Latex, exterior, matching topcoat.
 - c. Semigloss Topcoat: Latex, exterior, semigloss (MPI Gloss Level 5), MPI #11.

END OF SECTION 099114

SECTION 099124 - INTERIOR PAINTING (MPI STANDARDS)

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes surface preparation and the application of paint systems on the following interior substrates:
 - 1. Steel and iron.
 - 2. Galvanized metal.
 - 3. Gypsum board.

1.3 DEFINITIONS

- A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D523.
- B. MPI Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.
- C. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.
- D. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D523.
- E. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D523.
- F. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D523.
- G. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D523.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include preparation requirements and application instructions.
 - 1. Include printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
 - 2. Indicate VOC content.
- B. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches square.

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- 2. Apply coats on Samples in steps to show each coat required for system.
- 3. Label each coat of each Sample.
- 4. Label each Sample for location and application area.
- C. Product List: Use same designations indicated on Drawings and in the Interior Painting Schedule to cross-reference paint systems specified in this Section. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Paint: 5 percent, but not less than 1 gal. of each material and color applied.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS

- A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.
- B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures of less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Sherwin-Williams Company (The).

2.2 PAINT, GENERAL

- A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products List."
- B. Material Compatibility:
 - 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 - 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

- C. Colors:
 - 1. PT-1 AGREEABLE GRAY SW 7029
 - 2. PT-2 HIGH REFLECTIVE WHITE SW 7757

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - 1. Gypsum Board: 12 percent.
- C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.
- D. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.
- E. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.
- C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.
 - 2. SSPC-SP 2.
- D. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.
- E. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

3.3 INSTALLATION

- A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
 - 1. Use applicators and techniques suited for paint and substrate indicated.
 - 2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 - 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 - 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 - 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.
- B. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.
- C. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
- D. Painting Fire-Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 - 1. Paint the following work where exposed in equipment rooms:
 - a. Tanks that do not have factory-applied final finishes.
 - 2. Paint the following work where exposed in occupied spaces:
 - a. Metal conduit mounted on painted surfaces.
 - b. Plastic conduit mounted on painted surfaces.
 - c. Other items as directed by Architect.
 - 3. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.

3.4 FIELD QUALITY CONTROL

- A. Dry-Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry-film thickness.
 - 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 - 2. If test results show that dry-film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry-film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 INTERIOR PAINTING SCHEDULE

- A. Steel Substrates:
 - 1. Alkyd System, MPI INT 5.1E or, MPI INT 5.1EE:
 - a. Prime Coat: Primer, alkyd, quick dry, for metal, MPI #76.
 - b. Prime Coat: Primer, alkyd, anticorrosive, for metal, MPI #79.
 - c. Prime Coat: Shop primer specified in Section where substrate is specified.
 - d. Intermediate Coat: Alkyd, interior, matching topcoat.
 - e. Topcoat: Alkyd, interior, semigloss (MPI Gloss Level 5), MPI #47.
 - 2. Alkyd, Dry-Fall System, MPI INT 5.1Dor, MPI INT 5.1DD:
 - a. Prime Coat: Primer, alkyd, quick dry, for metal, MPI #76.
 - b. Prime Coat: Primer, alkyd, anticorrosive, for metal, MPI #79.
 - c. Prime Coat: Shop primer specified in Section where substrate is specified.
 - d. Topcoat: Dry fall, alkyd, flat, MPI #55.
- B. Galvanized-Metal Substrates:

1.

- Institutional Low-Odor/VOC Latex System, MPI INT 5.3N:
 - a. Prime Coat: Primer, galvanized, water based, MPI #134.
 - b. Intermediate Coat: Latex, interior, institutional low odor/VOC, matching topcoat.
 - c. Topcoat: Latex, interior, institutional low odor/VOC (MPI Gloss Level 3), MPI #145.
- C. Gypsum Board Substrates:
 - 1. Institutional Low-Odor/VOC Latex System, MPI INT 9.2M:
 - a. Prime Coat: Primer sealer, interior, institutional low odor/VOC, MPI #149.
 - b. Intermediate Coat: Latex, interior, institutional low odor/VOC, matching topcoat.
 - c. Topcoat: Latex, interior, institutional low odor/VOC (MPI Gloss Level 2), MPI #144 or Topcoat: Latex, interior, institutional low odor/VOC (MPI Gloss Level 3) – MPI #145.

END OF SECTION 099124

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 101100 - VISUAL DISPLAY UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, finishes, and accessories for visual display units.
- B. Shop Drawings: For visual display units.
 - 1. Include plans, elevations, sections, details, and attachment to other work.
 - 2. Show locations of panel joints. Show locations of field-assembled joints for factoryfabricated units too large to ship in one piece.
 - 3. Show locations and layout of special-purpose graphics.
 - 4. Include sections of typical trim members.
 - 5. Include wiring diagrams for power and control wiring.
- C. Samples for Initial Selection: For each type of visual display unit indicated, for units with factory-applied color finishes, and as follows:
 - 1. Samples of facings for each visual display panel type, indicating color and texture.
 - 2. Fabric swatches of fabric facings for tackboards.
 - 3. Actual factory-finish color samples, applied to aluminum substrate.
 - 4. Include accessory Samples to verify color selected.
- D. Samples for Verification: For each type of visual display unit indicated.
 - 1. Visual Display Panel: Not less than 8-1/2 by 11 inches, with facing, core, and backing indicated for final Work. Include one panel for each type, color, and texture required.
 - 2. Trim: 6-inch- long sections of each trim profile.
 - 3. Display Rail: 6-inch- long section of each type.
 - 4. Rail Support System: 6-inch- long sections.
 - 5. Accessories: Full-size Sample of each type of accessory.
- E. Product Schedule: For visual display units. Use same designations indicated on Drawings.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Test Reports: For each visual display unit, for tests performed by manufacturer and witnessed by a qualified testing agency.

C. Sample Warranties: For manufacturer's special warranties.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For visual display units to include in maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for fabrication and installation.
 - 1. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver factory-fabricated visual display units completely assembled in one piece. If dimensions exceed maximum manufactured unit size, or if unit size is impracticable to ship in one piece, provide two or more pieces with joints in locations indicated on approved Shop Drawings.

1.7 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install visual display units until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.

2.2 VISUAL DISPLAY BOARD ASSEMBLY

- A. Visual Display Board Assembly: Field or factory fabricated.
 - 1. Assembly: markerboard and tackboard.
 - 2. Corners: Square.
 - 3. Width: As indicated on Drawings.
 - 4. Height: As indicated on Drawings.
 - 5. Mounting Method: Direct to wall or Rail support system as per manufacturer's requirements.

- B. Markerboard Panel: Porcelain-enamel-faced markerboard panel on core indicated.
 1. Color: White.
- C. Tackboard Panel: Natural-cork tackboard panel on core indicated.
- D. Aluminum Frames and Trim: Fabricated from not less than 0.062-inch- thick, extruded aluminum; standard size and shape.
 - 1. Field-Applied Trim: Manufacturer's standard, snap-on trim with no visible screws or exposed joints, screw-on trim with Phillips flat-head screws.
 - 2. Aluminum Finish: Clear anodic finish.
 - a. Color: Brushed aluminum.
- E. Display Rail: Manufacturer's standard, extruded-aluminum display rail with plasticimpregnated-cork insert, end stops, and continuous paper holder, designed to hold accessories.
 - 1. Size: 1 inch high by full length of visual display unit.
 - 2. Tackboard Insert Color: As indicated by manufacturer's designations.
 - 3. Aluminum Color: Match finish of visual display assembly trim.

2.3 RAIL SUPPORT SYSTEM FOR VISUAL DISPLAY BOARD ASSEMBLIES

- A. Support Rails: Horizontal, wall-mounted, extruded-aluminum rails designed to receive hanger clip and to support visual display boards.
 - 1. Finish: Clear anodic.
 - 2. Color and Gloss: Brushed Aluminum.
- B. Hanger Clips: Extruded aluminum with finish to match rails; designed to support independent visual display board assemblies by engaging support rail and top trim of board.
- C. Visual Display Board Assemblies: Fabricated from not less than 3/8-inch- thick, kraft-paper honeycomb core; designed to be rigid and to resist warpage, and with aluminum trim designed to engage hanger clips.

2.4 GLASS MARKERBOARDS

- A. Glass Markerboards: Fabricated of 6-mm tempered or 6-mm tempered-laminated glass with steel backing for use with magnets.
 - 1. Edge Treatment: Smooth polished edge with eased corners.
 - 2. Frame: Aluminum trim in profile indicated.
 - 3. Surface: Matte or Glossy.
 - 4. Color: White.
- B. Mounting: Concealed, Z-shaped brackets.
- C. Marker Tray: Aluminum, attached with stainless steel clips.
- D. Size: Refer to drawings.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

2.5 MARKERBOARD PANELS

- A. Porcelain-Enamel Markerboard Panels: Balanced, high-pressure, factory-laminated markerboard assembly of three-ply construction, consisting of moisture-barrier backing, core material, and porcelain-enamel face sheet with low-gloss finish. Laminate panels under heat and pressure with manufacturer's standard, flexible waterproof adhesive.
 - 1. Manufacturer's Standard Core: Minimum 1/4 inch thick, with manufacturer's standard moisture-barrier backing.
 - 2. Hardboard Core: 1/4 inch thick; with 0.005-inch- thick, aluminum foil backing.
 - 3. Particleboard Core: 3/8 inch thick; with 0.005-inch- thick, aluminum foil backing.
 - 4. Fiberboard Core: 3/8 inch thick; with 0.001-inch- thick, aluminum foil backing.
 - 5. MDF Core: 7/16 inch thick; with manufacturer's standard moisture-barrier backing.
 - 6. Laminating Adhesive: Manufacturer's standard moisture-resistant thermoplastic type.

2.6 TACKBOARD PANELS

- A. Tackboard Panels:
 - 1. Facing: 1/16-inch- thick, 1/8-inch- thick, or 1/4-inch- thick, natural cork or plastic-impregnated cork.
 - 2. Core: Manufacturer's standard.

2.7 MATERIALS

- A. Porcelain-Enamel Face Sheet: PEI-1002, with face sheet manufacturer's standard two- or threecoat process.
- B. Natural-Cork Sheet: Seamless, single-layer, compressed fine-grain cork sheet; bulletin board quality; face sanded for natural finish.
- C. Plastic-Impregnated-Cork Sheet: Seamless, homogeneous, self-sealing sheet consisting of granulated cork, linseed oil, resin binders, and dry pigments that are mixed and calendared onto fabric backing; with washable vinyl finish and integral color throughout.
- D. Hardboard: ANSI A135.4, tempered.
- E. Particleboard: ANSI A208.1, Grade M-1.
- F. MDF: ANSI A208.2, Grade 130.
- G. Fiberboard: ASTM C208 cellulosic fiber insulating board.
- H. Clear Tempered Glass: ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality Q3, with exposed edges seamed before tempering.
- I. Extruded Aluminum: ASTM B221, Alloy 6063.
- J. Adhesives for Field Application: Mildew-resistant, nonstaining adhesive for use with specific type of panels, sheets, or assemblies; and for substrate application; as recommended in writing by visual display unit manufacturer.
2.8 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM/NOMMA 500 for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.9 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A31, Class II, 0.010 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances, surface conditions of wall, and other conditions affecting performance of the Work.
- B. Examine roughing-in for electrical power systems to verify actual locations of connections before installation of motorized, sliding visual display units.
- C. Examine walls and partitions for proper preparation and backing for visual display units.
- D. Examine walls and partitions for suitable framing depth where sliding visual display units will be installed.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions for surface preparation.
- B. Clean substrates of substances, such as dirt, mold, and mildew, that could impair the performance of and affect the smooth, finished surfaces of visual display boards.
- C. Prepare surfaces to achieve a smooth, dry, clean surface free of flaking, unsound coatings, cracks, defects, projections, depressions, and substances that will impair bond between visual display units and wall surfaces.
- D. Prepare recesses for sliding visual display units as required by type and size of unit.

3.3 INSTALLATION

- A. General: Install visual display surfaces in locations and at mounting heights indicated on Drawings, or if not indicated, at heights indicated below. Keep perimeter lines straight, level, and plumb. Provide grounds, clips, backing materials, adhesives, brackets, anchors, trim, and accessories necessary for complete installation.
- B. Field-Assembled Visual Display Board Assemblies: Coordinate field-assembled units with grounds, trim, and accessories indicated. Join parts with a neat, precision fit.
 - 1. Where size of visual display board assemblies or other conditions require support in addition to normal trim, provide structural supports or modify trim as indicated or as selected by Architect from manufacturer's standard structural support accessories to suit conditions indicated.
- C. Factory-Fabricated Visual Display Board Assemblies: Attach concealed clips, hangers, and grounds to wall surfaces and to visual display board assemblies with fasteners at not more than 16 inches o.c. Secure tops and bottoms of boards to walls.
- D. Display Rails: Install rails at mounting heights indicated on Drawings, or if not indicated, at height indicated below. Attach to wall surface with fasteners at not more than 16 inches o.c.
 1. Mounting Height: 60 inches above finished floor to top of rail.

3.4 CLEANING AND PROTECTION

- A. Clean visual display units in accordance with manufacturer's written instructions. Attach one removable cleaning instructions label to visual display unit in each room.
- B. Touch up factory-applied finishes to restore damaged or soiled areas.
- C. Cover and protect visual display units after installation and cleaning.

END OF SECTION 101100

SECTION 102600 - WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Corner guards.
 - 2. End-wall guards.
- B. Related Requirements:
 - 1. Section 087100 "Door Hardware" for metalprotective trim units, according to BHMA A156.6, used for armor, kick, mop, and push plates.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, impact strength, dimensions of individual components and profiles, and finishes.
- B. Shop Drawings: For each type of wall protection showing locations and extent.
- C. Samples for Verification: For each type of exposed finish on the following products, prepared on Samples of size indicated below:
 - 1. Corner and End-Wall Guards: 12 inches long. Include example top caps.

1.4 INFORMATIONAL SUBMITTALS

A. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For each type of wall protection product to include in maintenance manuals.
 - 1. Include recommended methods and frequency of maintenance for maintaining best condition of plastic covers under anticipated traffic and use conditions. Include precautions against using cleaning materials and methods that may be detrimental to finishes and performance.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store wall protection in original undamaged packages and containers inside well-ventilated area protected from weather, moisture, soiling, extreme temperatures, and humidity.

1.7 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of wall units that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including detachment of components from each other or from the substrates, delamination, and permanent deformation beyond normal use.
 - b. Deterioration of metals, metal finishes, plastics, and other materials beyond normal use.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CORNER GUARDS

- A. Surface-Mounted, Metal Corner Guards CG: Fabricated as one piece from formed or extruded metal with formed edges; with 90- or 135-degree turn to match wall condition.
 - 1. Material: Stainless-steel sheet, Type 304.
 - a. Thickness: Minimum 0.0625 inch.
 - b. Finish: Directional satin, No. 4.
 - c. Height: 48".
 - 2.
 - 3. Wing Size: Nominal 2-1/2 by 2-1/2 inches.
 - 4. Corner Radius: 3/16".
 - 5. Mounting: Flat-head, countersunk screws through factory-drilled mounting holes.

2.2 END-WALL GUARDS

- A. Surface-Mounted, Metal, End-Wall Guards WG: Fabricated from one-piece, formed or extruded metal that covers entire end of wall; with formed edges.
 - 1. Material: Stainless-steel sheet, Type 304.
 - a. Thickness: Minimum 0.0625 inch.
 - b. Finish: Directional satin, No. 4.
 - c. Height: 48".
 - 2. Wing Size: Nominal 2-1/2 by 2-1/2 inches.
 - 3. Corner Radius: 3/16".
 - 4. Mounting: Flat-head, countersunk screws through factory-drilled mounting holes.

2.3 MATERIALS

A. Fasteners: Aluminum, nonmagnetic stainless-steel, or other noncorrosive metal screws, bolts, and other fasteners compatible with items being fastened. Use security-type fasteners where exposed to view.

2.4 FABRICATION

- A. Fabricate wall protection according to requirements indicated for design, performance, dimensions, and member sizes, including thicknesses of components.
- B. Quality: Fabricate components with uniformly tight seams and joints and with exposed edges rolled. Provide surfaces free of wrinkles, chips, dents, uneven coloration, and other imperfections. Fabricate members and fittings to produce flush, smooth, and rigid hairline joints.

2.5 FINISHES

- A. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and wall areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine walls to which wall protection will be attached for blocking, grounds, and other solid backing that have been installed in the locations required for secure attachment of support fasteners.
 - 1. For wall protection attached with adhesive, verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Complete finishing operations, including painting, before installing wall protection.
- B. Before installation, clean substrate to remove dust, debris, and loose particles.

3.3 INSTALLATION

- A. Installation Quality: Install wall protection according to manufacturer's written instructions, level, plumb, and true to line without distortions. Do not use materials with chips, cracks, voids, stains, or other defects that might be visible in the finished Work.
- B. Accessories: Provide splices, mounting hardware, anchors, trim, joint moldings, and other accessories required for a complete installation.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

1. Provide anchoring devices and suitable locations to withstand imposed loads.

3.4 CLEANING

A. Immediately after completion of installation, clean plastic covers and accessories using a standard ammonia-based household cleaning agent.

END OF SECTION 102600

SECTION 102813 - TOILET ACCESSORIES

PART 1 - GENERAL

1.1 ACTION SUBMITTALS

- A. Product Data:
 - 1. Complete schedule and brochures containing catalog cuts and technical data for each individual item.
 - 2. Mark out all nonapplicable data.
- B. Samples:
 - 1. Furnish samples of each item, when requested by Architect.
 - 2. Approved samples will be returned and may be incorporated into Project.
 - 3. Identify installed samples.

1.2 INFORMATIONAL SUBMITTALS

- A. Product Schedule:
 - 1. Identify locations using room designations indicated on Drawings.
 - 2. Identify products using designations indicated on Drawings.

1.3 DELIVERY, STORAGE, AND HANDLING

- A. Do not deliver accessories to Project site until rooms are ready to receive them.
- B. Pack accessories individually in manner to protect accessory and its finish.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

- A. Acceptable Manufacturers: All accessories product of single manufacturer. Subject to compliance with all requirements of this specification, provide named products and systems or comparable products and systems by one of following manufacturers:
 - 1. American Specialties, Inc.
 - 2. Bradley Washfountain Co.
 - 3. McKinney/Parker.
 - 4. Basis of design: Bobrick Washroom Equipment, Inc. items are listed herein to establish quality and design standards for toilet accessories.

2.2 WASHROOM ACCESSORIES

- A. Finish: No. 4 satin stainless steel, unless indicated otherwise.
- B. Toilet accessories are as scheduled in Drawings.

- C. Underlavatory Guards:
 - 1. Acceptable manufacturers:
 - a. Plumberex Specialty Products, Inc.
 - b. TCI Products.
 - c. Truebro, Inc.
 - 2. Description: Insulating pipe covering for supply and drain piping assemblies, that prevent direct contact with and burns from piping, and allow service access without removing coverings.
 - 3. Material and Finish: Antimicrobial, molded-plastic, white.

2.3 FABRICATION

- A. Cabinet Construction: Constructed of ASTM A666, Type 302/304 stainless steel, minimum 22 gauge, except doors of flush face cabinets minimum 18 gauge, #4 satin finish.
 - 1. Unit Construction: Seamless or welded, all welds ground smooth prior to finishing on exposed surfaces. Full, continuous backs and sides. Flush face units seamless construction.
 - 2. Hinges: Continuous stainless steel piano hinges.
 - 3. Stops: Spring or cable stops located inside cabinet to limit opening to 120 degrees maximum.
 - 4. Bumpers: Rubber bumpers to cushion door closing.
 - 5. Exposed Edges: Hemmed return, or flanged; sharp edges not allowable.
- B. Provide steel anchor plates and anchor components for installation on building finishes.
- C. Form surfaces flat without distortion. Maintain flat surfaces without scratches or dents.
- D. Back paint components with bituminous paint where contact is made with building finishes to prevent electrolysis.
- E. Hot-dip galvanize ferrous metal anchors and fastening devices.
- F. Shop assemble components and package complete with anchors and fittings.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Size rough openings for recessed accessories. Coordinate accessory installation with gypsum board and ceramic tile work. Provide wood blocking and grounds necessary for proper anchorage.
- B. Furnish concealed anchor plates to be built into stud walls.
- C. Furnish proper location and size of opening required for partition mounted items to toilet compartment manufacturer.
- D. Furnish locations for grab bar concealed anchor plates to be built into walls.

3.2 INSTALLATION

- A. Install accessories in compliance with manufacturer's recommendations, unless indicated otherwise.
- B. Install accessories true, plumb and level, to fit snug and tight against wall surface.
 - 1. Use concealed fasteners wherever possible.
 - 2. Use tamper-proof bolts and screws for exposed fasteners.
- C. Mounting Heights: Except as otherwise indicated, heights are given above finish floor (AFF) to top of accessory.
 - 1. Grab Bars: 2'-10" AFF to centerline. Installed grab bar and anchors must withstand more than 250 pounds of force.
- D. Provide key locked accessories keyed alike.
- 3.3 ADJUSTING AND CLEANING
 - A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.
 - B. Clean and polish exposed surfaces in accordance with manufacturer's written instructions.

END OF SECTION 102813

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 104413 - FIRE PROTECTION CABINETS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Fire-protection cabinets for the following:
 - a. Portable fire extinguisher.
- B. Related Requirements:
 - 1. Section 104416 "Fire Extinguishers" for portable, hand-carried fire extinguishers accommodated by fire-protection cabinets

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Show door hardware, cabinet type, trim style, and panel style. Include roughing-in dimensions and details showing semirecessed method and relationships of box and trim to surrounding construction.
- B. Shop Drawings: For fire-protection cabinets.
 1. Include plans, elevations, sections, details, and attachments to other work.
- C. Product Schedule: For fire-protection cabinets. Indicate whether recessed, semirecessed. Coordinate final fire-protection cabinet schedule with fire-extinguisher schedule to ensure proper fit and function. Use same designations indicated on Drawings.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For fire-protection cabinets to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate size of fire-protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
- B. Coordinate sizes and locations of fire-protection cabinets with wall depths.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain fire-protection cabinets, accessories, and fire extinguishers from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Rated Fire-Protection Cabinets: Listed and labeled to comply with requirements in ASTM E814 for fire-resistance rating of walls where they are installed.

2.3 FIRE-PROTECTION CABINET (FEC)

- A. Cabinet Type: Suitable for fire extinguisher.
- B. Cabinet Construction: Nonrated.
- C. Cabinet Material: Aluminum sheet.
- D. Semirecessed Cabinet: One-piece combination trim and perimeter door frame overlapping surrounding wall surface, with exposed trim face and wall return at outer edge (backbend).
 1. Square-Edge Trim: 1-1/4- to 1-1/2-inch backbend depth.
- E. Cabinet Trim Material: Same material and finish as door.
- F. Door Material: Aluminum sheet or Extruded-aluminum shapes.
- G. Door Style: Fully glazed panel with frame].
- H. Door Glazing: Acrylic sheet.
 - 1. Acrylic Sheet Color:
 - a. Clear transparent acrylic sheet.
- I. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.
 - 1. Provide manufacturer's standard.
 - 2. Provide manufacturer's standard hinge, permitting door to open 180 degrees.
- J. Accessories:
 - 1. Door Lock: Cam lock that allows door to be opened during emergency by pulling sharply on door handle.
 - 2. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated.
 - a. Identify fire extinguisher in fire-protection cabinet with the words "FIRE EXTINGUISHER."
 - 1) Location: Applied to location indicated on Drawings.
 - 2) Application Process: Decals or Pressure-sensitive vinyl letters.
 - 3) Lettering Color: Red.
 - 4) Orientation: Vertical.
- K. Materials:
 - 1. Aluminum: ASTM B221 for extruded shapes and aluminum sheet, with strength and durability characteristics of not less than Alloy 6063-T5 for aluminum sheet.
 - a. Finish: Baked enamel or powder coat.
 - b. Exterior of cabinet, door, and trim except for those surfaces indicated to receive another finish.

- c. Interior of cabinet and door.
- d. Color: As selected by Architect from full range of industry colors and color densities.
- 2. Transparent Acrylic Sheet: ASTM D4802, Category A-1 (cell-cast sheet), 3 mm thick, with Finish 1 (smooth or polished).

2.4 FABRICATION

- A. Fire-Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.
 - 1. Weld joints and grind smooth.
 - 2. Provide factory-drilled mounting holes.
- B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles.
 - 1. Fabricate door frames with tubular stiles and rails and hollow-metal design, minimum 1/2 inch thick.
 - 2. Miter and weld perimeter door frames and grind smooth.
- C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.

2.5 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM's AMP 500, "Metal Finishes Manual for Architectural and Metal Products," for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces of fire-protection cabinets from damage by applying a strippable, temporary protective covering before shipping.
- C. Finish fire-protection cabinets after assembly.
- D. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine walls and partitions for suitable framing depth and blocking where semirecessed cabinets will be installed.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare recesses for semirecessed fire-protection cabinets as required by type and size of cabinet and trim style.

3.3 INSTALLATION

- A. General: Install fire-protection cabinets in locations and at mounting heights indicated
 - 1. Fire-Protection Cabinet Mounting Height: 54 inches above finished floor to top of fire extinguisher.
- B. Fire-Protection Cabinets: Fasten cabinets to structure, square and plumb.
 - 1. Unless otherwise indicated, provide recessed fire-protection cabinets. If wall thickness is inadequate for recessed cabinets, provide semirecessed fire-protection cabinets.
 - 2. Provide inside latch and lock for break-glass panels.
 - 3. Fasten mounting brackets to inside surface of fire-protection cabinets, square and plumb.
- C. Identification:
 - 1. Apply decals at locations indicated.

3.4 ADJUSTING AND CLEANING

- A. Remove temporary protective coverings and strippable films, if any, as fire-protection cabinets are installed unless otherwise indicated in manufacturer's written installation instructions.
- B. Adjust fire-protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.
- C. On completion of fire-protection cabinet installation, clean interior and exterior surfaces as recommended by manufacturer.
- D. Touch up marred finishes, or replace fire-protection cabinets that cannot be restored to factoryfinished appearance. Use only materials and procedures recommended or furnished by fireprotection cabinet and mounting bracket manufacturers.
- E. Replace fire-protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 104413

SECTION 104416 - FIRE EXTINGUISHERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes portable, hand-carried fire extinguishers.
- B. Related Requirements:1. Section 104413 "Fire Protection Cabinets."

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include rating and classification, material descriptions, dimensions of individual components and profiles, and finishes for fire extinguisher.
- B. Product Schedule: For fire extinguishers. Coordinate final fire-extinguisher schedule with fireprotection cabinet schedule to ensure proper fit and function. Use same designations indicated on Drawings.

1.3 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire extinguishers to include in maintenance manuals.

1.5 COORDINATION

A. Coordinate type and capacity of fire extinguishers with fire-protection cabinets to ensure fit and function.

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Failure of hydrostatic test according to NFPA 10 when testing interval required by NFPA 10 is within the warranty period.
 - b. Faulty operation of valves or release levers.
 - 2. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."

2.2 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS

- A. Fire Extinguishers: Type, size, and capacity for each fire-protection cabinet indicated.
 - 1. Source Limitations: Obtain fire extinguishers, fire-protection cabinets, and accessories, from single source from single manufacturer.
 - 2. Valves: Manufacturer's standard.
 - 3. Handles and Levers: Manufacturer's standard.
 - 4. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B.
- B. Multipurpose Dry-Chemical Type: UL-rated nominal capacity, with monoammonium phosphate-based dry chemical in manufacturer's standard enameled container.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fire extinguishers for proper charging and tagging.
 1. Remove and replace damaged, defective, or undercharged fire extinguishers.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Install fire extinguishers in locations indicated and in compliance with requirements of authorities having jurisdiction.

END OF SECTION 104416

SECTION 107000 - METAL CANOPY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Provide fixed custom metal canopies as indicated on drawings, as specified and as needed for a complete and proper installation.
 - a. The drawings show the extent of the work, the dimensional profile and depth of the metal canopy to be provided.
- B. Related Requirements:
 - 1. Division 5 Metal Fabrications.

1.3 ACTION SUBMITTALS

- A. Shop Drawings:
 - 1. Include plans, elevations, sections, mounting heights, and attachment details.
 - 2. Show locations for blocking, reinforcement, and supplementary structural support, for reinforcing and anchorage system.
 - 3. Show interfacing with the building construction.
 - 4. Show provisions for expansion and contraction.
 - 5. Clearly indicate locations of exposed fasteners and joints.
- B. Product Schedule: For metal canopies. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS

A. Sample Warranty: For special warranty.

1.5 WARRANTY

- A. Special Warranty: Manufacturer and fabricator agree to repair or replace components of metal canopies that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including framework.
 - b. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - 2. Metal Canopy Warranty Period: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 METAL CANOPY FRAME AND ACCESSORY MATERIALS

- A. Steel:
 - 1. Steel Plates, Shapes, and Bars: ASTM A36/A36M.
 - 2. Steel Tubing: ASTM A500/A500M.
 - 3. Galvanized Steel Tubing: ASTM A787/A787M.
 - 4. Steel Pipe: ASTM A53/A53M, Standard Weight (Schedule 40).
- B. Anchors, Fasteners, Fittings, Hardware, and Installation Accessories: Complying with performance requirements indicated and suitable for exposure conditions, supporting structure, anchoring substrates, and installation methods indicated. Corrosion-resistant or noncorrodible units; weather-resistant, compatible, nonstaining materials. Provide as required for awning assembly, mounting, and secure attachment. Number as needed to comply with performance requirements and to maintain uniform appearance; evenly spaced. Where exposed to view, provide finish and color as selected by Architect from manufacturer's full range.
 - 1. Zinc-Coated High-Strength Bolts, Nuts, and Washers: ASTM F3125/F3125M,Grade A325, Type 1, heavy-hex steel structural bolts; ASTM A563, Grade DH, heavy-hex carbon-steel nuts; and ASTM F436/F436M, Type 1, hardened carbon-steel washers, zinc coated.
 - 2. Expansion Anchors: Anchor bolt and sleeve assembly with capability to sustain, without failure, a load equal to six times the load imposed when installed in unit masonry assemblies and equal to four times the load imposed when installed in concrete as determined by testing according to ASTM E488 conducted by a qualified independent testing and inspecting agency.
 - a. Material: Stainless steel with bolts and nuts complying with ASTM F593 and ASTM F594, Alloy Group 1 or 2.
 - 3. Adhesive-Bonded Anchors: Anchor bolt and sleeve assembly with capability to sustain, without failure, a load equal to six times the load imposed when installed in unit masonry assemblies and equal to four times the load imposed when installed in concrete as determined by testing according to ASTM E1512 conducted by a qualified independent testing and inspecting agency.
 - a. Material: Stainless steel with bolts and nuts complying with ASTM F593 and ASTM F594, Alloy Group 1 or 2.
- C. Galvanizing Repair Paint: High-zinc-dust-content paint for regalvanizing welds in steel, complying with SSPC-Paint 20.

2.2 METAL CANOPY FABRICATION

- A. Frame Fabrication: Fabricate awning frames from steel. Preassemble in shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- B. Form exposed work true to line and level with accurate angles and surfaces and straight edges.

- C. Weld corners and connections continuously. Obtain fusion without undercut or overlap. Remove welding flux immediately. At exposed corners and connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- D. Provide anchorage of type indicted; coordinate with supporting structure. Space anchoring devices to secure awnings in place and to properly transfer loads.
- E. Steel Finish: Baked-enamel or powder-coat finish complying with finish manufacturer's written instructions for surface preparation including pretreatment, application, baking, and minimum dry film thickness.
 - 1. Color: SW 6257 Gibraltor.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for supporting members, blocking, inserts, installation tolerances, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install metal canopies at locations and in position indicated, securely connected to supports, free of rack, and in proper relation to adjacent construction. Use mounting methods of types described and in compliance with Shop Drawings and fabricator's written instructions.
- B. Install metal canopies after other finishing operations, including joint sealing and painting, have been completed.
- C. Slip fit frame connections accurately together to form hairline joints, and tighten to secure.
- D. Weld frame connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations.
 - 1. Field Welding: Comply with the following requirements:
 - a. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - b. Obtain fusion without undercut or overlap.
 - c. Remove welding flux immediately.
 - d. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- E. Anchoring to In-Place Construction: Use anchors, fasteners, fittings, hardware, and installation accessories where necessary for securing metal canopies to structural support and for properly transferring load to in-place construction.

F. Coordinate metal canopy installation with flashing and joint-sealant installation so these materials are installed in sequence and in a manner that prevents exterior moisture from passing through completed exterior wall and roof assemblies.

3.3 ADJUSTING

- A. Adjust hardware and moving parts to function smoothly, and lubricate as recommended by retractable-awning manufacturer.
- 3.4 CLEANING AND PROTECTION
 - A. Touch up factory-applied finishes to restore damaged or soiled areas.
 - B. Galvanized Surfaces: Clean field welds, connections, and abraded areas and repair galvanizing to comply with ASTM A780.

END OF SECTION 107000

SECTION 122113 - HORIZONTAL LOUVER BLINDS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:1. Horizontal louver blinds, aluminum slats.
- B. Related Requirements:
 - 1. Section 061000 "Rough Carpentry" for wood blocking and grounds for mounting horizontal louver blinds and accessories.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. Horizontal louver blinds, aluminum slats.
- B. Product Data Submittals: For each product.
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Rated capacities, operating characteristics, electrical characteristics, and furnished accessories.
- C. Shop Drawings: For horizontal louver blinds.
 - 1. Fabrication and installation details.
 - 2. Diagrams for power, signal, and control wiring for motorized units.
- D. Samples for Initial Selection: Manufacturer's standard color sheets, showing full range of available colors for each type and color of horizontal louver blind.
 - 1. Include Samples of accessories involving color selection.

1.3 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For horizontal louver blinds with polymer slats that have been tested for compliance with NFPA 701, for tests performed by a qualified testing agency, manufacturer and witnessed by a qualified testing agency.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For horizontal louver blinds.

1.5 MOCKUPS

A. Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for fabrication and installation.

- 1. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Owner specifically approves such deviations by Change Order.
- 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver horizontal louver blinds in factory packages, marked with manufacturer, product name, and location of installation, using same designations indicated on Drawings.

1.7 FIELD CONDITIONS

- A. Environmental Limitations: Do not install horizontal louver blinds until construction and wetwork and finish work in spaces, including painting, is complete and dry and ambient temperature and humidity conditions are maintained at levels indicated for Project when occupied for its intended use.
- B. Field Measurements: Where horizontal louver blinds are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Allow clearances for operating hardware of operable glazed units through entire operating range. Notify Architect of installation conditions that vary from Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of motorized products that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Faulty operation of motorized operating system components.
 - 2. Warranty Period: 5 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SOURCE LIMITATIONS

A. Obtain horizontal louver blinds from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Window Covering Safety Standard: Provide horizontal louver blinds that comply with WCMA A100.1.
- 2.3 HORIZONTAL LOUVER BLINDS, ALUMINUM SLATS
 - A. Refer to drawings for specified product and basis of design.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- B. Slats: Aluminum; alloy and temper recommended by producer for type of use and finish indicated; with crowned profile and radius corners.
 - 1. Width: 1 inch.
 - 2. Thickness: Manufacturer's standard.
 - 3. Spacing: Manufacturer's standard.
 - 4. Finish: Ionized antistatic, dust-repellent, baked polyester finish.
- C. Ladders: Evenly spaced across headrail at spacing that prevents long-term slat sag.
 1. Type: Manufacturer's standard.
- D. Headrail: Formed steel or extruded aluminum; long edges returned or rolled. Headrails fully enclose control mechanisms on three sides.
- E. Manual Cordless Operation:
 - 1. Lift Mechanism: Manufacturer's standard lift- or tension-control mechanism that allows blinds to be raised or lowered into position by manually pushing the bottom rail up or pulling it down.
 - 2. Lift Operator: Manufacturer's standard.
 - 3. Tilt Mechanism: Enclosed worm-gear mechanism and linkage rod that adjusts ladders.
 - 4. Tilt Operator: Clear-plastic wand.
 - 5. Tilt Over-Rotation Protection: Manufacturer's detachable operator or slip clutch to prevent over-rotation of gear.
 - 6. Tilt-Operator Length: Manufacturer's standard.
 - 7. Tilt-Operator Location: Manufacturer's standard unless otherwise indicated.
- F. Bottom Rail: Formed-steel or extruded-aluminum tube that secures and protects ends of ladders and inner lift cords and has plastic- or metal-capped ends.
 - 1. Type: Manufacturer's standard.
- G. Mounting Brackets: With spacers and shims required for blind placement and alignment indicated.
- H. Side Channels and Perimeter Light Gap Seals: Manufacturer's standard.
- I. Colors, Textures, Patterns, and Gloss: 1. Slats: Brushed Aluminum.

2.4 FABRICATION OF HORIZONTAL LOUVER BLINDS

- A. Unit Sizes: Fabricate units in sizes to fill window and other openings as follows, measured at 74 deg F:
 - 1. Between (Inside) Jamb Installation: Width equal to jamb-to-jamb dimension of opening in which blind is installed less 1/4 inch per side or 1/2 inch total, plus or minus 1/8 inch. Length equal to head-to-sill dimension of opening in which blind is installed less 1/4 inch, plus or minus 1/8 inch.
- B. Concealed Components: Noncorrodible or corrosion-resistant-coated materials.
 - 1. Lift-and-Tilt Mechanisms: With permanently lubricated moving parts.

- C. Mounting Brackets: Designed for removal and reinstallation of blind without damaging blind and adjacent surfaces, for supporting blind components, and for bracket positions and blind mounting method indicated.
- D. Installation Fasteners: No fewer than two fasteners per bracket, fabricated from metal noncorrosive to brackets and adjoining construction; type designed for securing to supporting substrate; and supporting blinds and accessories under conditions of normal use.
- E. Color-Coated Finish:
 - 1. Metal: For components exposed to view, unless anodized or plated finish is indicated, apply manufacturer's standard baked finish complying with manufacturer's written instructions for surface preparation including pretreatment, application, baking, and minimum dry film thickness.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, operational clearances, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF HORIZONTAL LOUVER BLINDS

- A. Refer to Manufacturer's Installation guide for inside mount installation.
- B. Install horizontal louver blinds level and plumb, aligned and centered on openings, and aligned with adjacent units in accordance with manufacturer's written instructions.
 - 1. Locate so exterior slat edges are not closer than 1 inch from interior faces of glass and not closer than 1/2 inch from interior faces of glazing frames through full operating ranges of blinds.
 - 2. Install mounting brackets to prevent deflection of headrails.
 - 3. Install with clearances that prevent interference with adjacent blinds, adjacent construction, and operating hardware of glazed openings, other window treatments, and similar building components and furnishings.

3.3 ADJUSTING

A. Adjust horizontal louver blinds to operate free of binding or malfunction through full operating ranges.

3.4 CLEANING AND PROTECTION

A. Clean horizontal louver blind surfaces after installation in accordance with manufacturer's written instructions.

- B. Provide final protection and maintain conditions in a manner acceptable to manufacturer and Installer that ensures that horizontal louver blinds are without damage or deterioration at time of Substantial Completion.
- C. Replace damaged horizontal louver blinds that cannot be repaired in a manner approved by Architect before time of Substantial Completion.

END OF SECTION 122113

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 123623.13 - PLASTIC-LAMINATE-CLAD COUNTERTOPS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Plastic-laminate-clad countertops.
 - 2. Accessories.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. Plastic-laminate-clad countertops.
 - 2. Fire-retardant-treated materials.
 - 3. Accessories.
- B. Product Data Submittals: For each product.
 - 1. Include data for fire-retardant treatment from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements.
- C. Shop Drawings: For plastic-laminate-clad countertops.
 - 1. Include plans, sections, details, and attachments to other work. Detail fabrication and installation, including field joints.
 - 2. Show locations and sizes of cutouts and holes for items installed in plastic-laminate-clad countertops.
- D. Samples for Verification: As follows:
 - 1. Plastic Laminates: For each type, color, pattern, and surface finish required, 8 by 10 inches in size.
 - 2. Wood-Grain Plastic Laminates: For each type, color, pattern, and surface finish required, 12 by 24 inches in size.
 - 3. Fabrication Sample: For each type and profile of countertop required, provide one sample applied to core material with specified edge material applied to one edge.

1.3 QUALITY ASSURANCE

A. Fabricator Qualifications: Shop that employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful inservice performance.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Deliver countertops only after casework and supports on which they will be installed have been completed in installation areas.

- B. Store countertops in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.
- C. Keep surfaces of countertops covered with protective covering during handling and installation.

1.5 FIELD CONDITIONS

- A. Environmental Limitations with Humidity Control: Do not deliver or install countertops until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 25 and 55 percent during the remainder of the construction period.
- B. Field Measurements: Where countertops are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
- C. Established Dimensions: Where countertops are indicated to fit to other construction, establish dimensions for areas where countertops are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE-CLAD COUNTERTOPS

- A. Quality Standard: Unless otherwise indicated, comply with the "Architectural Woodwork Standards" for grades of plastic-laminate-clad countertops indicated for construction, finishes, installation, and other requirements.
 - 1. Provide inspections of fabrication and installation together with labels and certificates from AWI or WI certification program indicating that countertops comply with requirements of grades specified.
- B. High-Pressure Decorative Laminate: ISO 4586-3.
 1. Refer to Drawings for Plastic Laminate material specified and areas of application.
- C. Edge Treatment: Same as laminate cladding on horizontal surfaces.
- D. Core Thickness:
 - 1. Build up countertop thickness to 1-1/2 inches at front, back, and ends with additional layers of core material laminated to top.
- E. Backer Sheet: Provide plastic-laminate backer sheet, ISO 4586-3, grade to match exposed surface, on underside of countertop substrate.
- F. Paper Backing: Provide paper backing on underside of countertop substrate.

2.2 WOOD MATERIALS

A. Wood Products: Provide materials that comply with requirements of referenced quality standard unless otherwise indicated.

2.3 ACCESSORIES

- A. Wire-Management Grommets: Circular, molded-plastic grommets and matching plastic caps with slot for wire passage.
 - 1. Refer to drawings for more detail.

2.4 MISCELLANEOUS MATERIALS

- A. Adhesive for Bonding Plastic Laminate: Type I, waterproof type or Type II water-resistant type as selected by fabricator to comply with requirements.
- B. Installation Adhesive: Use adhesive with low VOC content as selected by installer to comply with requirements.

2.5 FABRICATION

- A. Sand fire-retardant-treated wood lightly to remove raised grain on exposed surfaces before fabrication.
- B. Fabricate countertops to dimensions, profiles, and details indicated. Provide front and end overhang of 1 inch over base cabinets.
- C. Complete fabrication, including assembly, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Before installation, condition countertops to average prevailing humidity conditions in installation areas.
- B. Before installing countertops, examine shop-fabricated work for completion and complete work as required, including removal of packing.

3.2 INSTALLATION

- A. Grade: Install countertops to comply with same grade as item to be installed.
- B. Assemble countertops and complete fabrication at Project site to the extent that it was not completed in the shop.

- 1. Provide cutouts for appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately, and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.
- 2. Seal edges of cutouts by saturating with varnish.
- C. Field Jointing: Where possible, make in the same manner as shop jointing, using dowels, splines, adhesives, and fasteners recommended by manufacturer. Prepare edges to be joined in shop so Project-site processing of top and edge surfaces is not required. Locate field joints where shown on Shop Drawings.
 - 1. Secure field joints in countertops with concealed clamping devices located within 6 inches of front and back edges and at intervals not exceeding 24 inches. Tighten in accordance with manufacturer's written instructions to exert a constant, heavy-clamping pressure at joints.
- D. Scribe and cut countertops to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
- E. Fire-Retardant-Treated Wood: Handle, store, and install fire-retardant-treated wood to comply with chemical-treatment manufacturer's written instructions, including those for adhesives used to install woodwork.
- F. Countertop Installation: Anchor securely by screwing through corner blocks of base cabinets or other supports into underside of countertop.
 - 1. Install countertops level and true in line. Use concealed shims as required to maintain not more than a 1/8-inch-in-96-inches variation from a straight, level plane.
 - 2. Secure backsplashes to tops with concealed metal brackets at 16 inches o.c. and to walls with adhesive.
 - 3. Seal joints between countertop and backsplash, if any, and joints where countertop and backsplash abut walls with mildew-resistant silicone sealant or another permanently elastic sealing compound recommended by countertop material manufacturer.

3.3 ADJUSTING AND CLEANING

- A. Repair damaged and defective countertops, where possible, to eliminate functional and visual defects. Where not possible to repair, replace countertops. Adjust joinery for uniform appearance.
- B. Clean countertops on exposed and semiexposed surfaces.
- C. Protection: Provide Kraft paper or other suitable covering over countertop surfaces, taped to underside of countertop at a minimum of 48 inches o.c. Remove protection at Substantial Completion.

END OF SECTION 123623.13

SECTION 123661.16 - SOLID SURFACING COUNTERTOPS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Solid surface material countertops.
- 2. Solid surface material backsplashes.
- 3. Solid surface material end splashes.

1.2 ACTION SUBMITTALS

- A. Product Data: Indicate product description, fabrication information and compliance with specified performance requirement.
- B. Shop Drawings: Indicate dimensions, component sizes, fabrication details attachment provisions and coordination requirements with adjacent work. Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.
 - 1. Show locations and details of joints.
 - 2. Show direction of directional pattern, if any.
- C. Samples for Verification: Submit minimum 6" by 6" samples. Indicate full range of color and pattern variation.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For solid surface material countertops to include in maintenance manuals. Include Product Data for care products used or recommended by Installer and names, addresses, and telephone numbers of local sources for products. Include in project closeout documents.

1.4 QUALITY ASSURANCE

- A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate countertops similar to that required for this Project, and whose products have a record of successful inservice performance.
- B. Installer Qualifications: Fabricator of countertops.
- C. Mockups: Build mockups to demonstrate aesthetic effects and to set quality standards for fabrication and execution.
 - 1. Build mockup of typical countertop as indicated on Drawings.
 - 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.5 FIELD CONDITIONS, DELIVERY, STORAGE, AND HANDLING:

- A. Field Measurements: Verify dimensions of countertops by field measurements after base cabinets are installed but before countertop fabrication is complete.
- B. Deliver no components to project site until areas are ready for installation. Store indoors.
- C. Handle materials to prevent damage to finished surfaces. Provide protective coverings to prevent physical damage or staining following installation for duration of project.

1.6 COORDINATION

A. Coordinate locations of utilities that will penetrate countertops or backsplashes.

1.7 WARRANTY:

A. Provide manufacturer's warranty against defects in materials. Warranty shall provide for replacement material and labor for a period of ten (10) years, beginning at Date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SOLID SURFACE COUNTERTOP MATERIALS

- A. Solid Surface Material: Homogeneous-filled plastic resin complying with ISFA 2-01. Refer to Drawings for Solid Surface Material specified and areas of application.
- B. Particleboard: ANSI A208.1, Grade M-2.
- C. Plywood: Exterior softwood plywood complying with DOC PS 1, Grade C-C Plugged, touch sanded.

2.2 ACCESSORY PRODUCTS:

- A. Joint Adhesive: Manufacturer's standard, two-part adhesive kit to create inconspicuous, nonporous joints, with a chemical bond.
- B. Sealant: Manufacturer's standard mildew-resistant, FDA/UL recognized silicone sealant in color matching surfacing or clear formulations.
- C. Sink/bowl Mounting Hardware: Manufacturer's approved bowl clips, brass inserts and fasteners for attachment of undermount porcelain sinks/bowls.

2.3 FABRICATION

A. Factory-fabricate components to greatest extent practicable, to sizes and shapes indicated, in accord with approved shop drawings.

- B. Form joints between components using manufacturer's standard joint adhesive; without conspicuous joints and without voids. Attach a 2" wide reinforcing strip of solid surfacing under each joint.
 - 1. Joint Locations: Not within 18 inches of a sink or cooktop and not where a countertop section less than 36 inches long would result, unless unavoidable.
- C. Provide factory cutouts for plumbing fittings and bath accessories as indicated.
- D. Rout and finish component edges to a smoot, uniform finish. Rout cutouts and sand edges smooth. Machine radii and contours to template. Repair or reject defective and inaccurate work.
- E. Fabricate countertops according to solid surface material manufacturer's written instructions and to the AWI/AWMAC/WI's "Architectural Woodwork Standards."
- F. Fabricate tops with shop-applied edges and backsplashes unless otherwise indicated. Comply with solid surface material manufacturer's written instructions for adhesives, sealers, fabrication, and finishing.
 - 1. Fabricate with loose backsplashes for field assembly.

2.4 SOURCE QUALITY CONTROL:

- A. Allowable tolerances:
 - 1. Variation in component size: $\pm 1/8$ ".
 - 2. Location of openings: $\pm 1/8$ " from indicated location.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates to receive solid surface material countertops and conditions under which countertops will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of countertops.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install countertops plumb, level and rigid, scribed to adjacent finishes, in accord with approved shop drawings and product data.
 - 1. Tops:
 - a. Flat and true to within 1/8" of a flat surface over a 10'-0" length.
 - b. Allow a minimum of 1/16" to a maximum of 1/8" clearance between surface and each wall.
 - c. Form field joints using manufacturer's recommended adhesive, with joint widths no greater than 1/8" in finished work.
- B. Provide backsplashes and endsplashes as indicated on the drawings.
 - 1. Adhere to countertops using manufacturer's standard color-matched silicone sealant.

- 2. Install backsplashes and end splashes by adhering to wall and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears.
- C. Fasten countertops by screwing through corner blocks of base units into underside of countertop. Predrill holes for screws as recommended by manufacturer. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with manufacturer's written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.
- D. Fasten subtops to cabinets by screwing through subtops into cornerblocks of base cabinets. Shim as needed to align subtops in a level plane.
- E. Secure countertops to subtops with adhesive according to solid surface material manufacturer's written instructions. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with manufacturer's written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.
- F. Bond joints with adhesive and draw tight as countertops are set. Mask areas of countertops adjacent to joints to prevent adhesive smears.
 - 1. Clamp units to temporary bracing, supports, or each other to ensure that countertops are properly aligned and joints are of specified width.
- G. Install aprons to backing and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears. Fasten by screwing through backing. Predrill holes for screws as recommended by manufacturer.
- H. Complete cutouts not finished in shop. Mask areas of countertops adjacent to cutouts to prevent damage while cutting. Make cutouts to accurately fit items to be installed, and at right angles to finished surfaces unless beveling is required for clearance. Ease edges slightly to prevent snipping.
 - 1. Seal edges of cutouts in particleboard subtops by saturating with varnish.
- I. Apply sealant to gaps at walls; comply with Section 079200 "Joint Sealants."
- J. Keep components and hands clean during installation.
 - 1. Remove adhesives, sealants and other stains.
 - 2. Components shall be clean on Date of Substantial Completion.

3.3 **PROTECTION**:

A. Protect surfaces from damage until Date of Substantial Completion. Repair or replace damaged work which cannot be repaired.

END OF SECTION 123661.16

SECTION 210000 – FIRE SUPPRESSION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, and other Division Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Design, furnish and install a complete automatic sprinkler system throughout the entire building. Design shall include complete piping and sprinkler layout, details, sections and hydraulic calculations. Furnishing and installation shall include all related excavation, bedding, backfilling, piping, fittings, valves, hangers and supports, fire pumps and controls, alarm switches, painting, equipment and all appurtenant and incidental work required to complete and provide operable and approved fire protection system as shown on the drawings and specified herein.
- B. All fees and permits to be obtained and paid for by the Contractor installing that portion of the work.
- C. Provide "Record" drawings after completion of project.
- D. The fire sprinkler contractor shall be responsible for submitting the design to the City of Houston, Texas Fire Marshall and obtain and pay for the permit. No additional costs will be paid for this work. All tapping fees for the main fire sprinkler water line to the building will be paid for by the contractor.

1.3 DESIGN CRITERIA

- A. Design systems to the occupancy requirements of NFPA 13-2010, International Fire Code (IFC) 2015 and the Authority Having Jurisdiction.
- B. Provide Fire Department connection.
- C. Provide inspector's test station and drains.
- D. Provide detailed shop drawings of the automatic sprinkler systems in accordance with NFPA 13.
- E. System design pressure is 175 psig.
- F. Provide hydraulic calculations of the automatic sprinkler systems in accordance with NFPA 13. Hydraulic calculations shall not exceed 90 percent of the available pressure.

1.4 QUALITY ASSURANCE

- A. Specialist Company. Company specializing in sprinkler systems design and installation. Licensed Fire Protection Contractor by the State of Texas.
- B. Design Certification. Person performing design of sprinkler systems shall have a NICET Level 3 or higher certification. All drawings and calculations shall be signed and sealed accordingly.
- C. Installation Certification. Persons performing fire protection installation shall have a current Texas State and City of Houston, Texas Fire Protection Installation License.
- D. Persons performing electrical work shall have a current Texas State and City of Houston, Electricians License.
- E. Persons welding shall be certified in accordance with AWS QC11 Specification for Qualification and Certification for Level II Advanced Welders.
- F. Pipe sizes, as shown on the Drawings and or specified herein, are minimum pipe sizes. Pipe sizes shall be increased at no additional cost to the Contract if so required by applicable codes and ordinances, or if sizes are not available in certain materials and equipment. Under no circumstances shall pipe sizes be decreased.

1.5 REGULATORY REQUIREMENTS

- A. Provide in accordance with NFPA 13-2016, NFPA 20-2016, NFPA 24-2016, International Fire Code (IFC) 2015 and the Authority Having Jurisdiction. The Authority Having Jurisdiction includes City of Houston, Texas (City Fire Marshal) and the requirements of Owner's Insurance Underwriter.
- B. Welding shall be in accordance with AWS D10.12 Recommended Practices and Procedures for Welding Low Carbon Steel Pipe.
- C. Piping materials specified herein are acceptable products to the Owner's Representative but all are not necessarily acceptable to applicable local codes and ordinances. It is the responsibility of the Contractor to provide materials, from the options listed herein, that are acceptable to both the Owner's Representative and applicable local codes and ordinances.
- D. Pipe sizes as shown on the Drawings are minimum pipe sizes. Contractor shall increase those pipe sizes if calculations so require, but under no circumstance shall pipe sizes be decreased.

1.6 SUBMITTALS

- A. Prior to submittal to Owner's Representative, submit shop drawings, product data, and hydraulic calculations to the Authority Having Jurisdiction for approval in accordance with NFPA 13 and 01330 Submittal Procedures.
- B. After approval from the Authority Having Jurisdiction, submit shop drawings, product data, and hydraulic calculations to Owner's Representative (with Certificate of Approval from the
Authority Having Jurisdiction) for approval in accordance with NFPA 13 and 013300 Submittal Procedures.

- C. Indicate pipe materials used, jointing methods, supports, floor and wall penetration seals.
- D. Indicate valve data and ratings.
- E. Submit certificates in accordance with 013300 Submittal Procedures.

PART 2 - PRODUCTS

- 2.1 GENERAL
 - A. All products shall be UL listed and or FM approved and in accordance with NFPA 13.

2.2 PIPE AND FITTINGS

- A. Aboveground Piping
 - 1. Steel Pipe shall be in accordance with ASTM A53, A135 and A795. Steel pipe shall have a Corrosion Resistance Ratio (CRR) of 1 as issued by UL. Fittings shall be in accordance with NFPA 13. In addition, pipe and fittings shall be in accordance with City Fire Marshal, City of Houston, Texas and Owner's Insurance Underwriter.
- B. Underground Pipe And Fittings
 - 1. Piping within 5'-0" of the building, provide ductile iron piping for 3-inch diameter and greater. ANSI/AWWA C115, Class 53. Fittings. ANSI/AWWA C110, ductile iron, standard thickness. Joints: Flanged, full face, 1/8-inch thick red rubber, 316 stainless steel bolts and nuts. Pipe, fittings, bolts and nuts to be tar coated outside. Pipe and fitting to be cement mortar lined inside, ANSI A21.4. Pipe and fittings to be polyethylene encased, ANSI/AWWA C105.
 - 2. In lieu of ductile iron piping above, piping within 5'-0" of the building may be a manufactured one piece in-building riser, UL listed/FM approved, composed of 304 stainless steel pipe and 90 degree fitting with a working pressure of 175 psi. The riser shall have a grooved-end connection on the outlet side and cast iron hub on the inlet side. In-building riser shall be manufactured by Ames Company.
 - 3. Piping beyond 5'-0" of the building shall be ductile iron pipe (AWWA C151) or polyvinyl chloride (PVC) pipe (AWWA C900). Fittings for ductile iron and PVC shall be ductile iron (AWWA C110), 250 pound rated, mechanical joint or push-on. Joints shall be mechanical joint or push-on (AWWA C111). Ductile iron pipe and fittings shall be tar coated outside and cement-mortar lined inside (AWWA C104)]. Beyond 5'-0" outside of building provide below ground pipe, fittings and valves in accordance with NFPA 24.

2.3 VALVES AND ACCESSORIES

A. Valves and accessories shall be in accordance with NFPA 13.

2.4 SPRINKLER HEADS

- A. Suspended/Hard Ceiling Type1. Provide quick response concealed pendent type headS.
- B. Horizontal Sidewall Type.
 - 1. Provide quick response concealed type heads with white factory coated finish.
- C. Exposed Non-Finished Non-Ceiling Non-high rack storage Area type
 - 1. Commercial quick response, low profile, upright type brass finish.
 - 2. Commercial quick response, low profile, pendent type with brass finish.
- D. Provide sprinkler head guards on all pendent sprinkler heads less than 8 feet above finished floor in non-finished non-ceiling areas.

2.5 ELECTRIC SWITCHES

- A. Alarm switch.
 - 1. Vane type, 24 VDC, adjustable retard (wet system only), dual SPDT.
 - 2. Pressure Type, Snap Action, NEMA 4 construction, 5 psi to 15 psi adjustment range, 24 VDC (dry system only), dual SDPT. Designed to activate alarm on increase in pressure.
- B. Supervisory switch.
 - 1. OS&Y gate valve type, 24 VDC.
 - 2. Indicator Post Type, 24 VDC, weatherproof
 - 3. Pressure switch. 24 VDC, dual SPDT.

2.6 ALARM BELL

A. Exterior Alarm Bell. Electric 10" diameter, weatherproof, 97 dB at 10'-0", 24 VDC, marked "Sprinkler Alarm."

2.7 IDENTIFICATION

A. Provide 1-1/2" piping labels at 25' intervals and 1-1/2" valve tags numbered and scheduled. Place schedule in Mechanical Room or as directed by Owner's Representative under glass and mounted to wall. In addition, provide signage as required by NFPA 13.

PART 3 - EXECUTION

- 3.1 INSTALLATION GENERAL
 - A. Installation shall be in accordance with NFPA 13, NFPA 20 and NFPA 24 and the Authority Having Jurisdiction.
 - B. Excavating, trenching, bedding, backfilling, and compacting are specified in Section 31200 Earth Moving.

3.2 INSTALLATION - PIPE

- A. Ream pipe and tube ends to full inside diameter and remove burrs and bevel plain end pipe.
- B. Remove scale and foreign material, inside and outside, before assembly.
- C. Thread steel pipe joints up to and including 1-1/2 inch diameter. Thread, weld, or groove 2-inch diameter and larger, including branch connections.
- D. Mechanical joints may be used instead of threaded or welded joints.
- E. Die-cut threaded joints with full-cut standard taper pipe threads with red lead and linseed oil or other non-toxic joint compound applied to male threads only.
- F. Coat threaded ends with pipe lubricant compound.
- G. In steel piping, main sized saddle branch connections or direct connection of branch lines to mains is permitted if main is two pipe sizes larger than the branch. Do not project branch pipes inside the main pipe.
- H. Do not penetrate or cut building structural members unless otherwise noted or shown on drawings.
- I. Fire protection water service piping below building shall be provided with both flanged joints or rodding and thrust block restraint in accordance with NFPA 24. Flange bolts and nuts shall be 316 stainless steel. All rodding shall be coated with bitumastic coating. Gravity thrust block restraint shall be provided on the below floor elbow at the base of the riser. Minimum size of concrete thrust block shall be 48"x 48" x 48".
- J. Establish elevation of buried pipe outside the building to ensure not less than 3 feet of cover over top of pipe.
- K. Piping shall not run through grade beams. Piping shall run under grade beams.
- L. Place pipe runs to minimize obstruction to other work.
- M. Place piping in concealed spaces above finished ceilings.

3.3 INSTALLATION - VALVES

- A. Install valves with stems upright or horizontal, not inverted.
- B. Provide drain valves at main shut-off valve and after all zone valves. In addition, provide auxiliary drains at all low points.
- 3.4 INSTALLATION EQUIPMENT
 - A. Locate Fire Department connection in accordance with City Fire Marshal, with sufficient clearance from walls, obstructions, or adjacent Siamese connectors to allow full swing of Fire Department wrench handles.

- B. Locate exterior alarm bell on outside building wall next to riser.
- C. Center heads in two directions in 2'-0" x 2'-0" ceiling tile and provide piping offsets as required and one direction (short side) only in ceiling tile with location in other direction (long side) variable, dependent upon spacing and coordination with ceiling elements.
- D. Apply strippable tape or paper cover to ensure sprinkler heads do not receive field paint finish.
- E. Provide inspectors test stations in accordance with NFPA 13 and the Authority Having Jurisdiction to properly test all alarms and flow. Inspectors test station locations shall be acceptable to the Owner's Representative.
- F. Provide 3/4-inch ball drip at low point of Fire Department Connection and pipe to floor drain or through exterior wall.
- G. Sprinkler heads located under glass or plastic skylights exposed to direct rays of sun shall be intermediate temperature classification.

3.5 CLEANING

A. Flush entire piping system of foreign matter in accordance with NFPA 13 and NFPA 24.

3.6 TESTING

- A. Hydrostatically leak test entire piping system in accordance with the Authority Having Jurisdiction, NFPA 13 and NFPA 24 or 1-1/2 times the operating pressure, whichever is greater.
- B. Leak testing shall be witnessed and approved by the Authority Having Jurisdiction and Owner's Representative.
- C. Submit "Certificates of Test Completion and Approval" for Piping Systems Leak Testing stating that all test results are satisfactory. Certificates must be signed by Contractor, the Authority Having Jurisdiction and Owner's Representative.
- D. Test automatic sprinkler systems, including alarm switches, supervisory switches, electric alarm bells, and interfacing with building fire and smoke alarm system to ensure proper operation. Tests shall be performed in accordance with the Authority Having Jurisdiction and NFPA 13.
- E. Operational tests shall be witnessed and approved by the Authority Having Jurisdiction and Owner's Representative.
- F. After completion and approval of testing submit "Certificate of Test Completion and Approval" for automatic sprinkler systems operation stating that all test results are satisfactory. Certificates must be signed by Contractor, the Authority Having Jurisdiction and Owner's Representative.

3.7 OWNERS OPERATION AND MAINTENANCE TRAINING

- A. Fire Protection Contractor shall provide a minimum of 4 hours (or as long as required by the Owner) to demonstrate to the Owner the proper operation and maintenance of the automatic sprinkler system including associated accessories and alarms. Fire Protection Contractor shall arrange times and dates satisfactory to all persons required to be in attendance.
- B. After completion and approval of demonstrations, submit "Certificates of Demonstration Completion and Approval" for automatic sprinkler system stating that the Demonstrations of the systems is satisfactory. Certificates must be signed by the Manufacturer's Representative, Contractor, Owner and Owner's Representative.
- C. Fire Protection Contractor shall obtain the services of the Fire Pump Manufacturer's Representative to visit job site a minimum of four (4) hours (or as long as required by the Owner) to demonstrate to the Owner the proper operation and maintenance of the fire pump and associated accessories and alarms. Fire Protection Contractor shall assist Fire Pump Manufacturer's Representative. Fire Protection Contractor shall arrange times and dates satisfactory to all persons required to be in attendance.
- D. After completion and approval of demonstrations, submit "Certificates of Demonstration Completion and Approval" for fire system stating that the Demonstrations of the systems is satisfactory. Certificates must be signed by the Manufacturer's Representative, Contractor, Owner and Owner's Representative.

END OF SECTION 210000

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 220500 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Motors.
 - 2. Packless expansion joints.
 - 3. Grooved-joint expansion joints, lead free.
 - 4. Alignment guides and anchors.
 - 5. Sleeves without waterstop.
 - 6. Sleeves with waterstop.
 - 7. Stack-sleeve fittings.
 - 8. Sleeve-seal systems.
 - 9. Grout.
 - 10. Silicone sealants.
 - 11. Escutcheons.
 - 12. Thermometers, bimetallic actuated, lead free.
 - 13. Thermometers, filled system, lead free.
 - 14. Thermometers, liquid in glass, lead free.
 - 15. Thermometers, light activated, lead free.
 - 16. Thermowells, lead free.
 - 17. Pressure gauges, dial type, lead free.
 - 18. Gauge attachments, lead free.
 - 19. Test plugs, lead free.
 - 20. Test-plug kits, lead free.
 - 21. Sight flow indicators, lead free.

B. Related Requirements:

1. Section 221119 "Domestic Water Piping Specialties" for water meters.

1.2 DEFINITIONS

A. Existing Piping to Remain: Existing piping that is not to be removed and that is not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.3 ACTION SUBMITTALS

A. Product Data:

- 1. For each type of product, excluding motors which are included in Part 1 of the plumbing equipment Sections.
 - a. Include construction details, material descriptions, and dimensions of individual components, and finishes.
 - b. Include operating characteristics and furnished accessories.

- B. Delegated Design Submittals: For each anchor and alignment guide, including analysis data, signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 - 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 - 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 - 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of gauge to include in operation and maintenance manuals.

1.6 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Domestic water for plumbing piping intended to convey or dispense water for human consumption are to comply with the U.S. Safe Drinking Water Act, with requirements of authorities having jurisdiction, and with NSF 61 and NSF 372, or be certified in compliance with NSF 61 and NSF 372 by an ANSI-accredited third-party certification body, in that the weighted average lead content at wetted surfaces is less than or equal to 0.25 percent.
- B. Compatibility: Provide products suitable for piping service fluids, materials, working pressures, and temperatures.
- C. Capability: Provide products and installations to accommodate maximum axial movement as scheduled or indicated on Drawings.

2.2 SLEEVES AND SLEEVE SEALS

- A. Sleeves without Waterstop:
 - 1.
 - 2. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, hot-dip galvanized, with plain ends.
 - 3. Steel Sheet Sleeves: ASTM A653/A653M, 24 gauge minimum thickness; hot-dip galvanized, round tube closed with welded longitudinal joint.
- B. Sleeves with Waterstop:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, LLC.
 - b. CALPICO, Inc.
 - c. GPT; a division of EnPRO Industries.
 - d. Metraflex Company (The).
 - 2. Description: Manufactured stainless steel, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall.
- C. Silicone Sealants:
 - 1. Silicone Sealant, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) GE Construction Sealants; Momentive Performance Materials Inc.
 - 2) ITW Polymers Sealants North America.
 - 3) Polymeric Systems, Inc.
 - 4) Sherwin-Williams Company (The).
 - 5) Sika Corporation.
 - 6) The Dow Chemical Company.
 - 7) Tremco Incorporated.
 - b. Standard: ASTM C920, Type S, Grade NS, Class 25, Use NT.
 - c.

2.3 ESCUTCHEONS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. BrassCraft Manufacturing Co.; a Masco company.
 - 2. Dearborn Brass.
 - 3. Jones Stephens Corp.
 - 4. Keeney Manufacturing Company (The).
 - 5. Mid-America Fittings, LLC; A Midland Industries Company.
 - 6. ProFlo; a Ferguson Enterprises, Inc. brand.
- C. Escutcheon Types:

1. One-Piece, Steel Type: With polished, chrome-plated finish and setscrew fastener.

2.4 METERS AND GAUGES FOR PLUMBING PIPING

- A. Thermometers, Bimetallic Actuated, Lead Free:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawingsor comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ashcroft Inc.
 - b. Blue Ribbon Corp.
 - c. Ernst Flow Industries.
 - d. Marsh Bellofram.
 - e. Miljoco Corporation.
 - f. Noshok.
 - g. Palmer Wahl Instrumentation Group.
 - h. REOTEMP Instrument Corporation.
 - i. Tel-Tru Manufacturing Company.
 - j. Trerice, H. O. Co.
 - k. WATTS; A Watts Water Technologies Company.
 - l. WIKA Instrument Corporation.
 - m. Weiss Instruments, Inc.
 - n. Weksler Glass Thermometer Corp.
 - o. Winters Instruments U.S.
 - 3. Source Limitations: Provide lead-free bimetallic-actuated thermometers from a single manufacturer.
 - 4. Standard: ASME B40.200.
 - 5. Case: Liquid-filled and sealed types; stainless steel with 3-inch nominal diameter.
 - 6. Dial: Nonreflective aluminum with permanent scale markings and scales in deg F.
 - 7. Connector Type(s): Union joint, adjustable angle; with ASME B1.1 or ASME B1.20.1 screw threads to fit thermowell.
 - 8. Stem: 0.25 or 0.375 inch in diameter; stainless steel.
 - 9. Window: Plain glass or.
 - 10. Ring: Stainless steel.
 - 11. Element: Bimetal coil.
 - 12. Pointer: Dark-colored metal.
 - 13. Accuracy: Plus or minus 1 percent of span.
- B. Pressure Gauges, Dial Type, Lead Free Direct Mounted, Metal Case:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawingsor comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ametek U.S. Gauge.
 - b. Ashcroft Inc.
 - c. Blue Ribbon Corp.
 - d. Ernst Flow Industries.

- e. Flo Fab Inc.
- f. Marsh Bellofram.
- g. Miljoco Corporation.
- h. Noshok.
- i. Palmer Wahl Instrumentation Group.
- j. REOTEMP Instrument Corporation.
- k. Tel-Tru Manufacturing Company.
- l. Trerice, H. O. Co.
- m. WATTS; A Watts Water Technologies Company.
- n. WIKA Instrument Corporation.
- o. Weiss Instruments, Inc.
- p. Weksler Glass Thermometer Corp.
- q. Winters Instruments U.S.
- 3. Source Limitations: Provide dial-type, lead-free, direct-mounted, metal-case pressure gauges from single manufacturer.
- 4. Standard: ASME B40.100.
- 5. Case: Liquid-filled type; cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
- 6. Pressure-Element Assembly: Lead-free Bourdon tube.
- 7. Pressure Connection: Lead-free brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
- 8. Movement: Mechanical, with link to pressure element and connection to pointer.
- 9. Dial: Nonreflective aluminum with permanent scale markings graduated in psi.
- 10. Pointer: Dark-colored metal.
- 11. Window: Glass or plastic.
- 12. Ring: Stainless steel.
- 13. Accuracy: Grade B, plus or minus 2 percent of middle half of span.
- C. Gauge Attachments, Lead Free:
 - 1. Snubbers: ASME B40.100, lead-free brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.
 - 2. Valves: Lead-free brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.
- D. Test Plugs, Lead Free:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawingsor comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. IMI Flow Design, Inc.
 - b. Miljoco Corporation.
 - c. Nexus Valve, Inc.; Aalberts Hydronic Flow Control.
 - d. Peterson Equipment Co., Inc.
 - e. Trerice, H. O. Co.
 - f. WATTS; A Watts Water Technologies Company.
 - g. Weiss Instruments, Inc.
 - h. Weksler Glass Thermometer Corp.
 - 3. Source Limitations: Provide lead-free test plugs from single manufacturer.
 - 4. Description: Test-station fitting made for insertion into piping tee fitting.

- 5. Body: Lead-free brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- 6. Thread Size: NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe thread.
- 7. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- 8. Core Inserts: EPDM self-sealing rubber.

PART 3 - EXECUTION

3.1 INSTALLATION OF SLEEVES - GENERAL

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 1 inch above finished floor level.
 - 2. Using sealant, seal the space outside of sleeves in floors/slabs/walls without sleeve-seal system. Select to maintain fire resistance of floor/slab/wall.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants that joint sealant manufacturer's literature indicates is appropriate for size, depth, and location of joint.

3.2 INSTALLATION OF SLEEVES WITH WATERSTOP

- A. Install sleeve with waterstop as new walls and slabs are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange centered across width of concrete slab or wall.
- C. Secure nailing flanges to wooden concrete forms.
- D. Using silicone sealant, seal space around outside of sleeves. Select to maintain fire resistance of floor/slab/wall.

3.3 INSTALLATION OF ESCUTCHEONS

A. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

3.4 INSTALLATION OF METERS AND GAUGES

- A. Install thermometer with thermowell at each required thermometer location.
- B. Install direct-mounted thermometers and adjust vertical and tilted positions.
- C. Install direct-mounted pressure gauges in piping tees with pressure gauge located on pipe at most readable position.
- D. Install remote-mounted pressure gauges on panel.
- E. Install valve in piping for each pressure gauge for fluids.
- F. Install test plugs in piping tees.
- G. Install thermometers in the following locations:
 - 1. Outlet of each water heater.
 - 2. Outlet side of hot-water-balancing valve.
- H. Install pressure gauges in the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure-reducing valve.

3.5 CONNECTIONS

A. Install meters and gauges adjacent to machines and equipment to allow space for service and maintenance of meters, gauges, machines, and equipment.

3.6 ADJUSTING

- A. After installation, calibrate meters according to manufacturer's written instructions.
- B. Adjust faces of meters and gauges to proper angle for best visibility.

3.7 FIELD QUALITY CONTROL

- A. Sleeves and Sleeve Seals:
 - 1. Perform the following tests and inspections:
 - a. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.
 - b. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.
 - 2. Prepare test and inspection reports.
- B. Escutcheons:
 - 1. Using new materials, replace broken and damaged escutcheons and floor plates.

3.8 SLEEVES APPLICATION

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above and below Grade:
 - a. Sleeves with waterstops.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 2. Concrete Slabs-on-Grade:
 - a. Sleeves with waterstops.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs above Grade:
 - a. Sleeves with waterstops.
 - 4. Interior Wall and Partitions:
 - a. Sleeves without waterstops.

3.9 ESCUTCHEONS APPLICATION

- A. Escutcheons for New Piping and Relocated Existing Piping:
 - 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 - 2. Chrome-Plated Piping: One piece, steel with polished, chrome-plated finish.
 - 3. Insulated Piping:
 - a. One piece, steel with polished, chrome-plated finish.
 - 4. Bare Piping at Wall and Floor Penetrations in Finished Spaces:
 - a. One piece, steel with polished, chrome-plated finish.
 - 5. Bare Piping at Ceiling Penetrations in Finished Spaces:
 - a. One piece, steel with polished, chrome-plated finish.
 - 6. Bare Piping in Unfinished Service Spaces:
 - a. One piece, steel with polished, chrome-plated finish.
 - 7. Bare Piping in Equipment Rooms:
 - a. One piece, steel with polished, chrome-plated finish.
- B. Install floor plates for piping penetrations of equipment-room floors.
- C. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping and Relocated Existing Piping: One piece, floor plate.

END OF SECTION 220500

SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal hanger-shield inserts.
 - 5. Pipe-positioning systems.
 - 6. Equipment supports.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Fiberglass strut systems.
 - 4. Pipe stands.
 - 5. Equipment supports.
- C. Delegated Design Submittals: For trapeze hangers indicated to comply with performance requirements and design criteria.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Include design calculations for designing trapeze hangers.

1.3 QUALITY ASSURANCE

- A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.

- B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

2.2 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
 - 3. Nonmetallic Coatings: Plastic coated or epoxy powder coated.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Copper Pipe and Tube Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ABB, Electrification Business.
 - b. Cooper B-line; brand of Eaton, Electrical Sector.
 - c. Flex-Strut Inc.
 - d. G-Strut.
 - e. Gregory GSTRUT.
 - f. Haydon Corporation.
 - g. Rocket Rack; Robroy Industries.
 - h. Unistrut; Atkore International.
 - i. Wesanco, Inc.
 - 3. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 - 4. Standard: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 5. Channels: Continuous slotted carbon-steel channel with inturned lips.

- 6. Channel Width: Selected for applicable load criteria.
- 7. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
- 8. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- 9. Metallic Coating: Pregalvanized G90.

2.5 THERMAL HANGER-SHIELD INSERTS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Buckaroos, Inc.
 - 2. CADDY; brand of nVent Electrical plc.
 - 3. Carpenter & Paterson, Inc.
 - 4. National Pipe Hanger Corporation.
 - 5. Pipe Shields Inc.
 - 6. Piping Technology & Products, Inc.
 - 7. Rilco Manufacturing Co., Inc.
 - 8. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Hot Piping: ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 PIPE-POSITIONING SYSTEMS

A. Description: IAPMO PS 42 positioning system composed of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 EQUIPMENT SUPPORTS

- A. Description: Welded, shop- or field-fabricated equipment support made from structural-carbonsteel shapes.
- 2.8 MATERIALS
 - A. Aluminum: ASTM B221.
 - B. Carbon Steel: ASTM A1011/A1011M.

- C. Structural Steel: ASTM A36/A36M carbon-steel plates, shapes, and bars; black and galvanized.
- D. Stainless Steel: ASTM A240/A240M.
- E. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 INSTALLATION OF HANGERS AND SUPPORTS

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-58. Install hangers and attachments as required to properly support piping from building structure.
- D. Framing System Installation: Metal; arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- E. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.

- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- M. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. MSS SP-58, Type 39: Install protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. MSS SP-58, Type 40: Install protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal hanger-shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches long and 0.048 inch thick.
 - b. NPS 4 (DN 100): 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 (DN 200) and Larger: Include wood or reinforced calcium-silicateinsulation inserts of length at least as long as protective shield.
 - 6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.3 INSTALLATION OF EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

- A. Touchup:
 - 1. Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - a. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
 - 2. Cleaning and touchup painting of field welds, bolted connections, and abraded, shoppainted areas on miscellaneous metal are specified in 099123 "Interior Painting."
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.

- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper or stainless steel attachments for copper piping and tubing.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal hanger-shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
 - 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steelpipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.

- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction occurs.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction occurs.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction occurs but vertical adjustment is unnecessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction occurs and vertical adjustment is unnecessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation, in addition to expansion and contraction, is required.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment of up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11 split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.

- 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
- 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
- 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.
- N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 - 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 - 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 - 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load, and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 - 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

- O. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- Q. Use pipe-positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529

SECTION 220593 - TESTING, ADJUSTING, AND BALANCING FOR PLUMBING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. TAB of domestic water system.
 - 2. TAB of plumbing equipment:
 - a. Domestic hot-water in-line circulation pumps.
 - 3. Pipe-leakage test verification.
 - 4. Testing, adjusting, and balancing of existing plumbing systems and equipment.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
- F. TDH: Total dynamic head.

1.4 PREINSTALLATION MEETINGS

- A. TAB Conference: Conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan, to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.
 - 1. Minimum Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Needs for coordination and cooperation of trades and subcontractors.
 - d. Proposed procedures for documentation and communication flow.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 90 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 90 days of Contractor's Notice to Proceed, submit the Contract Documents review report, as specified in Part 3.
- C. Strategies and Procedures Plan: Within 90 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures, as specified in "Preparation" Article.
- D. System Readiness Checklists: Within 90 days of Contractor's Notice to Proceed, submit system readiness checklists, as specified in "Preparation" Article.
- E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.
- F. Certified TAB reports.
- G. Sample report forms.
- H. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.6 QUALITY ASSURANCE

- A. TAB Specialists Qualifications, Certified by AABC:
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC.
 - 2. TAB Technician: Employee of the TAB specialist and certified by AABC.
- B. TAB Specialists Qualifications, Certified by NEBB or TABB:
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by NEBB or TABB.
 - 2. TAB Technician: Employee of the TAB specialist and certified by NEBB or TABB.
- C. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."
- D. ASHRAE 111 Compliance: Requirements in ASHRAE 111 applicable to analogous domestic water system and plumbing equipment balancing.
- E. ASHRAE 188 Compliance: Comply with balancing and report requirements, Section 8.3 "Balancing."
- F. Code and Authorities Having Jurisdiction Compliance: TAB is required to comply with governing codes and requirements of authorities having jurisdiction.

1.7 FIELD CONDITIONS

- A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
- B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gauge cocks, thermometer wells, flow-control devices, and balancing valves and fittings. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
- C. Examine approved submittals for plumbing systems and equipment.
- D. Examine design data, including plumbing system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about plumbing system and equipment controls.
- E. Examine equipment performance data, including pump curves.
 - 1. Relate performance data to Project conditions and requirements, including pump system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate pump system-effect factors to reduce performance ratings of plumbing equipment when installed under conditions different from the conditions used to rate equipment performance. Compare results with the design data and installed conditions.
- F. Examine system and equipment installations, and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- G. Examine test reports specified in individual system and equipment Sections.
- H. Examine plumbing equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- I. Examine temporary and permanent strainers. Verify that temporary strainer screens used during system cleaning and flushing have been removed and permanent strainers are installed and clean.

- J. Examine control valves for proper installation for their intended function of isolating, throttling, diverting, or mixing fluid flows.
- K. Examine system pumps to ensure absence of entrained air in the suction piping.
- L. Examine operating safety interlocks and controls on plumbing equipment.
- M. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.
- B. Perform system-readiness checks of plumbing systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 - 1. Domestic Water System:
 - a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed in accordance with applicable code and authority having jurisdiction.
 - b. Water heaters are installed and functioning.
 - c. Piping is complete and all points of outlet are installed.
 - d. Water treatment is complete.
 - e. Systems are flushed, filled, and air purged.
 - f. Strainers are clean.
 - g. Control valves are functioning in accordance with the sequence of operation.
 - h. Shutoff and balance valves are 100 percent open.
 - i. Hot-water circulating pumps are operational and proper rotation is verified.
 - j. Pump gauge connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 - k. Variable-frequency controllers' startup is complete and safeties are verified.
 - 1. Suitable access to balancing devices and equipment is provided.
 - 2. Sanitary Sewage/Drainage System:
 - a. Leakage and pressure tests on sanitary sewage/drainage systems have been completed in accordance with applicable code and authority having jurisdiction requirements.
 - b. Piping is complete.
 - c. Sanitary sewage pumps/drainage pumps are operational.
 - d. Control valves are functioning in accordance with the sequence of operation.
 - e. Shutoff valves are 100 percent open.
 - f. Suitable access to equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system in accordance with the procedures contained in ASHRAE 111 and in this Section.
- B. Cut insulation, pipes, and equipment casings for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. Where holes for probes are required in piping or equipment, install pressure and temperature test plugs to seal systems.
 - 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish in accordance with Section 220716 "Plumbing Equipment Insulation" and Section 220719 "Plumbing Piping Insulation."
- C. Mark equipment and balancing devices, including valve position indicators and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-poundIP units.

3.4 GENERAL PROCEDURES FOR PLUMBING EQUIPMENT

- A. Test, adjust, and balance plumbing equipment indicated on Drawings, including, but not limited to, the following:
 - 1. Domestic water in-line pumps.
 - 2. Domestic water heaters.

3.5 PROCEDURES FOR DOMESTIC WATER SYSTEMS

- A. Prepare test reports for pumps and other equipment. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required equipment flow rates with system design flow rates.
- B. Prepare schematic diagrams of systems' Record drawings piping layouts.
- C. In addition to requirements in "Preparation" Article, prepare domestic water systems for testing and balancing as follows:
 - 1. Check expansion tank for proper setting.
 - 2. Check water heater for proper discharge temperature setting.
 - 3. Check remotest point of outlet for adequate pressure.
 - 4. Check flow-control valves for proper position.
 - 5. Locate start-stop and disconnect switches, electrical interlocks, and motor controllers.
 - 6. Verify that motor controllers are equipped with properly sized thermal protection.
 - 7. Check that air has been purged from the system.
- D. Measure and record upstream and downstream pressure of each piece of equipment.
- E. Measure and record upstream and downstream pressure of pressure-reducing valves.

- F. Check settings and operation of automatic temperature-control valves, self-contained control valves, and pressure-reducing valves. Record final settings.
- G. Check settings and operation of each safety valve. Record settings.

3.6 PROCEDURES FOR DOMESTIC HOT-WATER CIRCULATING INLINE PUMP

- A. Balance system with manual or automatic balancing valves by setting at design flow.
 - 1. Measure flow in main and branch pipes.
 - 2. Adjust main and branch balance valves for design flow.
 - 3. Re-measure each main and branch after all have been adjusted.
- B. Adjust pump to deliver total design flow.
 - 1. Measure pump TDH as follows:
 - a. Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 - b. Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 - c. Convert pressure to head and correct for differences in gauge heights.
 - d. Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow, and verify that the pump has the intended impeller size.
 - 2. Monitor motor performance during procedures, and do not operate motor in an overloaded condition.
 - 3. Mark final settings and verify that all memory stops have been set.
 - 4. Verify final system conditions as follows:
 - a. Re-measure and confirm that total flow is within design.
 - b. Re-measure final pumps' operating data, TDH, volts, amps, speed, and static profile.
 - c. Mark final settings.

3.7 PROCEDURES FOR WATER HEATERS

- A. Gas- and Oil-Fired Water Heaters:
 - 1. Measure and record entering- and leaving-water temperatures.
 - 2. Measure and record water flow.
 - 3. Measure and record pressure drop.
 - 4. Record relief valve(s) pressure setting.
 - 5. Capacity: Calculate in Btu/h of heating output.
 - 6. Fuel Consumption: If fuel supply is equipped with flow meter, measure and record consumption.
 - 7. Efficiency: Calculate operating efficiency for comparison to submitted equipment.
 - 8. Fan, motor, and motor controller operating data.

3.8 TOLERANCES

- A. Set plumbing system's flow rates within the following tolerances:
 - 1. Domestic Water Flow Rate: 10 percent or minus 5 percent. If design value is less than 10 gpm, within 10 percent.

3.9 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systembalancing devices. Recommend changes and additions to system-balancing devices, to facilitate proper performance measuring and balancing. Recommend changes and additions to plumbing systems and general construction to allow access for performance-measuring and -balancing devices.

3.10 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
 - 3. Certify validity and accuracy of field data.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Manufacturers' test data.
 - 3. Field test reports prepared by system and equipment installers.
 - 4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents, including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 14. Test conditions for pump performance forms, including the following:
 - a. Variable-frequency controller settings for variable-flow hydronic systems.
 - b. Settings for pressure controller(s).
 - c. Other system operating conditions that affect performance.

- D. System Diagrams: Include schematic layouts of distribution systems. Present each system with single-line diagram and include the following:
 - 1. Flow rates.
 - 2. Pipe and valve sizes and locations.
 - 3. Balancing stations.
 - 4. Position of balancing devices.
- E. Gas- and Oil-Fired Water Heaters Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.
 - g. Output capacity in Btu/h.
 - h. Ignition type.
 - i. Burner-control types.
 - j. Motor horsepower and speed.
 - k. Motor volts, phase, and hertz.
 - 1. Motor full-load amperage and service factor.
 - m. Sheave make, size in inches, and bore.
 - n. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 2. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Entering-water temperature in deg F.
 - c. Leaving-water temperature in deg F.
 - d. Low-fire fuel input in Btu/h.
 - e. High-fire fuel input in Btu/h.
 - f. High-temperature-limit setting in deg F.
 - g. Operating set point in Btu/h.
 - h. Heating value of fuel in Btu/h.
- F. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves, and include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model number and serial number.
 - f. Water flow rate in gpm.
 - g. Water-pressure differential in feet of head or psig.
 - h. Required net positive suction head in feet of head or psig.
 - i. Pump speed.
 - j. Impeller diameter in inches.
 - k. Motor make and frame size.
 - l. Motor horsepower and rpm.
 - m. Voltage at each connection.

- n. Amperage for each phase.
- o. Full-load amperage and service factor.
- p. Seal type.
- 2. Test Data (Indicated and Actual Values):
 - a. Static head in feet of head or psig.
 - b. Pump shutoff pressure in feet of head or psig.
 - c. Actual impeller size in inches.
 - d. Full-open flow rate in gpm.
 - e. Full-open pressure in feet of head or psig.
 - f. Final discharge pressure in feet of head or psig.
 - g. Final suction pressure in feet of head or psig.
 - h. Final total pressure in feet of head or psig.
 - i. Final water flow rate in gpm.
 - j. Voltage at each connection.
 - k. Amperage for each phase.
- G. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.11 VERIFICATION OF TAB REPORT

- A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Construction Manager.
- B. Construction Manager shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to the lesser of either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- D. If the number of "FAILED" measurements is greater than 20 percent of the total measurements checked during the final inspection, the TAB shall be considered incomplete and shall be rejected.
- E. If recheck measurements find the number of failed measurements noncompliant with requirements indicated, proceed as follows:
 - 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection. All changes shall be tracked to show changes made to previous report.
 - 2. If the second final inspection also fails, Owner may pursue other Contract options to complete TAB work.

- F. Prepare test and inspection reports.
- 3.12 ADDITIONAL TESTS
 - A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

END OF SECTION 220593

SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic cold-water piping.
 - 2. Domestic hot-water piping.
 - 3. Domestic recirculating hot-water piping.
 - 4. Domestic chilled-water piping for drinking fountains.
 - 5. Supplies and drains for handicap-accessible lavatories and sinks.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 - 2. Jacket Materials for Pipe: 12 inches long by NPS 2.
 - 3. Sheet Jacket Materials: 12 inches square.
 - 4. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.4 **QUALITY ASSURANCE**

- Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship A. program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - Supply and Drain Protective Shielding Guards: ICC A117.1. 1.

DELIVERY, STORAGE, AND HANDLING 1.5

Packaging: Insulation system materials are to be delivered to the Project site in unopened A. containers. The packaging is to include name of the manufacturer, fabricator, type, description, and size.

1.6 COORDINATION

- Coordinate sizes and locations of supports, hangers, and insulation shields specified in A. Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- Coordinate clearance requirements with piping Installer for piping insulation application. B. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.7 **SCHEDULING**

Schedule insulation application after pressure testing systems and, where required, after A. installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 **PERFORMANCE REQUIREMENTS**

- Surface-Burning Characteristics: For insulation and related materials, as determined by testing A. identical products in accordance with ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation, jacket materials, adhesive, mastic, tapes, and cement material containers with appropriate markings of applicable testing agency.
 - All Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed 1. index of 50 or less.
2.2 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials are applied.
- B. Products do not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come into contact with stainless steel have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.
- D. Insulation materials for use on austenitic stainless steel are qualified as acceptable in accordance with ASTM C795.
- E. Foam insulation materials do not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric: Closed-cell or expanded-rubber materials; suitable for maximum use temperature between minus 70 deg F and 220 deg F. Comply with ASTM C534/C534M, Type I for tubular materials.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Aeroflex USA.
 - b. Armacell LLC.
 - c. K-Flex USA.
- G. Glass-Fiber, Preformed Pipe: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 850 deg F in accordance with ASTM C411. Comply with ASTM C547.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. Knauf Insulation.
 - c. Manson Insulation Inc.
 - d. Owens Corning.
 - 3. Preformed Pipe Insulation: Type I, Grade A with factory-applied ASJ.
 - 4. Fabricated shapes in accordance with ASTM C450 and ASTM C585.
 - 5. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.3 ADHESIVES

- A. Materials are compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Solvent-based adhesive.

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Aeroflex USA.
 - b. Armacell LLC.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. K-Flex USA.
- 3. Flame-spread index is 25 or less and smoke-developed index is 50 or less as tested in accordance with ASTM E84.
- 4. Wet Flash Point: Below 0 deg F.
- 5. Service Temperature Range: 40 to 200 deg F.
- 6. Color: Black.
- C. Glass-Fiber and Mineral Wool Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Mon-Eco Industries, Inc.
- D. ASJ Adhesive and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A, for bonding insulation jacket lap seams and joints.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Mon-Eco Industries, Inc.

2.4 MASTICS AND COATINGS

- A. Vapor-Retarder Mastic, Water Based: Suitable for indoor use on below-ambient services.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Knauf Insulation.
 - d. Mon-Eco Industries, Inc.
 - e. Vimasco Corporation.

- 3. Water-Vapor Permeance: Comply with ASTM E96/E96M or ASTM F1249.
- 4. Service Temperature Range: 0 to plus 180 deg F.
- 5. Comply with MIL-PRF-19565C, Type II, for permeance requirements.
- 6. Color: White.

2.5 SEALANTS

- A. Materials are as recommended by the insulation manufacturer and are compatible with insulation materials, jackets, and substrates.
- B. Joint Sealants:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Mon-Eco Industries, Inc.
 - d. Owens Corning.
 - 3. Permanently flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 58 to plus 176 deg F.
 - 5. Color: White or gray.
- C. FSK and Metal Jacket Flashing Sealants:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Mon-Eco Industries, Inc.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.

- 4. ASJ+: Aluminum foil reinforced with glass scrim bonded to a kraft paper interleaving with an outer film leaving no paper exposed; complying with ASTM C1136 Types I, II, III, IV, and VII.
- 5. PSK Jacket: Aluminum foil fiberglass reinforced scrim with polyethylene backing, complying with ASTM C1136, Type II.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets comply with ASTM C1136, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. 3M Industrial Adhesives and Tapes Division.
 - b. Avery Dennison Corporation, Specialty Tapes Division.
 - c. Ideal Tape Co., Inc., an American Biltrite Company.
 - d. Knauf Insulation.
 - 3. Width: 3 inches.
 - 4. Thickness: 1.5 mils.
 - 5. Adhesion: 90 ounces force/inch in width.
 - 6. Elongation: 2 percent.
 - 7. Tensile Strength: 40 lbf/inch in width.
 - 8. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.9 SECUREMENTS

- A. Bands:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. RPR Products, Inc.
 - 3. Stainless Steel: ASTM A240/A240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- C. Wire: .062-inch soft-annealed, stainless steel.

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. C & F Wire Products.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. RPR Products, Inc.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range of between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature of between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the tradesman installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.

- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, compress, or otherwise damage insulation or jacket.
- D. Install insulation with longitudinal seams at top and bottom (12 o'clock and 6 o'clock positions) of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet during storage or in the installation process before being properly covered and sealed in accordance with Contract Documents.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
 - 3. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth, but not to the extent of creating wrinkles or areas of compression in the insulation.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 4 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation.

- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.

2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials, except where more specific requirements are specified in various pipe insulation material installation articles below.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, Mechanical Couplings, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, mechanical couplings, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered or routed fittings made from same material and density as that of adjacent pipe insulation. Each piece is butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as that used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers, so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges, mechanical couplings, and unions, using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Stencil or label the outside insulation jacket of each union with the word "union" matching size and color of pipe labels.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket, except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing, using PVC tape.

- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation conforms to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as that of adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union at least 2 times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as that of pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install sections of pipe insulation and miter if required in accordance with manufacturer's written instructions.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install prefabricated valve covers manufactured of same material as that of pipe insulation when available.

- 2. When prefabricated valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.
- 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF GLASS-FIBER AND MINERAL WOOL INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
 - 4. For insulation with jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install prefabricated pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with glass-fiber or mineral-wool blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
 - 2. When prefabricated insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
 - 2. When prefabricated sections are not available, install fabricated sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.8 INSTALLATION OF FIELD-APPLIED JACKETS

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless steel bands 12 inches o.c. and at end joints.

3.9 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless steel jackets.

3.10 FIELD QUALITY CONTROL

- A. Owner will engage a qualified testing agency to perform tests and inspections.
- B. Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.

- E. Tests and Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection is limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- F. All insulation applications will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports.

3.11 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.12 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Cold Water:
 - 1. NPS 1 and Smaller: Insulation is one of the following:
 - a. Flexible Elastomeric: 1/2 inch thick.
 - b. Glass-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 - 2. NPS 1-1/4 and Larger: Insulation is one of the following:
 - a. Flexible Elastomeric: 1 inch thick.
 - b. Glass-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
- B. Domestic Hot and Recirculated Hot Water:
 - 1. NPS 1-1/4 and Smaller: Insulation is one of the following:
 - a. Flexible Elastomeric: 1 inch thick.
 - b. Glass-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 - 2. NPS 1-1/2 and Larger: Insulation is one of the following:
 - a. Flexible Elastomeric: 1-1/2 inch thick.
 - b. Glass-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inch thick.
- C. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 - 1. All Pipe Sizes: Insulation is one of the following:
 - a. Flexible Elastomeric: 1 inch thick.

END OF SECTION 220719

SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Copper tube and fittings domestic water.
- 2. Stainless steel piping and fittings domestic water.
- 3. Piping joining materials domestic water.
- 4. Transition fittings domestic water.
- 5. Dielectric fittings domestic water.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. Copper tube and fittings domestic water.
 - 2. Stainless steel piping and fittings domestic water.
 - 3. Piping joining materials domestic water.
 - 4. Transition fittings domestic water.
 - 5. Dielectric fittings domestic water.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Piping layout, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.
- B. System purging and disinfecting activities report.
- C. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Installers of pressure-sealed joints are to be certified by pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.

1.5 FIELD CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service in accordance with requirements indicated:
 - 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of water service.
 - 2. Do not interrupt water service without Owner's written permission.

1.6 WARRANTY

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Domestic water piping, tubing, fittings, joints, and appurtenances intended to convey or dispense water for human consumption are to comply with the U.S. Safe Drinking Water Act, with requirements of authorities having jurisdiction, and with NSF 61 and NSF 372, or be certified in compliance with NSF 61 and NSF 372 by an ANSI-accredited third-party certification body, in that the weighted average lead content at wetted surfaces is less than or equal to 0.25 percent.

2.2 PIPING MATERIALS

A. Potable-water piping and components are to comply with NSF 14, NSF 61, and NSF 372.

2.3 COPPER TUBE AND FITTINGS - DOMESTIC WATER

- A. Drawn-Temper Copper Tube: ASTM B88, Type L.
- B. Pressure-Seal-Joint Fittings, Copper or Bronze Domestic Water:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - b. Conex Banninger USA.
 - c. Copper Press Brand; Merit Brass Company.
 - d. Elkhart Brass Mfg. Co., Inc.
 - e. FNW; Ferguson Enterprises, Inc.
 - f. Mueller Streamline Co.; a company of Mueller Industries.
 - g. NIBCO INC.
 - h. Viega LLC.
 - 3. Source Limitations: Obtain pressure-seal-joint fittings, copper or bronze, from single manufacturer.
 - 4. Housing: Copper.
 - 5. O-Rings and Pipe Stops: EPDM.
 - 6. Tools: Manufacturer's special tools.
 - 7. Minimum 200 psig working-pressure rating at 250 deg F.

2.4 STAINLESS STEEL PIPING AND FITTINGS - DOMESTIC WATER

- A. Potable-water piping and components are to comply with NSF 61 and NSF 372.
- B. Stainless Steel Pipe: ASTM A312/A312M, seamless, stainless steel of types and schedules as indicated in "Piping Applications" Article.

- C. Stainless Steel Pipe Fittings: ASTM A815/A815M.
- D. Appurtenances for Grooved-End, Stainless Steel Pipe Domestic Water:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International/Smith-Cooper International; Tailwind Capital, LLC.
 - b. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - c. GroovJoint.
 - d. Shurjoint; a part of Aalberts Integrated piping Systems.
 - e. Victaulic Company.
 - f. ASC Engineered Solutions.
 - 3. Source Limitations: Obtain appurtenance for grooved-end, stainless steel pipe from single manufacturer.

2.5 PIPING JOINING MATERIALS - DOMESTIC WATER

- A. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B32, lead-free alloys.
- D. Flux: ASTM B813, water flushable.
- E. Brazing Filler Metals: AWS A5.8M/A5.8, BCuP Series, copper-phosphorus alloys for generalduty brazing unless otherwise indicated.

2.6 TRANSITION FITTINGS - DOMESTIC WATER

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- C. Sleeve-Type Transition Couplings Domestic Water: AWWA C219.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Cascade Waterworks Mfg. Co.
- b. Dresser Pipeline Solutions.
- c. Ford Meter Box Company, Inc. (The).
- d. JCM Industries, Inc.
- e. Jay R. Smith Mfg Co; a division of Morris Group International.
- f. Romac Industries, Inc.
- g. Smith-Blair, a Xylem brand.
- h. Viking Johnson.
- 3. Source Limitations: Obtain sleeve-type transition couplings from single manufacturer.

2.7 DIELECTRIC FITTINGS - DOMESTIC WATER

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions Domestic Water:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. A.Y. McDonald Mfg. Co.
 - b. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - c. HART Industrial Unions, LLC.
 - d. Jomar Valve.
 - e. Matco-Norca.
 - f. WATTS; A Watts Water Technologies Company.
 - g. Zurn Industries, LLC.
 - 3. Source Limitations: Obtain dielectric unions from single manufacturer.
 - 4. Standard: ASSE 1079.
 - 5. Pressure Rating: 125 psig minimum at 180 deg F.
 - 6. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges Domestic Water:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. GF Piping Systems: Georg Fischer LLC.
 - c. Matco-Norca.
 - d. WATTS; A Watts Water Technologies Company.
 - e. Zurn Industries, LLC.
 - 3. Source Limitations: Obtain dielectric flanges from single manufacturer.
 - 4. Standard: ASSE 1079.
 - 5. Factory-fabricated, bolted, companion-flange assembly.
 - 6. Pressure Rating: 125 psig minimum at 180 deg F.
 - 7. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

- D. Dielectric-Flange Insulating Kits Domestic Water:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, LLC.
 - b. CALPICO, Inc.
 - c. GPT; a division of EnPRO Industries.
 - 3. Source Limitations: Obtain dielectric-flange insulating kits from single manufacturer.
 - 4. Nonconducting materials for field assembly of companion flanges.
 - 5. Pressure Rating: 150 psig.
 - 6. Gasket: Phenolic, Temperature Rating: 225 deg F.
 - 7. Bolt Sleeves: Phenolic or polyethylene.
 - 8. Washers: Phenolic with steel backing washers.
- E. Dielectric Nipples Domestic Water:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International/Smith-Cooper International; Tailwind Capital, LLC.
 - b. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - c. Matco-Norca.
 - d. Sioux Chief Manufacturing Company, Inc.
 - e. Victaulic Company.
 - 3. Source Limitations: Obtain dielectric nipples from single manufacturer.
 - 4. Standard: IAPMO PS 66.
 - 5. Electroplated steel nipple complying with ASTM F1545.
 - 6. Pressure Rating and Temperature: 300 psig at 225 deg F.
 - 7. End Connections: Male threaded or grooved.
 - 8. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Refer to piping schedule on drawings for applications.

3.2 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.3 INSTALLATION OF PIPING

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab in accordance with CDA's "Copper Tube Handbook."
- C. Install valves in accordance with the following:
 - 1. Section 220523.12 "Ball Valves for Plumbing Piping."
 - 2. Section 220523.13 "Butterfly Valves for Plumbing Piping."
 - 3. Section 220523.14 "Check Valves for Plumbing Piping."
 - 4. Section 220523.15 "Gate Valves for Plumbing Piping."
- D. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."
- E. Install domestic water piping level and plumb.
- F. Rough-in domestic water piping for water-meter installation in accordance with utility company's requirements.
- G. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- H. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- I. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- J. Install piping to permit valve servicing.
- K. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- L. Install piping free of sags and bends.
- M. Install fittings for changes in direction and branch connections.
- N. Install PEX tube with loop at each change of direction of more than 90 degrees.

- O. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- P. Install pressure gauges on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gauges in Section 220500 "Common Work Results for Plumbing."
- Q. Install thermometers on outlet piping from each water heater. Comply with requirements for thermometers in Section 220500 "Common Work Results for Plumbing."
- R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220500 "Common Work Results for Plumbing."
- S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220500 "Common Work Results for Plumbing."

3.4 JOINT CONSTRUCTION

- A. Reamends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads in accordance with ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
- E. Soldered Joints for Copper Tubing: Apply ASTM B813, water-flushable flux to end of tube. Join copper tube and fittings in accordance with ASTM B828 or CDA's "Copper Tube Handbook."
- F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools and procedure recommended by pressure-seal-fitting manufacturer. Leave insertion marks on pipe after assembly.
- G. Push-on Joints for Copper Tubing: Clean end of tube. Measure insertion depth with manufacturer's depth gage. Join copper tube and push-on joint fittings by inserting tube to measured depth.
- H. Extruded-Tee Connections: Form tee in copper tube in accordance with ASTM F2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

- I. Joint Construction for Grooved-End Copper Tubing: Make joints in accordance with AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.
- J. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.5 INSTALLATION OF TRANSITION FITTINGS

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. Fittings for NPS 1-1/2 (DN 40) and Smaller: Fitting-type coupling.
 - 2. Fittings for NPS 2 (DN 50) and Larger: Sleeve-type coupling.
- C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 (DN 50) and Smaller: Plastic-to-metal transition fittings or unions.

3.6 INSTALLATION OF DIELECTRIC FITTINGS

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric couplings or nipples.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Use dielectric flanges.
- D. Dielectric Fittings for NPS 5 (DN 125) and Larger: Use dielectric flange kits.

3.7 INSTALLATION OF HANGERS AND SUPPORTS

- A. Comply with requirements for hangers, supports, and anchor devices in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Install hangers for copper pipe, with maximum horizontal spacing and minimum rod diameters, to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- C. Install vinyl-coated hangers for PEX tube, with maximum horizontal spacing and minimum rod diameters, to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- D. Support horizontal piping within 12 inches of each fitting.
- E. Support vertical runs of copper pipe to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.8 PIPING CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 - 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.9 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

3.10 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system in accordance with either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Repeat procedures if biological examination shows contamination.
 - e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Clean non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.

- 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities. Include copies of watersample approvals from authorities having jurisdiction.
- D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.12 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after installation and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 - c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 - d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 - 2. Piping Tests:

- a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
- b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
- c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
- e. Hydrostatic testing and documentation of test results for polypropylene (PP-R and PP-RCT) pipe to be in accordance with manufacturer's written instructions and submitted to manufacturer upon successful completion per warranty requirements.
- f. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
- g. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 221116

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Vacuum breakers.
 - 2. Backflow preventers.
 - 3. Water pressure-reducing valves.
 - 4. Balancing valves.
 - 5. Temperature-actuated, water mixing valves.
 - 6. Strainers for domestic water piping.
 - 7. Wall hydrants.
 - 8. Drain valves.
 - 9. Water-hammer arresters.
 - 10. Trap-seal protection device.
 - 11. Flexible connectors.

B. Related Requirements:

- 1. Section 220500 "Common Work Results for Plumbing."
- 2. Section 221116 "Domestic Water Piping" for water meters.

1.2 DEFINITIONS

- A. AMI: Advanced Metering Infrastructure.
- B. AMR: Automatic Meter Reading.
- C. FKM: A family of fluoroelastomer materials defined by ASTM D1418.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For domestic water piping specialties.1. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Test and inspection reports.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Domestic water piping specialties intended to convey or dispense water for human consumption are to comply with the SDWA, requirements of authorities having jurisdiction, and NSF 61 and NSF 372, or to be certified in compliance with NSF 61 and NSF 372 by an American National Standards Institute (ANSI)-accredited third-party certification body that the weighted average lead content at wetted surfaces is less than or equal to 0.25 percent.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 BACKFLOW PREVENTERS

- A. Double-Check, Backflow-Prevention Assemblies:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Fire & Waterworks; A Watts Water Technologies Company.
 - b. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - c. FEBCO; A WATTS Brand.
 - d. WATTS; A Watts Water Technologies Company.
 - e. Zurn Industries, LLC.
 - 3. Standard: ASSE 1015.
 - 4. Operation: Continuous-pressure applications unless otherwise indicated.
 - 5. Pressure Loss: 5 psig maximum, through middle third of flow range.
 - 6. Size: 2".
 - 7. Design Flow Rate: 50 gpm.
 - 8. Body: Bronze for NPS 2 and smaller.
 - 9. End Connections: Threaded for NPS 2 and smaller.
 - 10. Configuration: Designed for vertical, straight-through flow.
 - 11. Accessories:
 - a. Valves NPS 2 (DN 50) and Smaller: Ball type with threaded ends on inlet and outlet.

2.4 WATER PRESSURE-REDUCING VALVES

A. Water Regulators:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawingsor comparable product by one of the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - b. Caleffi North America.
 - c. Cash Acme Plumbing Products; an RWC brand.
 - d. WATTS; A Watts Water Technologies Company.
 - e. Zurn Industries, LLC.
 - f. IMI Hydronic Engineering Inc.
- 3. Standard: ASSE 1003.
- 4. Pressure Rating: Initial working pressure of 150 psig.
- 5. Size: 2"
- 6. Design Flow Rate: 50 GPM
- 7. Design Inlet Pressure: 90 PSI
- 8. Design Outlet Pressure Setting: 60 PSI
- 9. Body: Bronze for NPS 2 and smaller.
- 10. End Connections: Threaded or solder for NPS 2 and smaller.

2.5 BALANCING VALVES

- A. Copper-Alloy Calibrated Balancing Valves :
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. following:

3.

- a. Bell & Gossett; a Xylem brand.
- b. IMI Hydronic Engineering Inc.
- c. NIBCO INC.
- d. Nexus Valve, Inc.; Aalberts Hydronic Flow Control.
- e. WATTS; A Watts Water Technologies Company.
- Type: Ball or Y-pattern globe valve with two readout ports and memory-setting indicator.
- 4. Body: Brass or bronze.
- 5. Size: Same as connected piping, but not larger than NPS 2.
- 6. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

2.6 TEMPERATURE-ACTUATED, WATER MIXING VALVES

- A. Primary, Thermostatic, Water Mixing Valves :
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Acorn Engineering Company; a Division of Morris Group International.
 - b. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - c. Caleffi North America.
 - d. Cash Acme Plumbing Products; an RWC brand.
 - e. Lawler Manufacturing Company, Inc.

- f. POWERS; A WATTS Brand.
- g. Symmons Industries, Inc.
- h. WATTS; A Watts Water Technologies Company.
- i. Zurn Industries, LLC.
- j. Acorn Controls; a Division of Morris Group International.
- 3. Standard: ASSE 1017.
- 4. Pressure Rating: 125 psig minimum unless otherwise indicated.
- 5. Type: Exposed-mounted, thermostatically controlled, water mixing valve.
- 6. Material: Bronze body with corrosion-resistant interior components.
- 7. Connections: Threaded inlets and outlet.
- 8. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
- 9. Tempered-Water Setting: 105 deg F.
- 10. Valve Finish: Rough bronze.
- 11. Piping Finish: Copper.

2.7 STRAINERS FOR DOMESTIC WATER PIPING

- A. Y-Pattern Strainers :
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Keckley Company.
 - b. Titan Flow Control, Inc.
 - c. WATTS; A Watts Water Technologies Company.
 - d. Zurn Industries, LLC.
 - e. Caleffi North America.
 - 3. Pressure Rating: 125 psig minimum unless otherwise indicated.
 - 4. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
 - 5. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 6. Screen: Stainless steel with round perforations unless otherwise indicated.
 - 7. Perforation Size:
 - a. Strainers NPS 2 (DN 50) and Smaller: 0.033 inch
 - 8. Drain: Pipe plug.

2.8 WALL HYDRANTS

- A. Nonfreeze Wall Hydrants :
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg Co; a division of Morris Group International.
 - b. MIFAB, Inc.
 - c. Prier Products, Inc.

- d. WATTS; A Watts Water Technologies Company.
- e. Woodford Manufacturing Company.
- f. Zurn Industries, LLC.
- g. Josam Company.
- 3. Standard: ASME A112.21.3M for concealed outlet, self-draining wall hydrants.
- 4. Pressure Rating: 125 psig.
- 5. Operation: Loose key.
- 6. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
- 7. Inlet: NPS 3/4 or NPS 1.
- 8. Outlet, Concealed: With integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 9. Box: Deep, flush mounted with cover.
- 10. Box and Cover Finish: Rough bronze.
- 11. Outlet, Exposed: With integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 12. Nozzle and Wall-Plate Finish: Rough bronze.
- 13. Operating Keys(s): Two with each wall hydrant.

2.9 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves :
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig minimum CWP.
 - 3. Size: NPS 3/4.
 - 4. Body: Copper alloy.
 - 5. Ball: Chrome-plated brass.
 - 6. Seats and Seals: Replaceable.
 - 7. Handle: Vinyl-covered steel.
 - 8. Inlet: Threaded or solder joint.
 - 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.10 WATER-HAMMER ARRESTERS

- A. Water-Hammer Arresters :
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Jay R. Smith Mfg Co; a division of Morris Group International.
 - c. MIFAB, Inc.
 - d. Precision Plumbing Products.
 - e. ProFlo; a Ferguson Enterprises, Inc. brand.
 - f. Sioux Chief Manufacturing Company, Inc.
 - g. WATTS; A Watts Water Technologies Company.
 - h. Zurn Industries, LLC.

- i. Josam Company.
- 3. Standard: ASSE 1010 or PDI-WH 201.
- 4. Type: Piston.
- 5. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.11 TRAP-SEAL PROTECTION DEVICE

- A. Supply-Type, Trap-Seal Protection Device :
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg Co; a division of Morris Group International.
 - b. Josam Company.
 - c. ProVent Systems
 - d. Sioux Chief Manufacturing Company, Inc.
 - e. WATTS; A Watts Water Technologies Company.
 - f. Zurn Industries, LLC.
 - 3. Standard: ASSE 1072.
 - 4. Body Rigid Ring: Polypropylene.
 - 5. Sealing material: Silicone.

2.12 FLEXIBLE CONNECTORS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flex-Hose Co., Inc.
 - 2. Mason Industries, Inc.
 - 3. Metraflex Company (The).
- C. Stainless Steel-Hose Flexible Connectors: Corrugated-stainless steel tubing with stainless steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig.
 - 2. End Connections NPS 2 (DN 50) and Smaller: Threaded steel-pipe nipple.
 - 3. End Connections NPS 2-1/2 (DN 65) and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 INSTALLATION OF PIPING SPECIALTIES

- A. Backflow Preventers: Install in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.

- 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
- 3. Do not install bypass piping around backflow preventers.
- B. Water Control Valves: Install with inlet and outlet shutoff valves and bypass with globe valve. Install pressure gauges on inlet and outlet.
- C. Balancing Valves: Install in locations where they can easily be adjusted. Set at indicated design flow rates.
- D. Temperature-Actuated, Water Mixing Valves: Install with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Surface mounted on wall as specified.
- E. Y-Pattern Strainers: For water, install on supply side of each pump.
- F. Water-Hammer Arresters: Install in water piping in accordance with PDI-WH 201.
- 3.2 PIPING CONNECTIONS
 - A. Drawings indicate general arrangement of piping, fittings, and specialties.
 - B. When installing piping specialties adjacent to equipment and machines, allow space for service and maintenance.

3.3 ELECTRICAL CONNECTIONS

- A. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.

3.4 CONTROL CONNECTIONS

A. Connect control wiring in accordance with Section 260523 "Control-Voltage Electrical Power Cables."

3.5 ADJUSTING

- A. Set field-adjustable pressure set points of water pressure-reducing valves.
- B. Set field-adjustable flow set points of balancing valves.

DOMESTIC WATER PIPING SPECIALTIES

- C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.
- D. Adjust each double-check, backflow-prevention assembly in accordance with manufacturer's written instructions, authorities having jurisdiction and the device's reference standard.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections.
 - 1. Test each double-check, backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 221119

SECTION 221123.21 - INLINE, DOMESTIC-WATER PUMPS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:1. In-line, sealless centrifugal pumps.

1.2 ACTION SUBMITTALS

A. Product Data Submittals: For each product. Include construction materials, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Detail pumps and adjacent equipment. Show support locations, type of support, weight on each support, required clearances, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Structural members to which pumps will be attached.
 - 2. Size and location of initial access modules for acoustical tile.
- B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For inline, domestic-water pumps to include in operation and maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Retain shipping flange protective covers and protective coatings during storage.
- B. Protect bearings and couplings against damage.
- C. Comply with pump manufacturer's written instructions for handling.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

INLINE, DOMESTIC-WATER PUMPS

- B. UL Compliance: UL 778 for motor-operated water pumps.
- C. Drinking Water System Components Health Effects and Drinking Water System Components Lead Content Compliance: NSF 61 and NSF 372.

2.2 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flo Fab Inc.
 - 2. Grundfos Pumps Corporation.
 - 3. Taco Comfort Solutions.
 - 4. WILO USA LLC WILO Canada Inc.
 - 5. Xylem, Inc.
- C. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.
- D. Capacities and Characteristics:
 - a. Refer to drawings.
- E. Pump Construction:
 - 1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
 - 2. Minimum Working Pressure: 125 psig.
 - 3. Maximum Continuous Operating Temperature: 220 deg F.
 - 4. Casing: Lead-free Brass, with threaded or companion-flange connections.
 - 5. Impeller: Plastic.
 - 6. Motor: Single speed.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220500 "Common Work Results for Plumbing."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.4 CONTROLS

- A. Timers: Electric, for control of hot-water circulation pump.
 - 1. Type: Programmable, seven-day clock with manual override on-off switch.
 - 2. Enclosure: NEMA 250, Type 1, suitable for wall mounting.
 - 3. Operation of Pump: On or off.
 - 4. Transformer: Provide if required.

- 5. Power Requirement: 120 V ac.
- 6. Programmable Sequence of Operation: Up to two on-off cycles each day for seven day.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for domestic-water-piping system to verify actual locations of piping connections before pump installation.

3.2 INSTALLATION OF PUMPS

- A. Comply with HI 1.4.
- B. Mount pumps in orientation complying with manufacturer's written instructions.

C. Pump Mounting:

- 1. Install anchor bolts to elevations required for proper attachment to supported equipment.
- D. Install continuous-thread hanger rods and vibration isolation of size required to support pump weight.
 - 1. Comply with requirements for hangers and supports specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- E. Install pressure switches in water-supply piping.
- F. Install thermostats in hot-water return piping.
- G. Install timers mechanical room wall.

3.3 PIPING CONNECTIONS

- A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to inline, domestic-water pumps, allow space for service and maintenance.
- C. Connect domestic-water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 - 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 - a. Horizontally mounted, in-line, separately coupled centrifugal pumps.
 - b. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 - c. Vertically mounted, in-line, close-coupled centrifugal pumps.
 - d. Comply with requirements for flexible connectors specified in Section 221116 "Domestic Water Piping."

- D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for strainers specified in Section 221119 "Domestic Water Piping Specialties." Comply with requirements for valves specified in the following:
 - 1. Install pressure gauge at suction of each pump and pressure gauge at discharge of each pump. Install at integral pressure-gauge tappings where provided or install pressure-gauge connectors in suction and discharge piping around pumps. Comply with requirements for pressure gauges and snubbers specified in Section 220500 "Common Work Results for Plumbing."

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring between temperature controllers and devices.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency:
 - 1. Owner will engage a qualified testing agency to perform tests and inspections.
 - 2. Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
- D. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Inline, domestic-water pump will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Set timers for automatic starting and stopping operation of pumps.
 - 5. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
- b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - Verify that pump is rotating in the correct direction.
- 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
- 7. Start motor.

c.

- 8. Open discharge valve slowly.
- 9. Adjust temperature settings on thermostats.
- 10. Adjust timer settings.

3.7 ADJUSTING

- A. Adjust inline, domestic-water pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust initial temperature set points.
- C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 221123.21

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Hubless, cast-iron soil pipe and fittings.
- 2. Copper tube and fittings.
- 3. PVC pipe and fittings.
- 4. Specialty pipe fittings.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. Hubless, cast-iron soil pipe and fittings.
 - 2. Copper tube and fittings.
 - 3. PVC pipe and fittings.
 - 4. Specialty pipe fittings.
- B. Shop Drawings: For hubless, single-stack drainage system. Include plans, elevations, sections, and details.
- C. Record Drawings: Provide as-built drawings of installed piping system.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans and elevations, or Building Information Model (BIM) drawn to scale, showing items described in this Section and coordinated with all building trades.
- B. Field quality-control reports.

1.4 FIELD CONDITIONS

- A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service in accordance with requirements indicated:
 - 1. Notify Construction Manager no fewer than two days in advance of proposed interruption of sanitary waste service.
 - 2. Do not proceed with interruption of sanitary waste service without Owner's written permission.

1.5 WARRANTY

A. Listed manufacturers to provide labeling and warranty of their respective products.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Components and installation are capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10 ft. head of water.

2.2 PIPING MATERIALS

- A. Piping materials to bear label, stamp, or other markings of specified testing agency.
- B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawingsor comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AB & I Foundry; a part of the McWane family of companies.
 - 2. Charlotte Pipe and Foundry Company.
 - 3. Tyler Pipe; a part of McWane family of companies.
- C. Pipe and Fittings:
 - 1. Marked with CISPI collective trademark.
 - 2. ASTM A888 or CISPI 301.
- D. Single-Stack Aerator Fittings: ASME B16.45, hubless, cast-iron aerator and deaerator drainage fittings.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawingsor comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conine Manufacturing Co., Inc.
 - b. SE Sovent.
- E. CISPI, Hubless-Piping Couplings:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawingsor comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ANACO-Husky.
 - b. Charlotte Pipe and Foundry Company.
 - c. Dallas Specialty & Mfg. Co.

- d. Fernco Inc.
- e. Ideal Tridon Group.
- f. MIFAB, Inc.
- g. Matco-Norca.
- h. Mission Rubber Company, LLC; a division of MCP Industries.
- i. Tyler Pipe; a subsidiary of McWane Inc.
- 3. Standards: ASTM C1277 and CISPI 310.
- 4. Description: Stainless steel corrugated shield with stainless steel bands and tightening devices; and ASTM C564, rubber sleeve with integral, center pipe stop.

2.4 COPPER TUBE AND FITTINGS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - 2. Cambridge-Lee Industries, LLC.
 - 3. Cerro Flow Products, LLC.
 - 4. Wieland Copper Products, LLC.
- C. Copper Type DWV Tube: ASTM B306, drainage tube, drawn temper.
- D. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.
- E. Hard Copper Tube: ASTM B88, Type L and Type M, water tube, drawn temper.
- F. Soft Copper Tube: ASTM B88, Type L, water tube, annealed temper.
- G. Copper Pressure Fittings:
 - 1. Copper Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.
 - 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- H. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 - 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8inch maximum thickness unless thickness or specific material is indicated.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- I. Solder: ASTM B32, lead free with ASTM B813, water-flushable flux.

2.5 PVC PIPE AND FITTINGS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawingsor comparable product by one of the following:

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 - 2. Charlotte Pipe and Foundry Company.
 - 3. GF Piping Systems.
 - 4. JM Eagle.
 - 5. National Pipe and Plastic, Inc.
 - 6. North America Pipe Corporation.
 - 7. Rocky Mountain Colby Pipe Company.
 - 8. Silver-line Plastics.
- C. Comply with NSF 14 for plastic piping components. Include "NSF-dwv" marking for plastic drain, waste, and vent piping and "NSF-sewer" marking for plastic sewer piping.
- D. Solid-Wall PVC Pipe: ASTM D2665 drain, waste, and vent.
- E. Cellular-Core PVC Pipe: ASTM F891, Schedule 40.
- F. PVC Socket Fittings: ASTM D2665, made in accordance with ASTM D3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

2.6 SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - 1. General Requirements: Fitting or device for joining piping with small differences in ODs or of different materials. Include end connections of same size as and compatible with pipes to be joined.
 - 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 - 3. Unshielded, Nonpressure Transition Couplings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Dallas Specialty & Mfg. Co.
 - 2) Fernco Inc.
 - 3) Mission Rubber Company, LLC; a division of MCP Industries.
 - 4) Plastic Oddities.
 - b. Standard: ASTM C1173.
 - c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - d. End Connections: Same size as and compatible with pipes to be joined.
 - e. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C564, rubber.
 - 2) For Plastic Pipes: ASTM F477, elastomeric seal or ASTM D5926 PVC.
 - 3) For Dissimilar Pipes: ASTM D5926 PVC or other material compatible with pipe materials being joined.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 INSTALLATION OF PIPING

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 - 1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
 - 2. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 - 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 - 2. Use long-turn, double Y-branch, and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
 - a. Straight tees, elbows, and crosses may be used on vent lines.
 - 3. Do not change direction of flow more than 90 degrees.
 - 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 - a. Reducing size of waste piping in direction of flow is prohibited.
- K. Lay buried building waste piping beginning at low point of each system.

- 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
- 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
- 3. Maintain swab in piping and pull past each joint as completed.
- L. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Waste: Two percent downward in direction of flow for piping NPS 3 and smaller; 2 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Sanitary Waste Piping: Two percent downward in direction of flow.
 - 3. Vent Piping: One percent down toward vertical fixture vent or toward vent stack.
- M. Install steel piping in accordance with applicable plumbing code.
- N. Install stainless steel piping in accordance with ASME A112.3.1 and applicable plumbing code.
- O. Install aboveground copper tubing in accordance with CDA's "Copper Tube Handbook."
- P. PVC piping in accordance with ASTM D2321.
- Q. Install engineered soil and waste and vent piping systems as follows:
 - 1. Hubless, Single-Stack Drainage System: Comply with ASME B16.45 and hubless, single-stack aerator fitting manufacturer's written installation instructions.
- R. Install underground, ductile-iron, force-main piping according to AWWA C600.
 - 1. Install buried piping inside building between wall and floor penetrations and connection to sanitary sewer piping outside building with restrained joints.
 - 2. Anchor pipe to wall or floor. Install thrust-block supports at vertical and horizontal offsets.
 - 3. Install encasement on piping in accordance with ASTM A674 or AWWA C105/A 21.5.
- S. Install underground, copper, force-main tubing in accordance with CDA's "Copper Tube Handbook."
- T. Plumbing Specialties:
 - 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.
 - a. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping.
 - b. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 2. Install drains in sanitary waste gravity-flow piping.
 - a. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."
- U. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- V. Install sleeves for piping penetrations of walls, ceilings, and floors.

- 1. Comply with requirements for sleeves specified in Section 220500 "Common Work Results for Plumbing."
- W. Install sleeve seals for piping penetrations of concrete walls and slabs.
 - 1. Comply with requirements for sleeve seals specified in Section 220500 "Common Work Results for Plumbing."
- X. Install escutcheons for piping penetrations of walls, ceilings, and floors.
 1. Comply with requirements for escutcheons specified in Section 220500 "Common Work Results for Plumbing."

3.3 JOINT CONSTRUCTION

- A. Hubless, Cast-Iron Soil Piping Coupled Joints:
 - 1. Join hubless, cast-iron soil piping in accordance with CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- B. Join copper tube and fittings with soldered joints in accordance with ASTM B828. Use ASTM B813, water-flushable, lead-free flux and ASTM B32, lead-free-alloy solder.
- C. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings in accordance with the following:
 - 1. Comply with ASTM F402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Piping: Join in accordance with ASTM D2855 and ASTM D2665 appendixes.

3.4 INSTALLATION OF SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in ODs.
 - 2. In Waste Drainage Piping: Unshielded, nonpressure transition couplings.
 - 3. In Aboveground Force Main Piping: Fitting-type transition couplings.
 - 4. In Underground Force Main Piping:
 - a. NPS 1-1/2 (DN 40) and Smaller: Fitting-type transition couplings.
 - b. NPS 2 (DN 50) and Larger: Pressure transition couplings.

3.5 INSTALLATION OF HANGERS AND SUPPORTS

- A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment"
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 3. Vertical Piping: MSS Type 8 or Type 42 clamps.
 - 4. Install individual, straight, horizontal piping runs:
 - a. 100 Ft. (30 m) and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Ft. (30 m): MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Ft. (30 m) if Indicated: MSS Type 49, spring cushion rolls.
 - 5. Multiple, Straight, Horizontal Piping Runs 100 Ft. (30 m) or Longer: MSS Type 44 pipe rolls. Support pipe rolls on trapeze.

- 6. Base of Vertical Piping: MSS Type 52 spring hangers.
- B. Install hangers for cast-iron soil piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
- C. Support vertical runs of cast-iron soil piping to comply with MSS SP-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect waste and vent piping to the following:
 - 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
- D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- E. Make connections in accordance with the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- D. Test sanitary waste and vent piping in accordance with procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
 - a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 - a. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 - a. Close openings in piping system and fill with water to point of overflow, but not less than 10 ft. head of water.
 - b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 - c. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
 - a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1 inch wg.
 - b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
 - c. Air pressure must remain constant without introducing additional air throughout period of inspection.
 - d. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

3.8 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed Plastic Piping: Protect PVC plumbing vents exposed to sunlight with two coats of water-based latex paint.
- E. Repair damage to adjacent materials caused by waste and vent piping installation.

3.9 PIPING SCHEDULE

1. Refer to drawings

END OF SECTION 221316

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cleanouts.
 - 2. Miscellaneous sanitary drainage piping specialties.
- B. Related Requirements:
 - 1. Section 076200 "Sheet Metal Flashing and Trim" for metal roof flashing assemblies.
 - 2. Section 078413 "Penetration Firestopping" for through-penetration firestop assemblies.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile butadiene styrene.
- B. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:

1. Show fabrication and installation details for frost-resistant vent terminals.

1.5 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- 1.6 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For sanitary waste piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

- A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic sanitary waste piping specialty components.

2.2 CLEANOUTS

- A. Cast-Iron Exposed Cleanouts:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg Co; a division of Morris Group International.
 - b. Josam Company.
 - c. MIFAB, Inc.
 - d. Tyler Pipe; a subsidiary of McWane Inc.
 - e. WATTS Water Technologies; A WATTS Company.
 - f. Zurn Industries, LLC.
 - 3. Standard: ASME A112.36.2M.
 - 4. Size: Same as connected drainage piping
 - 5. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 6. Closure: Countersunk plug.
 - 7. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- B. Cast-Iron Exposed Floor Cleanouts :
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jay R. Smith Mfg Co; a division of Morris Group International.
 - b. Josam Company.
 - c. MIFAB, Inc.
 - d. Sioux Chief Manufacturing Company, Inc.
 - e. WATTS Water Technologies; A WATTS Company.
 - f. Zurn Industries, LLC.
 - 3. Standard: ASME A112.36.2M for threaded, adjustable housing cleanout.
 - 4. Size: Same as connected branch.
 - 5. Type: Threaded, adjustable housing.
 - 6. Body or Ferrule: Cast iron.
 - 7. Closure: Brass plug with tapered threads.
 - 8. Adjustable Housing Material: Cast iron with threads.
 - 9. Frame and Cover Material and Finish: Nickel-bronze, copper alloy.
 - 10. Frame and Cover Shape: Round.
 - 11. Top-Loading Classification: Light Duty.

12. Riser: ASTM A74, Service Class, cast-iron drainage pipe fitting and riser to cleanout.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- D. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.

3.2 PIPING CONNECTIONS

- A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment, to allow service and maintenance.

3.3 LABELING AND IDENTIFYING

- A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.
 - 1. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 **PROTECTION**

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319

SECTION 223400 - FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Commercial, atmospheric, gas-fired, storage, domestic-water heaters.
 - 2. Domestic-water heater accessories.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings:1. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Equipment room drawing or BIM model, drawn to scale, on which the items described in this Section are shown and coordinated with all building trades.
- B. Product Certificates: For each type of commercial, gas-fired domestic-water heater.
- C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
- D. Source quality-control reports.
- E. Field quality-control reports.
- F. Sample Warranty: For special warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.5 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of fuel-fired, domesticwater heaters that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including storage tank and supports.
 - b. Faulty operation of controls.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - Warranty Periods: From date of Substantial Completion.
 - a. Commercial, Gas-Fired, Storage, Domestic-Water Heaters:
 - 1) Storage Tank: Three years.
 - 2) Controls and Other Components: One year.
 - b. Expansion Tanks: Five years.

PART 2 - PRODUCTS

2.

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and use.
- B. ASHRAE/IES Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IES 90.1.
- C. ASME Compliance:
 - 1. Where ASME-code construction is indicated, fabricate and label commercial, domesticwater heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 2. Where ASME-code construction is indicated, fabricate and label commercial, finnedtube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.
- D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 and NSF 372.

2.2 COMMERCIAL, GAS-FIRED, STORAGE, DOMESTIC-WATER HEATERS

- A. Commercial, Atmospheric, Gas-Fired, Storage, Domestic-Water Heaters:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. A. O. Smith Corporation.
 - b. American Water Heaters.
 - c. Bock Water Heaters, Inc.
 - d. Bradford White Corporation.
 - e. HESco Industries, Inc.
 - f. IBC Technologies; a Rheem brand.
 - g. Lochinvar, LLC.

- h. PVI; A WATTS Brand.
- i. Raypak; a Rheem brand.
- j. Rheem Manufacturing Company.
- k. Ruud Water Heaters; a Rheem brand.
- l. State Industries.
- 3. Source Limitations: Obtain domestic-water heaters from single source from single manufacturer.
- 4. Standard: ANSI Z21.10.3/CSA 4.3.
- 5. Storage-Tank Construction: Non-ASME-code steel with 150-psig working-pressure rating.
 - a. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 - 1) NPS 2 (DN 50) and Smaller: Threaded ends in accordance with ASME B1.20.1.
 - 2) NPS 2-1/2 (DN 65) and Larger: Flanged ends in accordance with ASME B16.5 for steel and stainless steel flanges and in accordance with ASME B16.24 for copper and copper-alloy flanges.
 - b. Interior Finish: Comply with NSF 61 and NSF 372 barrier materials for potablewater tank linings, including extending finish into and through tank fittings and outlets.
 - c. Lining: Glass complying with NSF 61 and NSF 372 barrier materials for potablewater tank linings, including extending lining into and through tank fittings and outlets.
- 6. Factory-Installed, Storage-Tank Appurtenances:
 - a. Anode Rod: Replaceable magnesium.
 - b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 - c. Drain Valve: Corrosion-resistant metal with hose-end connection.
 - d. Insulation: Comply with ASHRAE/IES 90.1. Surround entire storage tank except connections and controls.
 - e. Jacket: Steel with enameled finish.
 - f. Burner: For use with atmospheric, gas-fired, domestic-water heaters and naturalgas fuel.
 - g. Ignition: Standing pilot or ANSI Z21.20/CSA C22.2 No. 60730-2-5, electric, automatic, gas-ignition system.
 - h. Temperature Control: Adjustable thermostat.
 - i. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.
 - j. Combination Temperature-and-Pressure Relief Valves: ANSI Z21.22/CSA 4.4. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than working-pressure rating of domestic-water heater. Select one relief valve with sensing element that extends into storage tank.
- 7. Draft Hood: Draft diverter, complying with ANSI Z21.12.

2.3 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Expansion Tanks:

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. A. O. Smith Corporation.
 - b. AMTROL, Inc.
 - c. Flexcon Industries.
 - d. Honeywell International Inc.
 - e. ProFlo; a Ferguson Enterprises, Inc. brand.
 - f. State Industries.
 - g. Taco Comfort Solutions.
- 3. Source Limitations: Obtain domestic-water heaters from single source from single manufacturer.
- 4. Description: Steel, pressure-rated tank constructed with welded joints and factoryinstalled, butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
- 5. Construction:
 - a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 - b. Interior Finish: Comply with NSF 61 and NSF 372 barrier materials for potablewater tank linings, including extending finish into and through tank fittings and outlets.
 - c. Air-Charging Valve: Factory installed.
- 6. Capacity and Characteristics:
 - a. Refer to drawings
- B. Drain Pans: Corrosion-resistant metal with raised edge. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads.
- C. Piping-Type Heat Traps: Field-fabricated piping arrangement in accordance with ASHRAE/IES 90.1.
- D. Heat-Trap Fittings: ASHRAE 90.2.
- E. Manifold Kits: Domestic-water heater manufacturer's factory-fabricated inlet and outlet piping for field installation, for multiple domestic-water heater installation. Include ball-, butterfly-, or gate-type shutoff valves to isolate each domestic-water heater and memory-stop balancing valves to provide balanced flow through each domestic-water heater.
- F. Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."
 - 1. Comply with requirements for balancing valves specified in Section 221119 "Domestic Water Piping Specialties."
- G. Gas Shutoff Valves: ANSI Z21.15/CSA 9.1, manually operated. Furnish for installation in piping.

- H. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include 1/2-psig pressure rating as required to match gas supply.
- I. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than working-pressure rating of domestic-water heater. Select relief valves with sensing element that extends into storage tank.
 - 1. Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4.

2.4 SOURCE QUALITY CONTROL

- A. Domestic-water heaters will be considered defective if they do not pass tests and inspections.
- B. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 INSTALLATION OF DOMESTIC-WATER HEATER

- A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
 - 1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
 - 2. Maintain manufacturer's recommended clearances.
 - 3. Arrange units so controls and devices that require servicing are accessible.
 - 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 7. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 8. Anchor domestic-water heaters to substrate.
- B. Install gas-fired, domestic-water heaters in accordance with NFPA 54.
 - 1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
 - 2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
 - 3. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Section 231123 "Facility Natural-Gas Piping."
- C. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend domestic-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

- D. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend domestic-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- E. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."
- F. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 220500 "Common Work Results for Plumbing."
- G. Assemble and install inlet and outlet piping manifold kits for multiple domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each domestic-water heater outlet.
- H. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.
- I. Fill domestic-water heaters with water.
- J. Charge domestic-water expansion tanks with air to required system pressure.
- K. Install dielectric fittings in all locations where piping of dissimilar metals is to be joined. The wetted surface of the dielectric fitting contacted by potable water shall contain less than 0.25 percent of lead by weight.

3.2 PIPING CONNECTIONS

- A. Comply with requirements for domestic-water piping specified in Section 221116 "Domestic Water Piping."
- B. Comply with requirements for gas piping specified in Section 231123 "Facility Natural-Gas Piping."
- C. Drawings indicate general arrangement of piping, fittings, and specialties.
- D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 FIELD QUALITY CONTROL

A. Testing Agency:

1. Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

- C. Perform tests and inspections.
- D. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- E. Domestic-water heaters will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage, domestic-water heaters. Training shall be a minimum of one hour.

END OF SECTION 223400

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Fastener systems.
- B. Related Requirements:
 - 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 - 2. Section 230516 "Expansion Fittings and Loops for HVAC Piping" for pipe guides and anchors.
 - 3. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Include design calculations for designing trapeze hangers.

1.4 QUALITY ASSURANCE

- A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment must withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

2.2 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
 - 3. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 4. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ABB, Electrification Products Division.
 - b. B-line; Eaton, Electrical Sector.
 - c. Flex-Strut Inc.
 - d. G-Strut.
 - e. Haydon Corporation.
 - f. MIRO Industries.
 - g. Unistrut; Atkore International.
 - h. Wesanco, Inc.
 - 2. Description: Shop- or field-fabricated, pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 - 3. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 4. Channels: Continuous slotted carbon-steel channel with inturned lips.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- 5. Channel Width: Selected for applicable load criteria.
- 6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
- 7. Hanger Rods: Continuous-thread rod, nuts, and washer made of galvanized steel.
- 8. Metallic Coating: Hot-dip galvanized.

2.5 FASTENER SYSTEMS

A. Refer to structural drawings and specifications for fastening systems.

2.6 MATERIALS

- A. Aluminum: ASTM B221.
- B. Carbon Steel: ASTM A1011/A1011M.
- C. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; galvanized.
- D. Stainless Steel: ASTM A240/A240M.
- E. Threaded Rods: Continuously threaded. Zinc-plated or galvanized steel for indoor applications and stainless steel for outdoor applications. Mating nuts and washers of similar materials as rods.
- F. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination must be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.

- 2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- B. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled strut systems.
- C. Fastener System Installation:
 - 1. Install fastener systems in accordance with structural engineering specifications.
- D. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- E. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- F. Install lateral bracing with pipe hangers and supports to prevent swaying.
- G. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- H. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- I. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- J. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 40, protective shields on all hydronic pressure piping (chilled water, heating water, and condenser water) at all support locations (hangers and stands). Shields must span an arc of 180 degrees.
 - 3. Pipes NPS 4 and Larger: Include reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 - 4. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation. External All Service Jacket (ASJ) with integral vapor barrier must be provided at joints where primary pipe insulation meets thermal-hanger shield insulation. Jacket must extend at least two-inches on both sides of joint.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

- A. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.
- B. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- C. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
- 2. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 3. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 4. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- D. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- E. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- F. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.

- b. Medium (MSS Type 32): 1500 lb.
- c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- G. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 2. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- H. Comply with MSS SP-58 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- I. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

END OF SECTION 230529

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Testing, Adjusting, and Balancing of Air Systems:
 - a. Constant-volume air systems.
 - b. Dual-duct systems.
 - c. Variable-air-volume systems.
 - d. Multizone systems.
 - e. Induction-unit systems.
 - 2. Testing, Adjusting, and Balancing of Hydronic Piping Systems:
 - a. Constant-flow hydronic systems.
 - b. Variable-flow hydronic systems.
 - c. Primary-secondary hydronic systems.
 - 3. Testing, adjusting, and balancing of fuel oil systems for HVAC.
 - 4. Testing, adjusting, and balancing of steam and condensate piping systems.
 - 5. Testing, adjusting, and balancing of equipment.
 - 6. Testing, adjusting, and balancing of existing HVAC systems and equipment.
 - 7. Procedures for exhaust hoods.
 - 8. Sound tests.
 - 9. Vibration tests.
 - 10. Duct leakage tests verification.
 - 11. Pipe leakage tests verification.
 - 12. UFAD plenum leakage tests verification.
 - 13. HVAC-control system verification.
 - 14. Smoke-control system tests.
 - 15. Stair-pressurization system tests.
 - 16. Elevator-pressurization system tests.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.

- E. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
- F. TDH: Total dynamic head.
- G. UFAD: Underfloor air distribution.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 90 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 90 days of Contractor's Notice to Proceed, submit the Contract Documents review report, as specified in Part 3.
- C. Strategies and Procedures Plan: Within 90 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures, as specified in "Preparation" Article.
- D. Examination Report: Submit a summary report of the examination review required in "Examination" Article.
- E. Certified TAB reports.
- F. Sample report forms.
- G. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.5 QUALITY ASSURANCE

- A. TAB Specialists Qualifications, Certified by AABC:
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC.
 - 2. TAB Technician: Employee of the TAB specialist and certified by AABC.
- B. TAB Specialists Qualifications, Certified by NEBB or TABB:
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by NEBB or TABB.
 - 2. TAB Technician: Employee of the TAB specialist and certified by NEBB or TABB.
- C. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."
- D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 "System Balancing."

E. Code and AHJ Compliance: TAB is required to comply with governing codes and requirements of authorities having jurisdiction.

1.6 FIELD CONDITIONS

- A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
- B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gauge cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for HVAC to verify that they are properly separated from adjacent areas and sealed.
- F. Examine equipment performance data, including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine control valves for proper installation for their intended function of isolating, throttling, diverting, or mixing fluid flows.
- L. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- M. Examine operating safety interlocks and controls on HVAC equipment.
- N. Examine control dampers for proper installation for their intended function of isolating, throttling, diverting, or mixing air flows.
- O. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.
- B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
 - 1. Airside:
 - a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 - b. Duct systems are complete with terminals installed.
 - c. Volume, smoke, and fire dampers are open and functional.
 - d. Clean filters are installed.
 - e. Fans are operating, free of vibration, and rotating in correct direction.
 - f. Variable-frequency controllers' startup is complete and safeties are verified.
 - g. Automatic temperature-control systems are operational.
 - h. Ceilings are installed.
 - i. Windows and doors are installed.
 - j. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system in accordance with the procedures contained in ASHRAE 111 and in this Section.
- B. Cut insulation, ducts, pipes, and equipment casings for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 - 3. Where holes for probes are required in piping or hydronic equipment, install pressure and temperature test plugs to seal systems.
 - 4. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish in accordance with Section 230713 "Duct Insulation," Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 TESTING, ADJUSTING, AND BALANCING OF HVAC EQUIPMENT

- A. Test, adjust, and balance HVAC equipment indicated on Drawings, including, but not limited to, the following:
 - 1. Motors.
 - 2. Fans and ventilators.
 - 3. Terminal units.
 - 4. Unit heaters.
 - 5. Condensing units.
 - 6. Air-handling units.
 - 7. Split-system air conditioners.
 - 8. Coils.

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' Record drawings duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.

3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Where duct conditions allow, measure airflow by main Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses close to the fan and prior to any outlets, to obtain total airflow.
 - c. Where duct conditions are unsuitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - 2. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report artificial loading of filters at the time static pressures are measured.
 - 3. Review Contractor-prepared shop drawings and Record drawings to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
 - 4. Obtain approval from Construction Manager for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
 - 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 - 1. Measure airflow of submain and branch ducts.
 - 2. Adjust submain and branch duct volume dampers for specified airflow.
 - 3. Re-measure each submain and branch duct after all have been adjusted.
- C. Adjust air inlets and outlets for each space to indicated airflows.
 - 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure inlets and outlets airflow.

- 3. Adjust each inlet and outlet for specified airflow.
- 4. Re-measure each inlet and outlet after they have been adjusted.
- D. Verify final system conditions.
 - 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 - 2. Re-measure and confirm that total airflow is within design.
 - 3. Re-measure all final fan operating data, speed, volts, amps, and static profile.
 - 4. Mark all final settings.
 - 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 - 6. Measure and record all operating data.
 - 7. Record final fan-performance data.

3.7 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Adjust the variable-air-volume systems as follows:
 - 1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
 - 2. Verify that the system is under static pressure control.
 - 3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 - 4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
 - a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 - b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 - c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 - d. Adjust controls so that terminal is calling for minimum airflow.
 - e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 - f. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.
 - 5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow, so that connected total matches fan selection and simulates actual load in the building.

- c. Where duct conditions allow, measure airflow by main Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses close to the fan and prior to any outlets, to obtain total airflow.
- d. Where duct conditions are unsuitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
- 6. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report any artificial loading of filters at the time static pressures are measured.
- 7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Balance the return-air ducts and inlets.
 - b. Verify that terminal units are meeting design airflow under system maximum flow.
- 8. Re-measure the inlet static pressure at the most critical terminal unit, and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls Contractor.
- 9. Verify final system conditions as follows:
 - a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 - b. Re-measure and confirm that total airflow is within design.
 - c. Re-measure final fan operating data, speed, volts, amps, and static profile.
 - d. Mark final settings.
 - e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 - f. Verify tracking between supply and return fans.

3.8 PROCEDURES FOR MOTORS

- A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Phase and hertz.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter size and thermal-protection-element rating.
 - 8. Service factor and frame size.
- B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.9 PROCEDURES FOR AIR-COOLED CONDENSING UNITS

- A. Verify proper rotation of fan(s).
- B. Measure and record entering- and leaving-air temperatures.

- C. Measure and record entering and leaving refrigerant pressures.
- D. Measure and record operating data of compressor(s), fan(s), and motors.

3.10 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Measure, adjust, and record the following data for each hydronic coil:
 - 1. Entering- and leaving-water temperature.
 - 2. Water flow rate.
 - 3. Water pressure drop.
 - 4. Dry-bulb temperature of entering and leaving air.
 - 5. Wet-bulb temperature of entering and leaving air for cooling coils.
 - 6. Airflow.
 - 7. Air pressure drop.
- B. Measure, adjust, and record the following data for each electric heating coil:
 - 1. Nameplate data.
 - 2. Airflow.
 - 3. Entering- and leaving-air temperature at full load.
 - 4. Air pressure drop.
 - 5. Voltage and amperage input of each phase at full load.
 - 6. Calculated kilowatt at full load.
 - 7. Fuse or circuit-breaker rating for overload protection.
- C. Measure, adjust, and record the following data for each steam coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Airflow.
 - 3. Inlet steam pressure.
- D. Measure, adjust, and record the following data for each refrigerant coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.
 - 4. Air pressure drop.
 - 5. Entering and leaving refrigerant pressure and temperatures.

3.11 DUCT LEAKAGE TESTS

- A. Witness the duct leakage testing performed by Installer.
- B. Verify that proper test methods are used and that leakage rates are within specified limits.
- C. Report deficiencies observed.

3.12 HVAC CONTROLS VERIFICATION

- A. In conjunction with system balancing, perform the following:
 - 1. Verify HVAC control system is operating within the design limitations.
 - 2. Confirm that the sequences of operation are in compliance with Contract Documents.

- 3. Verify that controllers are calibrated and function as intended.
- 4. Verify that controller set points are as indicated.
- 5. Verify the operation of lockout or interlock systems.
- 6. Verify the operation of valve and damper actuators.
- 7. Verify that controlled devices are properly installed and connected to correct controller.
- 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
- 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.
- B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.13 TOLERANCES

- A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus 10 percent or minus 5 percent. If design value is less than 100 cfm, within 10 cfm.
 - 2. Air Outlets and Inlets: Plus 10 percent or minus 5 percent. If design value is less than 100 cfm, within 10 cfm.
- B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.14 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
 - 3. Certify validity and accuracy of field data.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.

- 8. Report date.
- 9. Signature of TAB supervisor who certifies the report.
- 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
- 11. Summary of contents, including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
- 12. Nomenclature sheets for each item of equipment.
- 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
- 14. Notes to explain why certain final data in the body of reports vary from indicated values.
- 15. Test conditions for fans performance forms, including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Heating coil, dry-bulb conditions.
 - e. Face and bypass damper settings at coils.
 - f. Fan drive settings, including settings and percentage of maximum pitch diameter.
 - g. Variable-frequency controller settings for variable-air-volume systems.
 - h. Settings for pressure controller(s).
 - i. Other system operating conditions that affect performance.
- 16. Test conditions for pump performance forms, including the following:
 - a. Variable-frequency controller settings for variable-flow hydronic systems.
 - b. Settings for pressure controller(s).
 - c. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Duct, outlet, and inlet sizes.
 - 3. Terminal units.
 - 4. Balancing stations.
 - 5. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - i. Number, make, and size of belts.
 - j. Number, type, and size of filters.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and speed.

- c. Volts, phase, and hertz.
- d. Full-load amperage and service factor.
- e. Center-to-center dimensions of sheave and amount of adjustments in inches.
- 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan speed.
 - d. Inlet and discharge static pressure in inches wg.
 - e. For each filter bank, filter static-pressure differential in inches wg.
 - f. Preheat-coil static-pressure differential in inches wg.
 - g. Cooling-coil static-pressure differential in inches wg.
 - h. Heating-coil static-pressure differential in inches wg.
 - i. List for each internal component with pressure-drop, static-pressure differential in inches wg.
 - j. Outdoor airflow in cfm.
 - k. Return airflow in cfm.
 - 1. Outdoor-air damper position.
 - m. Return-air damper position.
- F. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch o.c.
 - f. Make and model number.
 - g. Face area in sq. ft..
 - h. Tube size in NPS.
 - i. Tube and fin materials.
 - j. Circuiting arrangement.
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Average face velocity in fpm.
 - c. Air pressure drop in inches wg.
 - d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 - e. Return-air, wet- and dry-bulb temperatures in deg F.
 - f. Entering-air, wet- and dry-bulb temperatures in deg F.
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 - h. Refrigerant expansion valve and refrigerant types.
 - i. Refrigerant suction pressure in psig.
 - j. Refrigerant suction temperature in deg F.
- G. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Coil identification.
 - d. Capacity in Btu/h.

- e. Number of stages.
- f. Connected volts, phase, and hertz.
- g. Rated amperage.
- h. Airflow rate in cfm.
- i. Face area in sq. ft..
- j. Minimum face velocity in fpm.
- 2. Test Data (Indicated and Actual Values):
 - a. Heat output in Btu/h.
 - b. Airflow rate in cfm.
 - c. Air velocity in fpm.
 - d. Entering-air temperature in deg F.
 - e. Leaving-air temperature in deg F.
 - f. Voltage at each connection.
 - g. Amperage for each phase.
- H. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and speed.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - g. Number, make, and size of belts.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan speed.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System fan and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.
 - f. Duct area in sq. ft..
 - g. Indicated airflow rate in cfm.

- h. Indicated velocity in fpm.
- i. Actual airflow rate in cfm.
- j. Actual average velocity in fpm.
- k. Barometric pressure in psig.
- J. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Apparatus used for test.
 - d. Area served.
 - e. Make.
 - f. Number from system diagram.
 - g. Type and model number.
 - h. Size.
 - i. Effective area in sq. ft..
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Air velocity in fpm.
 - c. Preliminary airflow rate as needed in cfm.
 - d. Preliminary velocity as needed in fpm.
 - e. Final airflow rate in cfm.
 - f. Final velocity in fpm.
 - g. Space temperature in deg F.
- K. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling-unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Entering-water temperature in deg F.
 - c. Leaving-water temperature in deg F.
 - d. Water pressure drop in feet of head or psig.
 - e. Entering-air temperature in deg F.
 - f. Leaving-air temperature in deg F.
- L. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.15 VERIFICATION OF TAB REPORT

- A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Construction Manager.
- B. Construction Manager shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to the lesser of either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
- C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the TAB shall be considered incomplete and shall be rejected.
- E. If recheck measurements find the number of failed measurements noncompliant with requirements indicated, proceed as follows:
 - 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection. All changes shall be tracked to show changes made to previous report.
 - 2. If the second final inspection also fails, Owner may pursue others Contract options to complete TAB work.
- F. Prepare test and inspection reports.

3.16 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 230700 - HVAC INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulation for HVAC duct systems
- B. Related Requirements:
 1. Section 233113 "Metal Ducts" for acoustical duct liners and insulated double wall ducts.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied, if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

- A. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- B. Field quality-control reports.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation system materials are to be delivered to the Project site in unopened containers. The packaging is to include name of manufacturer, fabricator, type, description, and size.

1.5 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84 by a testing agency acceptable to authority having jurisdiction. Factory label insulation, jacket materials, adhesive, mastic, tapes, and cement material containers with appropriate markings of applicable testing agency.
 - 1. All Insulation Installed Indoors; Outdoors-Installed Insulation in Contact with Airstream: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2.2 INSULATION MATERIALS

- A. Products must not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come into contact with stainless steel must have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.
- C. Insulation materials for use on austenitic stainless steel must be qualified as acceptable in accordance with ASTM C795.
- D. Foam insulation materials must not use CFC or HCFC blowing agents in the manufacturing process.
- E. Glass-Fiber Blanket: Glass fibers bonded with a thermosetting resin; suitable for maximum use temperature up to 450 deg F in accordance with ASTM C411. Comply with ASTM C553, Type II, and ASTM C1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Certainteed; SAINT-GOBAIN.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. Knauf Insulation.
 - d. Manson Insulation Inc.
 - e. Owens Corning.

- F. Mineral Wool Blanket: Basalt volcanic rock-derived fibers bonded with a thermosetting resin, unfaced; suitable for maximum use temperature up to 1200 deg F in accordance with ASTM C447. Comply with ASTM C553.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. Owens Corning.
 - c. ROCKWOOL Technical Insulation.

2.3 ADHESIVES

- A. Materials are compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Glass-Fiber and Mineral Wool Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Mon-Eco Industries, Inc.
- C. ASJ Adhesive and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A, for bonding insulation jacket lap seams and joints.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Mon-Eco Industries, Inc.

2.4 MASTICS AND COATINGS

- A. Materials are compatible with insulation materials, jackets, and substrates.
- B. Vapor-Retarder Mastic, Water Based: Suitable for indoor use on below-ambient services.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Knauf Insulation.
 - d. Mon-Eco Industries, Inc.
 - e. Vimasco Corporation.
 - 2. Water-Vapor Permeance: Comply with ASTM E96/E96M or ASTM F1249.
 - 3. Service Temperature Range: 0 to plus 180 deg F.
 - 4. Comply with MIL-PRF-19565C, Type II, for permeance requirements.
 - 5. Color: White.

2.5 SEALANTS

- A. Materials are as recommended by the insulation manufacturer and are compatible with insulation materials, jackets, and substrates.
- B. Joint Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Mon-Eco Industries, Inc.
 - d. Owens Corning.
 - 2. Permanently flexible, elastomeric sealant.
 - a. Service Temperature Range: Minus 100 to plus 300 deg F.
 - b. Color: White or gray.
- C. FSK and Metal Jacket Flashing Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Mon-Eco Industries, Inc.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.
- D. ASJ Flashing Sealants and PVDC and PVC Jacket Flashing Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.

2.6 FIELD-APPLIED JACKETS

A. Field-applied jackets comply with ASTM C1136, Type I, unless otherwise indicated.

2.7 TAPES

- A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. 3M Industrial Adhesives and Tapes Division.
 - b. Avery Dennison Corporation, Specialty Tapes Division.
 - c. Ideal Tape Co., Inc., an American Biltrite Company.
 - d. Knauf Insulation.
 - 2. Width: 3 inches .

- 3. Thickness: 6.5 mils .
- 4. Adhesion: 90 ounces force/inch in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- B. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. 3M Industrial Adhesives and Tapes Division.
 - b. Avery Dennison Corporation, Specialty Tapes Division.
 - c. Ideal Tape Co., Inc., an American Biltrite Company.
 - d. Knauf Insulation.
 - 2. Width: 2 inches .
 - 3. Thickness: 3.7 mils .
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.8 SECUREMENTS

- A. Bands:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. RPR Products, Inc.
 - 2. Stainless Steel: ASTM A240/A240M, Type 304; 0.015 inch thick, 3/4 inch wide with wing seal for insulated assembly diameters less than 8-inches and closed seal for insulated assembly diameters 8-inches and greater.
 - 3. Aluminum: ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal.
 - 4. Springs: Twin spring set constructed of stainless steel, with ends flat and slotted to accept metal bands. Spring size is determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) AGM Industries, Inc.
 - 2) Gemco.
 - 3) Midwest Fasteners, Inc.
 - 4) Nelson Stud Welding.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1) AGM Industries, Inc.
- 2) CL WARD & Family Inc.
- 3) Gemco.
- 4) Midwest Fasteners, Inc.
- 5) Nelson Stud Welding.
- 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) AGM Industries, Inc.
 - 2) Gemco.
 - 3) Midwest Fasteners, Inc.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inchdiameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- 4. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) AGM Industries, Inc.
 - 2) Gemco.
 - 3) Midwest Fasteners, Inc.
 - b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inchdiameter shank, length to suit depth of insulation indicated.
 - d. Adhesive-backed base with a peel-off protective cover.
- 5. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) AGM Industries, Inc.
 - 2) Gemco.
 - 3) Midwest Fasteners, Inc.
 - 4) Nelson Stud Welding.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4 inch wide, stainless steel or Monel.
- D. Wire: 0.062-inch soft-annealed, stainless steel.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. C & F Wire.
- b. Johns Manville; a Berkshire Hathaway company.
- c. RPR Products, Inc.

2.9 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC in accordance with ASTM D1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum in accordance with ASTM B209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.
- C. Stainless Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel in accordance with ASTM A240/A240M, Type 304.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Duct insulation procedures can begin only after duct systems have passed inspections and leak testing, if applicable.
- B. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- C. Duct systems must be off, with no fluid circulating to prevent condensation on surfaces of duct while insulation is applied.
- D. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Carbon Steel: Coat carbon steel operating at a service temperature of between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- E. Coordinate insulation installation with the tradesman installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- F. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, compress, or otherwise damage insulation or jacket.
- D. Install insulation with longitudinal seams at top and bottom (12 o'clock and 6 o'clock positions) of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet during storage or in the installation process before being properly covered and sealed in accordance with the Contract Documents.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
 - 3. Install insert materials and insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth, but not to the extent of creating wrinkles or areas of compression in the insulation.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches o.c.

- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 2 inches o.c.
- 4. For below-ambient services, apply vapor-barrier mastic over staples.
- 5. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
- 6. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.

- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Pipe: Install insulation continuously through floor penetrations.
 - 3. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Comply with manufacturer's written installation instructions and ASTM C1710.
- B. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Square and Rectangular Ducts and Plenums:
 - 1. Provide 1/4 inch more per side for a tight, compression fit.
 - 2. Cut sheet insulation with the following dimensions:
 - a. Width of duct plus 1/4 inch, one piece.
 - b. Height of duct plus 1/4 inch, plus thickness of insulation, two pieces.
 - c. Width of duct plus 1/4 inch, plus two times the thickness of insulation, one piece.
 - 3. Insulate the bottom of the duct with the sheet from (a) above, then the sides with the two sheets from (b) above, and finally the top of the duct with the sheet from (c) above.
 - 4. Insulation without self-adhering backing:
 - a. Apply 100 percent coverage of manufacturer adhesive on the metal surface, then the insulation, except for the last 1/4 inch where sheets will butt together.
 - b. Roll sheet down into position.
 - c. Press two sheets together under compression and apply adhesive at the butt joint to seal the two sheets together.
 - 5. Insulation with self-adhering backing:
 - a. Peel back release paper in 6- to 8-inch increments and line up sheet.
 - b. Press firmly to activate adhesive.
 - c. Align material and continue to line up correctly, pressing firmly while slowly removing release paper.
 - d. Allow 1/4-inch overlap for compression at butt joints.
 - e. Apply adhesive at the butt joint to seal the two sheets together.
 - 6. Insulate duct brackets following manufacturer's written installation instructions.
- D. Circular Ducts:
 - 1. Determine the circumference of the duct, using a strip of insulation the same thickness as to be used.

- 2. Cut the sheet to the required size.
- 3. Apply 100 percent coverage of manufacturer adhesive on the metal surface then the insulation.
- 4. Apply manufacturer adhesive to the cut surfaces along 100 percent of the longitudinal seam. Press together the seam at the ends and then the middle. Close the entire seam starting from the middle.

3.6 INSTALLATION OF GLASS-FIBER AND MINERAL WOOL INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
- B. Comply with manufacturer's written installation instructions.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
 - 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
 - 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- C. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
 - 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- D. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

- 3. For insulation with jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
- 4. For insulation with jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer, and seal with vapor-barrier mastic and flashing sealant.
- E. Insulation Installation on Pipe Flanges:
 - 1. Install prefabricated pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with glass-fiber or mineral-wool blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- F. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- G. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install prefabricated sections of same material as that of straight segments of pipe insulation when available.
 - 2. When prefabricated sections are not available, install fabricated sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FIELD-APPLIED JACKETS

- A. Where PVC jackets are indicated and for horizontal applications, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless steel bands 12 inches o.c. and at end joints.

3.8 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- B. Do not field paint aluminum or stainless steel jackets.

3.9 FIELD QUALITY CONTROL

- A. Perform inspections.
 - 1. Notify Mechanical Engineer when insulation is complete and before duct systems are concealed by other building elements.
- B. Ductwork Insulation Inspections:
 - 1. Inspect ductwork, randomly selected by Mechanical Engineer for compliance with the requirements in this specification.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
- D. Piping Insulation Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Mechanical Engineer for compliance with the requirements in this specification.
- E. All insulation applications will be considered defective if they do not pass inspections.

3.10 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 7. Outdoor, concealed supply and return.
 - 8. Outdoor, exposed supply and return.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.

3.11 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Refer to "HVAC DUCT SCHEDULE" on drawings in M-600 sheet series for insulation type, thickness, insulating value, and jacket requirements.

3.12 INDOOR PIPING INSULATION SCHEDULE

A. Refer to "HYDRONIC PIPING SCHEDULE" on drawings in M-600 sheet series for insulation type, thickness, insulating value, and jacket requirements.

3.13 INDOOR EQUIPMENT INSULATION SCHEDULE

A. Refer to individual equipment schedules on drawing sheet M-600 series for insulation type, thickness, insulating value, and jacket requirements of pumps, tanks, air separators, and other piping accessories required to be insulated.

END OF SECTION 230700

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 230923 - DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Direct digital control (DDC) system equipment and components for monitoring and controlling of HVAC, exclusive of instrumentation and control devices.

1.2 DEFINITIONS

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem. A prescribed set of well-defined rules or processes for solving a problem in a finite number of steps.
- B. Analog: A continuously varying signal value, such as current, flow, pressure, or temperature.
- C. BACnet Specific Definitions:
 - 1. BACnet: Building Automation Control Network Protocol, ASHRAE 135. A communications protocol allowing devices to communicate data and services over a network.
 - 2. BACnet Interoperability Building Blocks (BIBBs): BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.
 - 3. BACnet/IP: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.
 - 4. BACnet Testing Laboratories (BTL): Organization responsible for testing products for compliance with ASHRAE 135, operated under direction of BACnet International.
- D. Binary: Two-state signal where a high signal level represents "ON" or "OPEN" condition and a low signal level represents "OFF" or "CLOSED" condition. "Digital" is sometimes used interchangeably with "Binary" to indicate a two-state signal.
- E. Controller: Generic term for any standalone, microprocessor-based, digital controller residing on a network, used for local or global control. Three types of controllers are indicated: network controllers, programmable application controllers, and application-specific controllers.
- F. Control System Integrator: An entity that assists in expansion of existing enterprise system and support of additional operator interfaces to I/O being added to existing enterprise system.
- G. COV: Changes of value.
- H. DDC System Provider: Authorized representative of, and trained by, DDC system manufacturer and responsible for execution of DDC system Work indicated.
- I. Distributed Control: Processing of system data is decentralized and control decisions are made at subsystem level. System operational programs and information are provided to remote

subsystems and status is reported back. On loss of communication, subsystems to be capable of operating in a standalone mode using the last best available data.

- J. Gateway: Bidirectional protocol translator that connects control systems that use different communication protocols.
- K. HLC: Heavy load conditions.
- L. I/O: System through which information is received and transmitted. I/O refers to analog input (AI), binary input (BI), analog output (AO) and binary output (BO). Analog signals are continuous and represent control influences such as flow, level, moisture, pressure, and temperature. Binary signals convert electronic signals to digital pulses (values) and generally represent two-position operating and alarm status. "Digital," (DI) and (DO), is sometimes used interchangeably with "Binary," (BI) and (BO), respectively.
- M. LAN: Local area network.
- N. LNS: LonWorks Network Services.
- O. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- P. Mobile Device: A data-enabled phone or tablet computer capable of connecting to a cellular data network and running a native control application or accessing a web interface.
- Q. Modbus TCP/IP: An open protocol for exchange of process data.
- R. MS/TP: Master-slave/token-passing, ISO/IEC/IEEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.
- S. MTBF: Mean time between failures.
- T. Network Controller: Digital controller, which supports a family of programmable application controllers and application-specific controllers, that communicates on peer-to-peer network for transmission of global data.
- U. Network Repeater: Device that receives data packet from one network and rebroadcasts it to another network. No routing information is added to protocol.
- V. Peer to Peer: Networking architecture that treats all network stations as equal partners.
- W. POT: Portable operator's terminal.
- X. RAM: Random access memory.
- Y. RF: Radio frequency.
- Z. Router: Device connecting two or more networks at network layer.
- AA. Server: Computer used to maintain system configuration, historical and programming database.

- BB. TCP/IP: Transport control protocol/Internet protocol.
- CC. UPS: Uninterruptible power supply.
- DD. USB: Universal Serial Bus.
- EE. User Datagram Protocol (UDP): This protocol assumes that the IP is used as the underlying protocol.
- FF. VAV: Variable air volume.
- GG. WLED: White light emitting diode.
- 1.3 PREINSTALLATION MEETINGS
 - A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

- A. Multiple Submissions:
 - 1. If multiple submissions are required to execute work within schedule, first submit a coordinated schedule clearly defining intent of multiple submissions. Include a proposed date of each submission with a detailed description of submittal content to be included in each submission.
 - 2. Clearly identify each submittal requirement indicated and in which submission the information will be provided.
 - 3. Include an updated schedule in each subsequent submission with changes highlighted to easily track the changes made to previous submitted schedule.
- B. Product Data:
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 - 3. Product description with complete technical data, performance curves, and product specification sheets.
 - 4. Installation, operation, and maintenance instructions including factors effecting performance.
 - 5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product.
 - a. Workstations.
 - b. Printers.
 - c. Servers.
 - d. Gateways.
 - e. Routers.
 - f. Protocol analyzers.

- g. DDC controllers.
- h. Enclosures.
- i. Electrical power devices.
- j. UPS units.
- k. Accessories.
- l. Instruments.
- m. Control dampers and actuators.
- n. Control valves and actuators.
- 6. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.
- 7. Each submitted piece of product literature to clearly cross reference specification and drawings that submittal is to cover.
- C. Software Submittal:
 - 1. Cross-referenced listing of software to be loaded on each operator workstation, server, gateway, and DDC controller.
 - 2. Description and technical data of all software provided and cross-referenced to products in which software will be installed.
 - 3. Operating system software, operator interface and programming software, color graphic software, DDC controller software, maintenance management software, and third-party software.
 - 4. Include a flow diagram and an outline of each subroutine that indicates each program variable name and units of measure.
 - 5. Listing and description of each engineering equation used with reference source.
 - 6. Listing and description of each constant used in engineering equations and a reference source to prove origin of each constant.
 - 7. Description of operator interface to alphanumeric and graphic programming.
 - 8. Description of each network communication protocol.
 - 9. Description of system database, including all data included in database, database capacity, and limitations to expand database.
 - 10. Description of each application program and device drivers to be generated, including specific information on data acquisition and control strategies showing their relationship to system timing, speed, processing burden, and system throughout.
 - 11. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.
- D. Shop Drawings:

1.

- General Requirements:
 - a. Include cover drawing with Project name, location, Owner, Architect, Contractor, and issue date with each Shop Drawings submission.
 - b. Include a drawing index sheet listing each drawing number and title that matches information in each title block.
 - c. Drawings Size: Minimum 17x11"
- 2. Include plans, elevations, sections, and mounting details where applicable.
- 3. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 4. Detail means of vibration isolation and show attachments to rotating equipment.
- 5. Plan Drawings indicating the following:

- a. Screened backgrounds of walls, structural grid lines, HVAC equipment, ductwork, and piping.
- b. Room names and numbers with coordinated placement to avoid interference with control products indicated.
- c. Each desktop workstation network port, server, gateway, router, DDC controller, control panel instrument connecting to DDC controller, and damper and valve connecting to DDC controller, if included in Project.
- d. Exact placement of products in rooms, ducts, and piping to reflect proposed installed condition.
- e. Network communication cable and raceway routing.
- f. Information, drawn to scale, of Minimum 17x11" Proposed routing of wiring, cabling, conduit, and tubing; coordinated with building services for review before installation.
- 6. Schematic drawings for each controlled HVAC system indicating the following:
 - a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
 - b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
 - c. A graphic showing location of control I/O in proper relationship to HVAC system.
 - d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
 - e. Unique identification of each I/O that to be consistently used between different drawings showing same point.
 - f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays, and interface to DDC controllers.
 - g. Narrative sequence of operation.
 - h. Graphic sequence of operation, showing all inputs and output logical blocks.
- 7. Control panel drawings indicating the following:
 - a. Panel dimensions, materials, size, and location of field cable, raceways, and tubing connections.
 - b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates, and allocated spare space.
 - c. Front, rear, and side elevations and nameplate legend.
 - d. Unique drawing for each panel.
- 8. DDC system network riser diagram indicating the following:
 - a. Each device connected to network with unique identification for each.
 - b. Interconnection of each different network in DDC system.
 - c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or optical fiber cable type. Indicate raceway type and size for each.
 - d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.
- 9. DDC system electrical power riser diagram indicating the following:
 - a. Each point of connection to field power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
 - b. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- c. Each product requiring power with requirements (volts/phase// hertz/ amperes/connection type) listed for each.
- d. Power wiring type and size, race type, and size for each.
- 10. Monitoring and control signal diagrams indicating the following:
 - a. Control signal cable and wiring between controllers and I/O.
 - b. Point-to-point schematic wiring diagrams for each product.
 - c. Control signal tubing to sensors, switches, and transmitters.
 - d. Process signal tubing to sensors, switches, and transmitters.
- 11. Color graphics indicating the following:
 - a. Itemized list of color graphic displays to be provided.
 - b. For each display screen to be provided, a true color copy showing layout of pictures, graphics, and data displayed.
 - c. Intended operator access between related hierarchical display screens.
- E. System Description:
 - 1. Full description of DDC system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.
 - 2. Complete listing and description of each report, log and trend for format and timing, and events that initiate generation.
 - 3. System and product operation under each potential failure condition including, but not limited to, the following:
 - a. Loss of power.
 - b. Loss of network communication signal.
 - c. Loss of controller signals to inputs and outpoints.
 - d. Operator workstation failure.
 - e. Server failure.
 - f. Gateway failure.
 - g. Network failure.
 - h. Controller failure.
 - i. Instrument failure.
 - j. Control damper and valve actuator failure.
 - 4. Complete bibliography of documentation and media to be delivered to Owner.
 - 5. Description of testing plans and procedures.
 - 6. Description of Owner training.
- F. Delegated Design Submittals: For DDC system products and installation indicated as being delegated.
 - 1. Supporting documentation showing DDC system design complies with performance requirements indicated, including calculations and other documentation necessary to prove compliance.
 - 2. Schedule and design calculations for control dampers and actuators.
 - a. Flow at Project design and minimum flow conditions.
 - b. Face velocity at Project design and minimum airflow conditions.
 - c. Pressure drop across damper at Project design and minimum airflow conditions.
 - d. AMCA 500-D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 - e. Maximum close-off pressure.
 - f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 - g. Torque required at worst case condition for sizing actuator.

- h. Actuator selection indicating torque provided.
- i. Actuator signal to control damper (on, close, or modulate).
- j. Actuator position on loss of power.
- k. Actuator position on loss of control signal.
- 3. Schedule and design calculations for selecting flow instruments.
 - a. Instrument flow range.
 - b. Project design and minimum flow conditions with corresponding accuracy, control signal to transmitter, and output signal for remote control.
 - c. Extreme points of extended flow range with corresponding accuracy, control signal to transmitter, and output signal for remote control.
 - d. Pressure-differential loss across instrument at Project design flow conditions.
 - e. Where flow sensors are mated with pressure transmitters, provide information for each instrument separately and as an operating pair.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings:
 - 1. Plan drawings and corresponding product installation details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved.
 - 2. Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved.
- B. Qualification Statements:
 - 1. Systems Provider's Qualification Data:
 - a. Resume of project manager assigned to Project.
 - b. Resumes of application engineering staff assigned to Project.
 - c. Resumes of installation and programming technicians assigned to Project.
 - d. Resumes of service technicians assigned to Project.
 - e. Brief description of past project including physical address, floor area, number of floors, building system cooling and heating capacity, and building's primary function.
 - f. Description of past project DDC system, noting similarities to Project scope and complexity indicated.
 - g. Names of staff assigned to past project that will also be assigned to execute work of this Project.
 - h. Owner contact information for past project including name, phone number, and email address.
 - i. Contractor contact information for past project including name, phone number, and email address.
 - 2. Manufacturer's qualification data.
 - 3. Testing agency's qualification data.
- C. Product Certificates:
 - 1. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with ASHRAE 135.
- D. Test and Evaluation Reports:
 - 1. Product Test Reports: For each product, for tests performed by a qualified testing agency.

- 2. Preconstruction Test Reports: For each separate test performed.
- E. Source Quality-Control Submittals:
 - 1. Source quality-control reports.
- F. Field Quality-Control Submittals:1. Field quality-control reports.
- G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For DDC system.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
 - b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
 - c. As-built versions of submittal Product Data.
 - d. Names, addresses, email addresses, and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
 - e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control, and changing set points and variables.
 - f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 - g. Engineering, installation, and maintenance manuals that explain how to do the following:
 - 1) Design and install new points, panels, and other hardware.
 - 2) Perform preventive maintenance and calibration.
 - 3) Debug hardware problems.
 - 4) Repair or replace hardware.
 - h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
 - i. Backup copy of graphic files, programs, and databases on electronic media.
 - j. List of recommended spare parts with part numbers and suppliers.
 - k. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
 - 1. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
 - m. Licenses, guarantees, and warranty documents.
 - n. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
 - o. Owner training materials.
1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Extra Stock Material: Furnish extra materials and parts to Owner that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
- B. Include product manufacturers' recommended parts lists for proper product operation over fouryear period following warranty period. Parts list to be indicated for each year.

1.8 QUALITY ASSURANCE

- A. DDC System Manufacturer Qualifications:
 - 1. Nationally recognized manufacturer of DDC systems and products.
 - 2. DDC systems with similar requirements to those indicated for a continuous period of five years within time of bid.
 - 3. DDC systems and products that have been successfully tested and in use on at least three past projects.
 - 4. Having complete published catalog literature, installation, operation, and maintenance manuals for all products intended for use.
 - 5. Having full-time in-house employees for the following:
 - a. Product research and development.
 - b. Product and application engineering.
 - c. Product manufacturing, testing, and quality control.
 - d. Technical support for DDC system installation training, commissioning, and troubleshooting of installations.
 - e. Owner operator training.
- B. DDC System Provider Qualifications:
 - 1. Authorized representative of, and trained by, DDC system manufacturer.
 - 2. Demonstrate past experience with installation of DDC system products being installed for period within three consecutive years before time of bid.
 - 3. Demonstrate past experience on three projects of similar complexity, scope, and value.
 - 4. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
 - 5. Service and maintenance staff assigned to support Project during warranty period.
 - 6. Product parts inventory to support ongoing DDC system operation for a period of not less than five years after Substantial Completion.
 - 7. DDC system manufacturer's backing to take over execution of the Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.
- C. Testing Agency Qualifications: Member company of NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
- D. Welding Qualifications: Qualify procedures and personnel in accordance with the following welding codes:
 - 1. AWS D1.1/D1.1M.
 - 2. AWS D1.2/D1.2M.
 - 3. AWS D1.3/D1.3M.

4. AWS D1.4/D1.4M.

E. Pipe and Pressure-Vessel Welding Qualifications: Qualify procedures and operators in accordance with ASME Boiler and Pressure Vessel Code.

1.9 WARRANTY

- A. Special Warranty: Manufacturer and Installer agree to repair or replace products that fail in materials or workmanship within specified warranty period.
 - 1. Adjust, repair, or replace failures at no additional cost or reduction in service to Owner.
 - 2. Include updates or upgrades to software and firmware if necessary to resolve deficiencies.
 - a. Install updates only after receiving Owner's written authorization.
 - 3. Perform warranty service during normal business hours and commence within 24 hours of Owner's warranty service request.
 - 4. Warranty Period: One year from date of Substantial Completion.
 - a. For Gateway: Two-year parts and labor warranty for each.

PART 2 - PRODUCTS

2.1 DDC SYSTEM MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ABB, Electrification Business.
 - 2. Alerton Inc.
 - 3. Automated Logic Corporation.
 - 4. Delta Controls Inc.
 - 5. Distech Controls.
 - 6. Honeywell International Inc.
 - 7. Johnson Controls, Inc.
 - 8. KMC Controls, Inc.
 - 9. Reliable Controls Corporation.
 - 10. Schneider Electric USA, Inc.
 - 11. Siemens Industry, Inc., Building Technologies Division.
 - 12. Trane.

2.2 DDC SYSTEM DESCRIPTION

- A. Microprocessor-based monitoring and control including analog/digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices to achieve a set of predefined conditions.
 - 1. DDC system consisting of high-speed, peer-to-peer network of distributed DDC controllers, other network devices, operator interfaces, and software.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 WEB ACCESS

- A. DDC system to be web based or web compatible.
 - 1. Web-Based Access to DDC System:
 - a. DDC system software based on server thin-client architecture, designed around open standards of web technology. DDC system server accessed using a web browser over DDC system network, using Owner's LAN, and remotely over Internet through Owner's LAN.
 - b. Intent of thin-client architecture is to provide operators complete access to DDC system via a web browser. No special software other than a web browser is required to access graphics, point displays, and trends; to configure trends, points, and controllers; and to edit programming.
 - c. Password-protected web access.
 - 2. Web-Compatible Access to DDC System:
 - a. Workstation and or server to perform overall system supervision and configuration, graphical user interface, management report generation, and alarm annunciation.
 - b. DDC system to support web browser access to building data. Operator using a standard web browser is able to access control graphics and change adjustable set points.
 - c. Password-protected web access.

2.4 PERFORMANCE REQUIREMENTS

- A. ASME Compliance:
 - 1. DDC system for monitoring and controlling of HVAC systems.
- B. Delivery of selected control devices to equipment and systems manufacturers for factory installation and to HVAC systems installers for field installation.
- C. Delegated Design, Qualified Professional Engineer: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design DDC system to satisfy requirements indicated.
- D. Delegated Design, Qualified Professional: Engage a qualified professional to design DDC system to satisfy requirements indicated.
 - 1. System Performance Objectives:
 - a. DDC system manages HVAC systems.
 - b. DDC system operates HVAC systems to achieve optimum operating costs while using least possible energy and maintaining specified performance.
 - c. DDC system responds to power failures, HVAC equipment failures, and adverse and emergency conditions encountered through connected I/O points.
 - d. DDC system operates while unattended by an operator and through operator interaction.
 - e. DDC system records trends and transactions of events and produces report information such as performance, energy, occupancies, and equipment operation.

- E. Surface-Burning Characteristics: Products installed in ducts, equipment, and return-air paths complying with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.
- F. DDC System Speed:
 - 1. Response Time of Connected I/O:
 - a. Update AI point values connected to DDC system at least every two seconds for use by DDC controllers. Points used globally to also comply with this requirement.
 - b. Update BI point values connected to DDC system at least every two seconds for use by DDC controllers. Points used globally to also comply with this requirement.
 - c. AO points connected to DDC system to begin to respond to controller output commands within one second. Global commands to also comply with this requirement.
 - d. BO point values connected to DDC system to respond to controller output commands within one second. Global commands to also comply with this requirement.
 - 2. Display of Connected I/O:
 - a. Update and display analog point COV connected to DDC system at least every five seconds for use by operator.
 - b. Update and display binary point COV connected to DDC system at least every five seconds for use by operator.
 - c. Update and display alarms of analog and digital points connected to DDC system within 15 seconds of activation or change of state.
 - d. Update graphic display refresh within four seconds.
 - e. Point change of values and alarms displayed from workstation to workstation when multiple operators are viewing from multiple workstations to not exceed graphic refresh rate indicated.
- G. Network Bandwidth: Design each network of DDC system to include spare bandwidth with DDC system operating under normal and heavy load conditions indicated. Calculate bandwidth usage, and apply a safety factor to ensure that requirement is satisfied when subjected to testing under worst case conditions. Minimum spare bandwidth as follows:
 - 1. Level 1 Networks: 20
- H. DDC System Data Storage:
 - 1. Include capability to archive not less than 24 consecutive months of historical data for all I/O points connected to system, including alarms, event histories, transaction logs, trends, and other information indicated.
 - 2. Local Storage:
 - a. Provide server with data storage indicated. Server(s) to use IT industry standard database platforms and be capable of functions described in "DDC Data Access" Paragraph.
- I. DDC Data Access:
 - 1. When logged into the system, operator able to also interact with any DDC controllers connected to DDC system as required for functional operation of DDC system.
 - 2. Use for application configuration; for archiving, reporting, and trending of data; for operator transaction archiving and reporting; for network information management; for

alarm annunciation; and for operator interface tasks and controls application management.

- J. Future Expandability:
 - 1. DDC system size is expandable to an ultimate capacity of at least 1.5 times total I/O points indicated.
 - 2. Design and install system networks to achieve ultimate capacity with only addition of DDC controllers, I/O, and associated wiring and cable. Design and install initial network infrastructure to support ultimate capacity without having to remove and replace portions of network installation.
 - 3. Operator interfaces installed initially do not require hardware and software additions and revisions for system when operating at ultimate capacity.
- K. Environmental Conditions for Controllers, Gateways, and Routers:
 - 1. Products to operate without performance degradation under ambient environmental temperature, pressure, and humidity conditions encountered for installed location.
 - a. If product alone cannot comply with requirement, install product in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure to be internally insulated, electrically heated, cooled, and ventilated as required by product and application.
 - 2. Protect products with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. House products not available with integral enclosures complying with requirements indicated in protective secondary enclosures. Installed location dictates the following NEMA 250 enclosure requirements:
 - a. Outdoors, Protected: Type 12.
 - b. Outdoors, Unprotected: Type 4.
 - c. Indoors, Heated with Filtered Ventilation: Type 1.
 - d. Indoors, Heated with Non-Filtered Ventilation: Type 12.
 - e. Indoors, Heated and Air-Conditioned: Type 1.
 - f. Mechanical Equipment Rooms:
 - 1) Air-Moving Equipment Rooms: Type 1.
- L. Environmental Conditions for Instruments and Actuators:
 - 1. Instruments and actuators to operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.
 - a. If instruments and actuators alone cannot comply with requirement, install instruments and actuators in protective enclosures that are isolated and protected from conditions impacting performance. Enclosure is internally insulated, electrically heated, and ventilated as required by instrument and application.
 - 2. Protect instruments, actuators, and accessories with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. House instruments and actuators not available with integral enclosures complying with requirements indicated in protective secondary enclosures. Installed location is to dictate the following NEMA 250 enclosure requirements:
 - a. Outdoors, Protected: Type 3.
 - b. Outdoors, Unprotected: Type 4.
 - c. Indoors, Heated with Filtered Ventilation: Type 1.
 - d. Indoors, Heated with Non-Filtered Ventilation: Type 12.
 - e. Indoors, Heated and Air-conditioned: Type 1.

f. Mechanical Equipment Rooms:

1) Air-Moving Equipment Rooms: Type 12.

- g. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 3.
- h. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4.
- M. DDC System Reliability:
 - 1. Design, install, and configure DDC controllers, gateways and routers to yield a MTBF of at least 20,000 hours, based on a confidence level of at least 90 percent. MTBF value includes any failure for any reason to any part of products indicated.
 - 2. If required to comply with MTBF indicated, include DDC system and product redundancy to maintain DCC system, and associated systems and equipment being controlled, operational, and under automatic control.
 - 3. See Drawings for critical systems and equipment that require a higher degree of DDC system redundancy than MTBF indicated.
- N. Electric Power Quality:
 - 1. Power-Line Surges:
 - a. Protect susceptible DDC system products connected to ac power circuits from power-line surges to comply with requirements of IEEE C62.41.1 and IEEE C62.41.2.
 - b. Do not use fuses for surge protection.
 - c. Test protection in the normal mode and in the common mode, using the following two waveforms:
 - 1) 10-by-1000-microsecond waveform with a peak voltage of 1500 V and a peak current of 60 A.
 - 2) 8-by-20-microssecond waveform with a peak voltage of 1000 V and a peak current of 500 A.
 - 2. Power Conditioning:
 - a. Protect susceptible DDC system products connected to ac power circuits from irregularities and noise rejection. Characteristics of power-line conditioner are as follows:
 - 1) At 85 percent load, output voltage to not deviate by more than plus or minus 1 percent of nominal when input voltage fluctuates between minus 20 percent to plus 10 percent of nominal.
 - 2) During load changes from zero to full load, output voltage to not deviate by more than 3 percent of nominal.
 - 3) Accomplish full correction of load switching disturbances within five cycles, and 95 percent correction within two cycles of onset of disturbance.
 - 4) Total harmonic distortion to not exceed 3 percent at full load.
 - 3. Ground Fault: Protect products from ground fault by providing suitable grounding. Products to not fail due to ground fault condition.
- O. Backup Power Source:
 - 1. Serve DDC system products that control HVAC systems and equipment served by a backup power source also from a backup power source.
- P. Continuity of Operation after Electric Power Interruption:

1. Equipment and associated factory-installed controls, field-installed controls, electrical equipment, and power supply connected to building normal and backup power systems are to automatically return equipment and associated controls to operating state occurring immediately before loss of normal power, without need for manual intervention by operator when power is restored either through backup power source or through normal power if restored before backup power is brought online.

2.5 SYSTEM ARCHITECTURE

- A. System architecture consisting of no more than two levels of LANs.
 - 1. Level 2 LAN: Connect network controllers and operator workstations.
 - 2. Level 1 LAN: Connect programmable application controllers to other programmable application controllers and to network controllers.
- B. Minimum Data Transfer and Communication Speed:
 - 1. LAN Connecting Operator Workstations and Network Controllers: 100 Mbps.
 - 2. LAN Connecting Programmable Application Controllers: 1000 kbps.
 - 3. LAN Connecting Application-Specific Controllers: 115,000 bps.
- C. Provide dedicated DDC system LANs that are not shared with other building systems and tenant data and communication networks.
- D. Provide modular system architecture with inherent ability to expand to not less than 1.25 times system size indicated with no impact to performance indicated.
- E. Configure architecture to minimize need to remove and replace existing network equipment for system expansion.
- F. Make number of LANs and associated communication transparent to operator. Configure all I/O points residing on any LAN to be capable of global sharing between all system LANs.
- G. Design system to eliminate dependence on any single device for system alarm reporting and control execution. Design each controller to operate independently by performing own control, alarm management, and historical data collection.
- H. Special Network Architecture Requirements:
 - 1. Air-Handling Systems: For control applications of an air-handling system that consists of air-handling unit and VAV terminal units, include a dedicated LAN of application-specific controllers serving VAV terminal units connected directly to controller that is controlling air-handling-system air-handling unit. Basically, create DDC system LAN that aligns with air-handling system being controlled.

2.6 DDC SYSTEM OPERATOR INTERFACES

- A. Operator Means of System Access: Operator able to access entire DDC system through any of multiple means including, but not limited to, the following:
 - 1. Desktop and portable workstation with hardwired connection through LAN port.
 - 2. Portable operator terminal with hardwired connection through LAN port.
 - 3. Portable operator workstation with wireless connection through LAN router.

- 4. Mobile device and application with secured wireless connection through LAN router or cellular data service.
- 5. Remote connection through web access.
- B. Make access to system, regardless of operator means used, transparent to operator.
- C. Network Ports: For hardwired connection of desktop or portable workstation. Network port easily accessible, properly protected, clearly labeled, and installed at the following locations:
 - 1. Each mechanical equipment room.
- D. Desktop Workstations:
 - 1. Connect desktop workstation(s) to DDC system Level 1 LAN through a communications port directly on LAN or through a communications port on a DDC controller.
 - 2. Able to communicate with any device located on any DDC system LAN.
- E. Mobile Device (Tablet and Smart Phone):
 - 1. Connect Owner-furnished mobile devices to system through a wireless router connected to LAN.
 - 2. Able to communicate with any DDC controller connected to DDC system using dedicated application and secure web access.
- F. Critical Alarm Reporting:
 - 1. Send operator-selected critical alarms to notify operator of critical alarms that require immediate attention.
 - 2. Send alarm notification to multiple recipients that are assigned for each alarm.
 - 3. Notify recipients by any or all means, including email, text message, and prerecorded phone message to mobile and landline phone numbers.
- G. Simultaneous Operator Use: Capable of accommodating up to five simultaneous operators that are accessing DDC system through any of operator interfaces indicated.

2.7 NETWORKS

- A. Acceptable networks for connecting workstations, mobile devices, and network controllers include the following:
 - 1. IP.
 - 2. ISO/IEC/IEEE 8802-3, Ethernet.
- B. Acceptable networks for connecting programmable application controllers include the following:
 - 1. IP.
 - 2. ISO/IEC/IEEE 8802-3, Ethernet.
- C. Acceptable networks for connecting application-specific controllers include the following:
 - 1. IP.
 - 2. ISO/IEC/IEEE 8802-3, Ethernet.

2.8 NETWORK COMMUNICATION PROTOCOL

- A. Use network communication protocol(s) that are open to Owner and available to other companies for use in making future modifications to DDC system.
- B. ASHRAE 135 Protocol:
 - 1. Use ASHRAE 135 communication protocol as sole and native protocol used throughout entire DDC system.
 - 2. DDC system to not require use of gateways except to integrate HVAC equipment and other building systems and equipment; not required to use ASHRAE 135 communication protocol.
 - 3. If used, gateways to connect to DDC system using ASHRAE 135 communication protocol and Project object properties and read/write services indicated by interoperability schedule.
 - 4. Use operator workstations, controllers, and other network devices that are tested and listed by BTL.

2.9 SERVERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Dell Technologies Inc.
 - 2. HP Inc.
 - 3. Lenovo Holding Co., Inc.; Lenovo Group Ltd.
- B. Description: x86-based permanently installed computer used for client-server computing.
- C. Mounting: Blade.
- D. Power: Single power supply, minimum 300.
- E. Performance Requirements:
 - 1. Performance requirements may dictate equipment exceeding minimum requirements indicated.
 - 2. ENERGY STAR compliant.
 - 3. Minimum Processor Speed: 2.5GHz
 - 4. RAM:
 - a. Capacity: 16 GB.
 - b. Expandable Capacity: 512 GB.
 - 5. Drive Bays: Eight at 2.5 inches or eight at 3.5 inches.
 - 6. Hard-Drive Storage: Two drives each with 1 TB storage and nominal rotational speed of 7200 rpm.
 - 7. Network Interface: Dual-port gigabit Ethernet.
 - 8. DVD + RW drive.
 - 9. Next-day on-site warranty for one-year period following Substantial Completion.
- F. Servers are to include the following:
 - 1. Full-feature backup server (server and backup minimum requirement).
 - 2. Software licenses.
 - 3. Cable installation between server(s) and network.

- G. Web Server:
 - 1. If required to be separate, include web server hardware and software to match, except backup server is not required.
 - 2. Firewalls between server web and networks.
 - 3. Password protection for access to server from web server.
 - 4. Cable installation between the server(s) and building Ethernet network.
- H. Power each server through a UPS unit.

2.10 SYSTEM SOFTWARE

- A. System Software Minimum Requirements:
 - 1. Real-time multitasking and multiuser 64-bit operating system that allows concurrent multiple operator workstations operating and concurrent execution of multiple real-time programs and custom program development.
 - 2. Operating system capable of operating DOS and Microsoft Windows applications.
 - 3. Database management software to manage all data on an integrated and non-redundant basis. Additions and deletions to database are to be without detriment to existing data. Include cross linkages so no data required by a program can be deleted by an operator until that data have been deleted from respective programs.
 - 4. Network communications software to manage and control multiple network communications to provide exchange of global information and execution of global programs.
 - 5. Operator interface software to include day-to-day operator transaction processing, alarm and report handling, operator privilege level and data segregation control, custom programming, and online data modification capability.
 - 6. Scheduling software to schedule centrally based time and event, temporary, and exception day programs.
- B. Operator Interface Software:
 - 1. Minimize operator training through use of English language prorating and English language point identification.
 - 2. Minimize use of a typewriter-style keyboard through use of a pointing device similar to a mouse.
 - 3. Make operator sign-off a manual operation or, if no keyboard or mouse activity takes place, an automatic sign-off.
 - 4. Make automatic sign-off period programmable from one to 60 minutes in one-minute increments on a per operator basis.
 - 5. Record operator sign-on and sign-off activity and send to printer.
 - 6. Security Access:
 - a. Use password control for operator access to DDC system.
 - b. Assign an alphanumeric password (field assignable) to each operator.
 - c. Grant operators access to DDC system by entry of proper password.
 - d. Use same operator password regardless of which computer or other operator interface means are used.
 - e. Automatically update additions or changes made to passwords.
 - f. Assign each operator an access level to restrict access to data and functions the operator is cable of performing.
 - g. Provide software with at least five access levels.

- h. Assign each menu item an access level so that a one-for-one correspondence between operator assigned access level(s) and menu item access level(s) is required to gain access to menu item.
- i. Display menu items to operator with those capable of access highlighted. Make menu and operator access level assignments online programmable and under password control.
- 7. Operators able to perform commands including, but not limited to, the following:
 - a. Start or stop selected equipment.
 - b. Adjust set points.
 - c. Add, modify, and delete time programming.
 - d. Enable and disable process execution.
 - e. Lock and unlock alarm reporting for each point.
 - f. Enable and disable totalization for each point.
 - g. Enable and disable trending for each point.
 - h. Override control loop set points.
 - i. Enter temporary override schedules.
 - j. Define holiday schedules.
 - k. Change time and date.
 - 1. Enter and modify analog alarm limits.
 - m. Enter and modify analog warning limits.
 - n. View limits.
 - o. Enable and disable demand limiting.
 - p. Enable and disable duty cycle.
 - q. Display logic programming for each control sequence.
- 8. Reporting:
 - a. Generated automatically and manually.
 - b. Sent to displays, printers and disc files.
 - c. Types of Reporting:
 - 1) General listing of points.
 - 2) List points currently in alarm.
 - 3) List of off-line points.
 - 4) List points currently in override status.
 - 5) List of disabled points.
 - 6) List points currently locked out.
 - 7) List of items defined in a "Follow-Up" file.
 - 8) List weekly schedules.
 - 9) List holiday programming.
 - 10) List of limits and deadbands.
- 9. Summaries: For specific points, for a logical point group, for an operator selected group(s), or for entire system without restriction due to hardware configuration.
- C. Graphic Interface Software:
 - 1. Include a full interactive graphical selection means of accessing and displaying system data to operator. Include at least five levels with the penetration path operator assignable (for example, site, building, floor, air-handling unit, and supply temperature loop). Native language descriptors assigned to menu items are to be operator defined and modifiable under password control.
 - 2. Include a hierarchical-linked dynamic graphic operator interface for accessing and displaying system data and commanding and modifying equipment operation. Interface is

to use a pointing device with pull-down or penetrating menus, color, and animation to facilitate operator understanding of system.

- 3. Include at least 10 levels of graphic penetration with the hierarchy operator assignable.
- 4. Make descriptors for graphics, points, alarms, and such modifiable through operator's workstation under password control.
- 5. Make graphic displays online user definable and modifiable using the hardware and software provided.
- 6. Make data displayed within a graphic assignable regardless of physical hardware address, communication, or point type.
- 7. Make graphics online programmable and under password control.
- 8. Make points assignable to multiple graphics where necessary to facilitate operator understanding of system operation.
- 9. Graphics to also contain software points.
- 10. Penetration within a graphic hierarchy is to display each graphic name as graphics are selected to facilitate operator understanding.
- 11. Provide a back-trace feature to permit operator to move upward in the hierarchy using a pointing device. Back trace to show all previous penetration levels. Include operator with option of showing each graphic full-screen size with back trace as horizontal header or by showing a "stack" of graphics, each with a back trace.
- 12. Display operator accessed data on the monitor.
- 13. Provide operator with ability to select further penetration using pointing device to click on a site, building, floor, area, equipment, and so on. Display defined and linked graphic below that selection.
- 14. Include operator with means to directly access graphics without going through penetration path.
- 15. Make dynamic data assignable to graphics.
- 16. Display points (physical and software) with dynamic data provided by DDC system with appropriate text descriptors, status or value, and engineering unit.
- 17. Use color, rotation, or other highly visible means, to denote status and alarm states. Make colors variable for each class of points, as chosen by operator.
- 18. Provide dynamic points with operator adjustable update rates on a per point basis from one second to over a minute.
- 19. For operators with appropriate privilege, command points directly from display using pointing device.
 - a. For an analog command point such as set point, display current conditions and limits so operator can position new set point using pointing device.
 - b. For a digital command point such as valve position, show valve in current state such as open or closed so operator could select alternative position using pointing device.
 - c. Include a keyboard equivalent for those operators with that preference.
- 20. Give operator ability to split or resize viewing screen into quadrants to show one graphic on one quadrant of screen and other graphics or spreadsheet, bar chart, word processing, curve plot, and other information on other quadrants on screen. This feature allows real-time monitoring of one part of system while displaying other parts of system or data to better facilitate overall system operation.
- 21. Help Features:
 - a. Online context-sensitive help utility to facilitate operator training and understanding.
 - b. Bridge to further explanation of selected keywords and contain text and graphics to clarify system operation.

- 1) If help feature does not have ability to bridge on keywords for more information, provide a complete set of user manuals in an indexed word-processing program, which runs concurrently with operating system software.
- c. Available for Every Menu Item:
 - 1) Index items for each system menu item.
- 22. Provide graphic generation software to allow operator ability to add, modify, or delete system graphic displays.
 - a. Include libraries of symbols depicting HVAC symbols such as fans, coils, filters, dampers, valves pumps, and electrical symbols.
 - b. Use a pointing device in conjunction with a drawing program to allow operator to perform the following:
 - 1) Define background screens.
 - 2) Define connecting lines and curves.
 - 3) Locate, orient, and size descriptive text.
 - 4) Define and display colors for all elements.
 - 5) Establish correlation between symbols or text and associated system points or other displays.
- D. Project-Specific Graphics: Graphics documentation including, but not limited to, the following:
 - 1. Site plan showing each building, and additional site elements, which are being controlled or monitored by DDC system.
 - 2. Plan for each building floor, including interstitial floors, and each roof level of each building, showing the following:
 - a. Room layouts with room identification and name.
 - b. Locations and identification of all monitored and controlled HVAC equipment and other equipment being monitored and controlled by DDC system.
 - c. Location and identification of each hardware point being controlled or monitored by DDC system.
 - 3. Control schematic for each of following, including a graphic system schematic representation with point identification, set point and dynamic value indication.
 - 4. Graphic display for each piece of equipment connected to DDC system through a data communications link. Include dynamic indication of all points associated with equipment.
- E. Customizing Software:
 - 1. Software to modify and tailor DDC system to specific and unique requirements of equipment installed, to programs implemented and to staffing and operational practices planned.
 - 2. Online modification of DDC system configuration, program parameters, and database using menu selection and keyboard entry of data into preformatted display templates.
 - 3. At a minimum, include the following modification capability:
 - a. Operator Assignment: Designation of operator passwords, access levels, point segregation, and auto sign-off.
 - b. Peripheral Assignment: Assignment of segregation groups and operators to consoles and printers, designation of backup workstations and printers, designation of workstation header points, and enabling and disabling of print-out of operator changes.
 - c. System Configuration and Diagnostics; Communications and peripheral port assignments, DDC controller assignments to network, DDC controller enable and

disable, assignment of command trace to points, and application programs and initiation of diagnostics.

- d. System Text Addition and Change: English or native language descriptors for points, segregation groups and access levels and action messages for alarms, run time, and trouble condition.
- e. Time and Schedule Change: Time and date set, time and occupancy schedules, exception and holiday schedules, and daylight-savings time schedules.
- f. Point related change capability is to include the following:
 - 1) System and point enable and disable.
 - 2) Run-time enable and disable.
 - 3) Assignment of points to segregation groups, calibration tables, lockout, and run time and to a fixed I/O value.
 - 4) Assignment of alarm and warning limits.
- g. Application program change capability is to include the following:
 - 1) Enable and disable of software programs.
 - 2) Programming changes.
 - 3) Assignment of comfort limits, global points, time and event initiators, time and event schedules and enable and disable time and event programs.
- 4. Provide software to allow operator ability to add points, or groups of points, to DDC system and to link them to energy optimization and management programs. Make additions and modifications online programmable using operator workstations, downloaded to other network devices and entered into their databases. After verification of point additions and associated program operation, upload and record database on hard drive and disc for archived record.
- 5. Include high-level language programming software capability for implementation of custom DDC programs. Include a compiler, linker, and up- and down-load capability.
- 6. Include a library of DDC algorithms, intrinsic control operators, arithmetic, logic, and relational operators for implementation of control sequences. Also include, at a minimum, the following:
 - a. Proportional control (P).
 - b. Proportional plus integral (PI).
 - c. Proportional plus integral plus derivative (PID).
 - d. Adaptive and intelligent self-learning control.
 - 1) Algorithm monitors loop response to output corrections and adjust loop response characteristics in accordance with time constant changes imposed.
 - 2) Algorithm operates in a continuous self-learning manner and retains in memory a stored record of system dynamics so that on system shut down and restart, learning process starts from where it left off.
- 7. Fully implemented intrinsic control operators including sequence, reversing, ratio, time delay, time of day, highest select AO, lowest select AO, analog controlled digital output, analog control AO, and digitally controlled AO.
- 8. Logic operators such as "And," "Or," "Not," and others that are part of a standard set available with a high-level language.
- 9. Arithmetic operators such as "Add," "Subtract," "Multiply," "Divide," and others that are part of a standard set available with a high-level language.
- 10. Relational operators such as "Equal to," "Not Equal to," "Less Than," "Greater Than," and others that are part of a standard set available with a high-level language.
- F. Alarm Handling Software:

- 1. Include alarm handling software to report all alarm conditions monitored and transmitted through DDC controllers and gateways.
- 2. Include first in, first out handling of alarms in accordance with alarm priority ranking, with most critical alarms first, and with buffer storage in case of simultaneous and multiple alarms.
- 3. Make alarm handling active at all times to ensure that alarms are processed even if an operator is not currently signed on to DDC system.
- 4. Alarms display is to include the following:
 - a. Indication of alarm condition such as "Abnormal Off," "Hi Alarm," and "Low Alarm."
 - b. "Analog Value" or "Status" group and point identification with native language point descriptor such as "Space Temperature, Building 110, 2nd Floor, Room 212."
 - c. Discrete per point alarm action message, such as "Call Maintenance Dept. Ext-5561."
 - d. Include extended message capability to allow assignment and printing of extended action messages. Capability is to be operator programmable and assignable on a per point basis.
- 5. Direct alarms to appropriate operator workstations, printers, and individual operators by privilege level and segregation assignments.
- 6. Send email alarm messages to designated operators.
- 7. Send email, page, text, and voice messages to designated operators for critical alarms.
- 8. Categorize and process alarms by class.
 - a. Class 1:
 - 1) Associated with fire, security, and other extremely critical equipment monitoring functions; have alarm, trouble, return to normal, and acknowledge conditions printed and displayed.
 - 2) Unacknowledged alarms to be placed in unacknowledged alarm buffer.
 - 3) All conditions make an audible alarm sound and require individual acknowledgment to silence audible sound.
 - b. Class 2:
 - 1) Critical, but not life-safety related, and processed same as Class 1 alarms, except do not require individual acknowledgment.
 - 2) Acknowledgement may be through a multiple alarm acknowledgment.
 - c. Class 3:
 - 1) General alarms; printed, displayed, and placed in unacknowledged alarm buffer queues.
 - 2) Configure so each new alarm received makes an audible alarm sound that are silenced by "acknowledging" alarm or by pressing a "silence" key.
 - 3) Make acknowledgement of queued alarms either on an individual basis or through a multiple alarm acknowledgement.
 - 4) Print alarms returning to normal condition without an audible alarm sound or require acknowledgment.
 - d. Class 4:
 - 1) Routine maintenance or other types of warning alarms.
 - 2) Alarms to be printed only, with no display, no audible sound and no acknowledgment required.
- 9. Include an unacknowledged alarm indicator on display to alert operator that there are unacknowledged alarms in system. Operator able to acknowledge alarms on an individual basis or through a multiple alarm acknowledge key, depending on alarm class.

- 10. To ensure that no alarm records are lost, make it possible to assign a backup printer to accept alarms in case of failure of primary printer.
- G. Reports and Logs:
 - 1. Include reporting software package that allows operator to select, modify, or create reports using DDC system I/O point data available.
 - 2. Setup each report so data content, format, interval, and date are operator definable.
 - 3. Sample and store report data on DDC controller, within storage limits of DDC controller, and then uploaded to archive on server for historical reporting.
 - 4. Make it possible for operators to obtain real-time logs of all I/O points by type or status, such as alarm, point lockout, or normal.
 - 5. Store reports and logs on servers hard drives in a format that is readily accessible by other standard software applications, including spreadsheets and word processing.
 - 6. Make reports and logs readily printable and set to be print either on operator command or at a specific time each day.
- H. Standard Reports: Provide standard DDC system reports with operator ability to customize reports later.
 - 1. All I/O: With current status and values.
 - 2. Alarm: All current alarms, except those in alarm lockout.
 - 3. Disabled I/O: All I/O points that are disabled.
 - 4. Alarm Lockout I/O: All I/O points in alarm lockout, whether manual or automatic.
 - 5. Alarm Lockout I/O in Alarm: All I/O in alarm lockout that are currently in alarm.
 - 6. Logs:
 - a. Alarm history.
 - b. System messages.
 - c. System events.
 - d. Trends.
- I. Custom Reports: Operator able to easily define and prepare any system data into a daily, weekly, monthly, annual, or other historical report. Reports to include a title with time and date stamp.
- J. Tenant Override Reports: Prepare Project-specific reports.
 - 1. Daily report showing total time in hours that each tenant has requested after-hours HVAC.
 - 2. Weekly report showing daily total time in hours that each tenant has requested afterhours HVAC.
 - 3. Monthly report showing daily total time in hours that each tenant has requested afterhours HVAC.
 - 4. Annual summary report that shows after-hours HVAC usage on a monthly basis.
- K. Energy Reports: Prepare Project-specific daily, weekly, monthly, and annual energy reports.
 - 1. Prepare report for each purchased energy utility, indicating the following:
 - a. Time being reported with beginning and end date, and time indicated.
 - b. Consumption in units of measure commonly used to report specific utility consumption over time.
 - c. Gross area served by utility.
 - d. Consumption per unit area served using utility-specific unit of measure.
 - e. Cost per utility unit.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- f. Utility cost per unit area.
- g. Convert all utilities to a common energy consumption unit of measure and report for each utility.
- h. Consumption per unit area using common unit of measure.
- 2. Prepare report for each renewable energy source, indicating the following:
 - a. Time being reported with beginning and end date, and time indicated.
 - b. Harvested energy in units of measure commonly used to report specific harvested energy consumption over time.
 - c. Gross area served by renewable energy source.
 - d. Harvested energy per unit area served using specific unit of measure.
 - e. Cost per purchased utility unit displaced by renewable energy.
 - f. Cost savings attributed to harvested energy source.
 - g. Cost savings per unit area attributed to harvested energy.
 - h. Convert all renewable energy sources to a common energy consumption unit of measure and report for each.
 - i. Harvested energy per unit area using common unit of measure.
- 3. Prepare purchased energy utility report for each submetered area that indicates the following:
 - a. Time being reported with beginning and end date, and time indicated.
 - b. Gross area served.
 - c. Energy consumption by energy utility type.
 - d. Energy consumption per unit area by energy utility type.
 - e. Total energy consumption of all utilities in common units of measure.
 - f. Total energy consumption of all utilities in common units of measure per unit area.
 - g. Unit energy cost by energy utility type.
 - h. Energy cost by energy utility type.
 - i. Energy cost per unit area by energy utility type.
 - j. Total cost of all energy utilities.
 - k. Total cost of all energy utilities per unit area.
- 4. Prepare Project total purchased energy utility report that combines all purchased energy utilities and all areas served. Project total energy report is to indicate the following:
 - a. Time being reported with beginning and end date, and time indicated.
 - b. Gross area served.
 - c. Energy consumption by energy utility type.
 - d. Energy consumption per unit area by energy utility type.
 - e. Total energy consumption of all utilities in common units of measure.
 - f. Total energy consumption of all utilities in common units of measure per unit area.
 - g. Unit energy cost by energy utility type.
 - h. Energy cost by energy utility type.
 - i. Energy cost per unit area by energy utility type.
 - j. Total cost of all energy utilities.
 - k. Total cost of all energy utilities per unit area.
- L. Weather Reports:
 - 1. Include daily report showing the following:
 - a. Daily minimum, maximum, and average outdoor dry-bulb temperature.
 - b. Daily minimum, maximum, and average outdoor wet-bulb temperature.
 - c. Daily minimum, maximum, and average outdoor dew point temperature.
 - d. Number of heating degree-days for each day calculated from a base temperature of 55 deg F.

- e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F.
- M. Standard Trends:
 - 1. Trend all I/O point present values, set points, and other parameters indicated for trending.
 - 2. Associate trends into groups, and setup a trend report for each group.
 - 3. Store trends within DDC controller and uploaded to hard drives automatically on reaching 75 percent of DDC controller buffer limit, or by operator request, or by archiving time schedule.
 - 4. Preset trend intervals for each I/O point after review with Owner.
 - 5. Make trend intervals operator selectable from 10 seconds up to 60 minutes. Make minimum number of consecutive trend values stored at one time 100 per variable.
 - 6. When drive storage memory is full, overwrite oldest data with most recent data.
 - 7. Make archived and real-time trend data available for viewing numerically and graphically by operators.
- N. Custom Trends: Operator-definable custom trend log for any I/O point in DDC system.
 - 1. Include each trend with interval, start time, and stop time.
 - 2. Sample and store data on DDC controller, within reaching 75 percent storage limits of DDC controller, and then uploaded to archive on server hard drives.
 - 3. Make data retrievable for use in spreadsheets and standard database programs.
- O. Programming Software:
 - 1. Include programming software to execute sequences of operation indicated.
 - 2. Include programming routines in simple and easy to follow logic with detailed text comments describing what the logic does and how it corresponds to sequence of operation.
 - 3. Programming software is to be as follows:
 - a. Graphic Based: Use a library of function blocks made from preprogrammed code designed for DDC control systems.
 - 1) Assemble function blocks with interconnection lines that represent to control sequence in a flowchart.
 - 2) Make programming tools viewable in real time to show present values and logical results of each function block.
 - 4. Include means for detecting programming errors and testing software control strategies with a simulation tool before implementing in actual control. Simulation tool may be inherent with programming software or as a separate product.
- P. Database Management Software:
 - 1. Where a separate SQL database is used for information storage, include database management software that separates database monitoring and managing functions by supporting multiple separate windows.
 - 2. Secure database access using standard SQL authentication including ability to access data for use outside of DDC system applications.
 - 3. Include database management function summarizing information on trend, alarm, event, and audit for the following database management actions:
 - a. Backup.
 - b. Purge.
 - c. Restore.
 - 4. Database management software supporting the following:

- a. Statistics: Display database server information and trend, alarm, event, and audit information on database.
- b. Maintenance: Include method of purging records from trend, alarm, event, and audit databases by supporting separate screens for creating a backup before purging, selecting database, and allowing for retention of a selected number of day's data.
- c. Backup: Include means to create a database backup file and select a storage location.
- d. Restore: Include a restricted means of restoring a database by requiring operator to have proper security level.
- 5. Information of current database activity, including the following:
 - a. Ready.
 - b. Purging record from a database.
 - c. Action failed.
 - d. Refreshing statistics.
 - e. Restoring database.
 - f. Shrinking a database.
 - g. Backing up a database.
 - h. Resetting Internet information services.
 - i. Starting network device manager.
 - j. Shutting down the network device manager.
 - k. Action successful.
- 6. Database management software monitoring functions is to continuously read database information once operator has logged on.
- 7. Include operator notification through on-screen pop-up display and email message when database value has exceeded a warning or alarm limit.
- 8. Monitoring settings window with the following Sections:
 - a. Allow operator to set and review scan intervals and start times.
 - b. Email: Allow operator to create and review email and phone text messages to be delivered when a warning or an alarm is generated.
 - c. Warning: Allow operator to define warning limit parameters, set reminder frequency, and link email message.
 - d. Alarm: Allow operator to define alarm limit parameters, set reminder frequency, and link email message.
 - e. Database Login: Protect system from unauthorized database manipulation by creating a read access and a write access for each of trend, alarm, event, and audit databases as well as operator proper security access to restore a database.
- 9. Monitoring settings taskbar with following informational icons:
 - a. Normal: Indicates by color and size, or other easily identifiable means, that all databases are within their limits.
 - b. Warning: Indicates by color and size, or other easily identifiable means, that one or more databases have exceeded their warning limit.
 - c. Alarm: Indicates by color and size, or other easily identifiable means, that one or more databases have exceeded their alarm limit.

2.11 OFFICE APPLICATION SOFTWARE

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
1. Microsoft Corporation.

- B. Include current version of office application software at time of Substantial Completion.
- C. Office application software package to include multiple separate applications and use a common platform for all applications.
 - 1. Database.
 - 2. Email.
 - 3. Publishing.
 - 4. Spreadsheet.
 - 5. Word processing.

2.12 ASHRAE 135 GATEWAYS

- A. Include BACnet communication ports, whenever available as an equipment OEM standard option, for integration via a single communication cable. BACnet-controlled plant equipment includes, but is not limited to, boilers, chillers and variable-speed drives.
- B. Include gateways to connect BACnet to legacy systems where indicated, existing non-BACnet devices, and existing non-BACnet DDC-controlled equipment.
- C. Include with each gateway an interoperability schedule showing each point or event on legacy side that BACnet "client" will read, and each parameter that BACnet network will write to. Describe this interoperability of BACnet services, or BIBBs, defined in ASHRAE 135, Annex K.
- D. Gateway Minimum Requirements:
 - 1. Read and view all readable object properties on non-BACnet network to BACnet network, and vice versa, where applicable.
 - 2. Write to all writable object properties on non-BACnet network from BACnet network, and vice versa, where applicable.
 - 3. Include single-pass (only one protocol to BACnet without intermediary protocols) translation from non-BACnet protocol to BACnet, and vice versa.
 - 4. Comply with requirements of Data Sharing Read Property, Data Sharing Write Property, Device Management Dynamic Device Binding-B, and Device Management Communication Control BIBBs in accordance with ASHRAE 135.
 - 5. Hardware, software, software licenses, and configuration tools for operator-to-gateway communications.
 - 6. Backup programming and parameters on CD media with ability to modify, download, backup, and restore gateway configuration.

2.13 ASHRAE 135 PROTOCOL ANALYZER

- A. Analyzer and required cables and fittings for connection to ASHRAE 135 network.
- B. Include the following minimum capabilities:
 - 1. Capture and store to a file data traffic on all network levels.
 - 2. Measure bandwidth usage.
 - 3. Filtering options with ability to ignore select traffic.

2.14 DDC CONTROLLERS

- A. DDC system consisting of a combination of network controllers, programmable application controllers, and application-specific controllers to satisfy performance requirements indicated.
- B. DDC controllers to perform monitoring, control, energy optimization, and other requirements indicated.
- C. DDC controllers are to use a multitasking, multiuser, real-time digital control microprocessor with a distributed network database and intelligence.
- D. Each DDC controller is capable of full and complete operation as a completely independent unit and as a part of DDC system wide distributed network.
- E. Environment Requirements:
 - 1. Controller hardware suitable for anticipated ambient conditions.
 - 2. Controllers located in conditioned space rated for operation at 32 to 120 deg F.
 - 3. Controllers located outdoors rated for operation at 40 to 150 deg F.
- F. Power and Noise Immunity:
 - 1. Operate controller at 90 to 110 percent of nominal voltage rating and perform an orderly shutdown below 80 percent of nominal voltage.
 - 2. Protect against electrical noise of 5 to 120 Hz and from keyed radios with up to 5 W of power located within 36 inches of enclosure.
- G. DDC Controller Spare Processing Capacity:
 - 1. Include spare processing memory for each controller. RAM, PROM, or EEPROM will implement requirements indicated with the following spare memory:
 - a. Network Controllers: 50 percent.
 - b. Programmable Application Controllers: Not less than 60 percent.
 - c. Application-Specific Controllers: Not less than 70 percent.
 - 2. Memory for DDC controller's operating system and database are to include the following:
 - a. Monitoring and control.
 - b. Energy management, operation, and optimization applications.
 - c. Alarm management.
 - d. Historical trend data of all connected I/O points.
 - e. Maintenance applications.
 - f. Operator interfaces.
 - g. Monitoring of manual overrides.
- H. DDC Controller Spare I/O Point Capacity: Include spare I/O point capacity for each controller as follows:
 - Network Controllers:

1.

- a. 10 percent of each AI, AO, BI, and BO point connected to controller.
- b. Minimum Spare I/O Points per Controller:
 - 1) AIs: Two.
 - 2) AOs: Two.
 - 3) BIs: Three.
 - 4) BOs: Three.
 - 5) Option to provide universal I/O to meet spare requirements.

- 2. Programmable Application Controllers:
 - a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 - b. Minimum Spare I/O Points per Controller:
 - 1) AIs: Two.
 - 2) AOs: Two.
 - 3) BIs: Three.
 - 4) BOs: Three.
 - 5) Option to provide universal I/O to meet spare requirements.
- 3. Application-Specific Controllers:
 - a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 - b. Minimum Spare I/O Points per Controller:
 - 1) AIs: Two.
 - 2) AOs: Two.
 - 3) BIs: Three.
 - 4) BOs: Three.
 - 5) Option to provide universal I/O to meet spare requirements.
- I. Maintenance and Support: Include the following features to facilitate maintenance and support:
 - 1. Mount microprocessor components on circuit cards for ease of removal and replacement.
 - 2. Means to quickly and easily disconnect controller from network.
 - 3. Means to quickly and easily access connect to field test equipment.
 - 4. Visual indication that controller electric power is on, of communication fault or trouble, and that controller is receiving and sending signals to network.
- J. I/O Point Interface:
 - 1. Connect hardwired I/O points to network, programmable application, and applicationspecific controllers.
 - 2. Protect I/O points so shorting of point to itself, to another point, or to ground will not damage controller.
 - 3. Protect I/O points from voltage up to 24 V of any duration so that contact will not damage controller.
 - 4. AIs:
 - a. Include monitoring of low-voltage (0 to 10 V dc), current (4 to 20 mA) and resistance signals from thermistor and RTD sensors.
 - b. Compatible with, and field configurable to, sensor and transmitters installed.
 - c. Perform analog-to-digital (A-to-D) conversion with a minimum resolution of 12 bits or better to comply with accuracy requirements indicated.
 - d. Signal conditioning including transient rejection for each AI.
 - e. Capable of being individually calibrated for zero and span.
 - f. Incorporate common-mode noise rejection of at least 50 dB from 0 to 100 Hz for differential inputs, and normal-mode noise rejection of at least 20 dB at 60 Hz from a source impedance of 10000 ohms.
 - g. External conversion resistors are not permitted.
 - 5. AOs:
 - a. Perform analog-to-digital (A-to-D) conversion with a minimum resolution of 12 bits or better to comply with accuracy requirements indicated.
 - b. Output signals range of 4 to 20 mA dc or 0 to 10 V dc as required to include proper control of output device.
 - c. Capable of being individually calibrated for zero and span.
 - d. Drift is to be not greater than 0.4 percent of range per year.

- e. External conversion resistors are not permitted.
- 6. BIs:
 - a. Accept contact closures and ignore transients of less than 5 ms duration.
 - b. Isolate and protect against an applied steady-state voltage of up to 180 V ac peak.
 - c. Include a wetting current of at least 12 mA to be compatible with commonly available control devices and protected against effects of contact bounce and noise.
 - d. Sense "dry contact" closure without external power (other than that provided by controller) being applied.
 - e. Pulse accumulation input points complying with all requirements of BIs and accept up to 10 pulses per second for pulse accumulation. Include buffer to totalize pulses. Pulse accumulator is to accept rates of at least 20 pulses per second. Reset the totalized value to zero on operator's command.
- 7. BOs:
 - a. Include relay contact closures or triac outputs for momentary and maintained operation of output devices.
 - 1) Relay contact closures to have a minimum duration of 0.1 second and at least 180 V of isolation.
 - 2) Include electromagnetic interference suppression on all output lines to limit transients to non-damaging levels.
 - 3) Minimum contact rating to be 1 A at 24 V ac.
 - 4) Triac outputs to have at least 180 V of isolation and minimum contact rating of 1 A at 24 V ac.
 - b. Include BOs with two-state operation or a pulsed low-voltage signal for pulsewidth modulation control.
 - c. BOs to be selectable for either normally open or normally closed operation.
 - d. Include tristate outputs (two coordinated BOs) for control of three-point, floatingtype electronic actuators without feedback.
 - e. Limit use of three-point floating devices to VAV terminal unit control applications. Control algorithms to operate actuator to one end of its stroke once every 24 hours for verification of operator tracking.

2.15 NETWORK CONTROLLERS

- A. General:
 - 1. Include adequate number of controllers to achieve performance indicated.
 - 2. Provide one or more independent, standalone, microprocessor-based network controllers to manage global strategies indicated.
 - 3. Include enough memory to support its operating system, database, and programming requirements with spare memory indicated.
 - 4. Share data between networked controllers and other network devices.
 - 5. Operating system of controller to manage I/O communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 6. Include network controllers with a real-time clock.
 - 7. Controller to continually check status of its processor and memory circuits. If an abnormal operation is detected, controller is to assume a predetermined failure mode and generate an alarm notification.
 - 8. Make controllers fully programmable.

B. Communication:

- 1. Network controllers communicate with other devices on DDC system Level 1 network.
- 2. Network controller to also perform routing if connected to network of programmable application controllers and application-specific controllers.
- C. Operator Interface:
 - 1. Equip controllers with a service communications port for connection to desktop operator's workstation.
 - 2. Local Keypad and Display:
 - a. Equip controller with local keypad and digital display for interrogating and editing data.
 - b. Use of keypad and display requires a security password.
- D. Serviceability:
 - 1. Equip controller with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 - 2. Connect wiring and cable connections to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 3. Maintain Basic Input Output System (BIOS) and programming information in event of power loss for at least 72 hours.

2.16 PROGRAMMABLE APPLICATION CONTROLLERS

- A. General:
 - 1. Include adequate number of controllers to achieve performance indicated.
 - 2. Provide enough memory to support its operating system, database, and programming requirements with spare memory indicated.
 - 3. Share data between networked controllers and other network devices.
 - 4. Include controller with operating system to manage I/O communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 5. Include controllers that perform scheduling with a real-time clock.
 - 6. Controller is to continually check status of its processor and memory circuits. If an abnormal operation is detected, controller assumes a predetermined failure mode and generates an alarm notification.
 - 7. Fully programmable.
- B. Communication:
 - 1. Programmable application controllers are to communicate with other devices on network.
- C. Operator Interface:
 - 1. Equip controllers with a service communications port for connection to desktop operator's workstation.
 - 2. Local Keypad and Display:
 - a. Equip controller with local keypad and digital display for interrogating and editing data.
 - b. Protect use of keypad and display by security password.
- D. Serviceability:

- 1. Equip controller with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
- 2. Connect wiring and cable connections to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 3. Maintain BIOS and programming information in event of power loss for at least 72 hours.

2.17 APPLICATION-SPECIFIC CONTROLLERS

- A. Description: Microprocessor-based controllers, which through hardware or firmware design are dedicated to control a specific piece of equipment or system. Controllers are not fully user-programmable but are configurable and customizable for operation of equipment they are designed to control.
 - 1. Capable of standalone operation and continued control functions without being connected to network.
 - 2. Share data between networked controllers and other network devices.
- B. Communication: Application-specific controllers are to communicate with other applicationspecific controllers and devices on network, and to programmable application controllers and network controllers.
- C. Operator Interface: Equip controllers with a service communications port for connection to desktop workstation.
- D. Serviceability:
 - 1. Equip controller with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 - 2. Connect wiring and cable connections to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 3. Use nonvolatile memory and maintain all BIOS and programming information in event of power loss.

2.18 CONTROLLER SOFTWARE

- A. General:
 - 1. Software applications are to reside and operate in controllers. Edit applications through operator workstations.
 - 2. Identify I/O points by up to 30-character point name and up to 16-character point descriptor. Use same names throughout, including at operator workstations.
 - 3. Execute control functions within controllers using DDC algorithms.
 - 4. Configure controllers to use stored default values to ensure fail-safe operation. Use default values when there is a failure of a connected input instrument or loss of communication of a global point value.
- B. Security:
 - 1. Secure operator access using individual security passwords and user names.
 - 2. Passwords restrict operator to points, applications, and system functions as assigned by system manager.
 - 3. Record operator log-on and log-off attempts.

- 4. Protect from unauthorized use by automatically logging off after last keystroke. Make the delay time operator-definable.
- C. Scheduling: Include capability to schedule each point or group of points in system. Each schedule is to consist of the following:
 - 1. Weekly Schedule:
 - a. Include separate schedules for each day of week.
 - b. Each schedule should include capability for start, stop, optimal start, optimal stop, and night economizer.
 - c. Each schedule may consist of up to 10 events.
 - d. When a group of objects are scheduled together, include capability to adjust start and stop times for each member.
 - 2. Exception Schedules:
 - a. Include ability for operator to designate any day of the year as an exception schedule.
 - b. Exception schedules may be defined up to a year in advance. Once an exception schedule is executed, it will be discarded and replaced by regular schedule for that day of week.
 - 3. Holiday Schedules:
 - a. Include capability for operator to define up to 99 special or holiday schedules.
 - b. Place schedules on scheduling calendar with ability to repeated each year.
 - c. Operator able to define length of each holiday period.
- D. System Coordination:
 - 1. Include standard application for proper coordination of equipment.
 - 2. Include operator with a method of grouping together equipment based on function and location.
 - 3. Include groups that may be for use in scheduling and other applications.
- E. Binary Alarms:
 - 1. Set each binary point to alarm based on operator-specified state.
 - 2. Include capability to automatically and manually disable alarming.
- F. Analog Alarms:
 - 1. Provide each analog object with both high and low alarm limits.
 - 2. Include capability to automatically and manually disable alarming.
- G. Alarm Reporting:
 - 1. Include ability for operators to determine action to be taken in event of an alarm.
 - 2. Route alarms to appropriate operator workstations based on time and other conditions.
 - 3. Include ability for alarms to start programs, print, be logged in event logs, generate custom messages, and display graphics.
- H. Remote Communication:
 - 1. Include ability for system to notify operators by phone message, text message, and email in event of an alarm.
- I. Electric Power Demand Limiting:
 - 1. Monitor building or other operator-defined electric power consumption from signals connected to electric power meter or from a watt transducer or current transformer.

- 2. Predict probable power demand such that action can be taken to prevent exceeding demand limit. When demand prediction exceeds demand limit, action will be taken to reduce loads in a predetermined manner. When demand prediction indicates demand limit will not be exceeded, action will be taken to restore loads in a predetermined manner.
- 3. Accomplish demand reduction by the following means:
 - a. Reset air-handling-unit supply temperature set points.
 - b. Reset space temperature set points.
 - c. De-energize equipment based on priority.
- 4. Base demand-limiting parameters, frequency of calculations, time intervals, and other relevant variables on the means by which electric power service provider computes demand charges.
- 5. Include demand-limiting prediction and control for any individual meter monitored by system or for total of any combination of meters.
- 6. Include means operator to make the following changes online:
 - a. Addition and deletion of loads controlled.
 - b. Changes in demand intervals.
 - c. Changes in demand limit for meter(s).
 - d. Maximum shutoff time for equipment.
 - e. Minimum shutoff time for equipment.
 - f. Select rotational or sequential shedding and restoring.
 - g. Shed and restore priority.
- 7. Include the following information and reports, to be available on an hourly, daily, weekly, monthly, and annual basis:
 - a. Total electric consumption.
 - b. Peak demand.
 - c. Date and time of peak demand.
 - d. Daily peak demand.
- J. Maintenance Management: Monitor equipment status and generate maintenance messages based on operator-designated run-time, starts, and calendar date limits.
- K. Sequencing: Include application software based on sequences of operation indicated to properly sequence applicable HVAC equipment.
- L. Control Loops:
 - 1. Support any of the following control loops, as applicable to control required:
 - a. Two-position (on/off, open/close, slow/fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control.
 - 1) Include PID algorithms with direct or reverse action and anti-windup.
 - 2) Algorithm to calculate a time-varying analog value used to position an output or stage a series of outputs.
 - 3) Make controlled variable, set point, and PID gains operator-selectable.
 - e. Adaptive (automatic tuning).
- M. Staggered Start: Prevent all controlled equipment from simultaneously restarting after a power outage. Make the order which equipment (or groups of equipment) is started, along with the time delay between starts, operator-selectable.

N. Energy Calculations:

- 1. Include software to allow instantaneous power or flow rates to be accumulated and converted to energy usage data.
- 2. Include algorithm that calculates a sliding-window average (rolling average). Make algorithm flexible to allow window intervals to be operator specified (such as 15, 30, or 60 minutes).
- 3. Include algorithm that calculates a fixed-window average. Use a digital input signal to define start of window period (such as signal from utility meter) to synchronize fixed-window average with that used by utility.
- O. Anti-Short Cycling:
 - 1. Protect BO points from short cycling.
 - 2. Feature to allow minimum on-time and off-time to be selected.
- P. On and Off Control with Differential:
 - 1. Include algorithm that allows BO to be cycled based on a controlled variable and set point.
 - 2. Use direct- or reverse-acting algorithm and incorporate an adjustable differential.
- Q. Run-Time Totalization:
 - 1. Include software to totalize run-times for all BI points.
 - 2. Assign a high run-time alarm, if required, by operator.

2.19 ENCLOSURES

- A. General:
 - 1. House each controller and associated control accessories in single enclosure. Enclosure is to serve as central tie-in point for control devices such as switches, transmitters, transducers, power supplies, and transformers.
 - 2. Do not house more than one controller in single enclosure.
 - 3. Include enclosure door with key locking mechanism. Key locks alike for all enclosures and include one pair of keys per enclosure.
 - 4. Equip doors of enclosures housing controllers and components with analog or digital displays with windows to allow visual observation of displays without opening enclosure door.
 - 5. Individual, wall-mounted, single-door enclosures maximum of 36 inches wide and 48 inches high.
 - 6. Include wall-mounted enclosures with brackets suitable for mounting enclosures to wall.
 - 7. Supply each enclosure with complete set of as-built schematics, tubing, and wiring diagrams and product literature located in pocket on inside of door.
- B. Internal Arrangement:
 - 1. Arrange internal layout of enclosure to group and protect electric, and electronic components associated with controller, but not an integral part of controller.
 - 2. Arrange layout to group similar products together.
 - 3. Include a barrier between line-voltage and low-voltage electrical and electronic products.
 - 4. Factory or shop install products, tubing, cabling, and wiring complying with requirements and standards indicated.
 - 5. Terminate field cable and wire using heavy-duty terminal blocks.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 6. Include spare terminals, equal to not less than 10 percent of used terminals.
- 7. Include spade lugs for stranded cable and wire.
- 8. Install maximum of two wires on each side of terminal.
- 9. Include enclosure field electric power supply with toggle-type switch located at entrance inside enclosure to disconnect power.
- 10. Include enclosure with line-voltage nominal 20 A GFCI duplex receptacle for service and testing tools. Wire receptacle on hot side of enclosure disconnect switch and include with 5 A circuit breaker.
- 11. Mount products within enclosure on removable internal panel(s).
- 12. Include products mounted in enclosures with nameplates (black letters on a white background). Nameplates are to have at least 1/4-inch- high lettering.
- 13. Route tubing cable and wire located inside enclosure within a raceway with continuous removable cover.
- 14. Label each end of cable, wire, and tubing in enclosure following an approved identification system that extends from field I/O connection and all intermediate connections throughout length to controller connection.
- 15. Size enclosure internal panel to include at least 15 percent spare area on face of panel.
- C. Wall-Mounted, NEMA 250, Type 1:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cooper B-line; brand of Eaton, Electrical Sector.
 - b. Hammond Mfg. Co. Inc.
 - c. Hoffman; brand of nVent Electrical plc.
 - d. Saginaw Control and Engineering.
 - 2. NRTL listed in accordance with UL 50 or UL 50E.
 - 3. Construct enclosure of steel, not less than the following:
 - a. Enclosure Size Less Than 24 Inches: 0.053 inch or 0.067 inch thick.
 - b. Enclosure Size 24 Inches and Larger: 0.067 inch or 0.093 inch thick.
 - 4. Hinged door full size of front face of enclosure and supported using the following:
 - a. Enclosures Sizes Less Than 36 Inches Tall: Multiple butt hinges.
 - b. Enclosures Sizes 36 Inches Tall and Larger: Continuous piano hinges.
 - 5. Removable internal panel with white or gray polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 - a. Size Less Than 24 Inches: Solid or perforated steel, 0.053 inch thick.
 - b. Size 24 Inches and Larger: Solid aluminum, 0.10 inch or steel, 0.093 inch thick.
 - 6. Internal panel mounting hardware, grounding hardware, and sealing washers.
 - 7. Grounding stud on enclosure body.
 - 8. Thermoplastic pocket on inside of door for record Drawings and Product Data.
- D. Wall-Mounted, NEMA 250, Types 4 and 12:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cooper B-line; brand of Eaton, Electrical Sector.
 - b. Hammond Mfg. Co. Inc.
 - c. Hoffman; brand of nVent Electrical plc.
 - d. Saginaw Control and Engineering.
 - 2. NRTL listed in accordance with UL 508A.
 - 3. Seam and joints are continuously welded and ground smooth.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 4. Where recessed enclosures are indicated, include enclosures with face flange for flush mounting.
- 5. Externally formed body flange around perimeter of enclosure face for continuous perimeter seamless gasket door seal.
- 6. Single-door enclosure sizes up to 60 inches tall by 36 inches wide.
- 7. Double-door enclosure sizes up to 36 inches tall by 60 inches wide.
- 8. Construct enclosure of steel, not less than the following:
 - a. Size Less Than 24 Inches: 0.053 inch or 0.067 inch thick.
 - b. Size 24 Inches and Larger: 0.067 inch thick.
- 9. Finish enclosure with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 - a. Exterior Color: White.
 - b. Interior Color: White.
- 10. Corner-formed door, full size of enclosure face, supported using multiple concealed hinges with easily removable hinge pins.
 - a. Sizes through 24 Inches Tall: Two hinges.
 - b. Sizes between 24 Inches through 48 Inches Tall: Three hinges.
 - c. Sizes Larger Than 48 Inches Tall: Four hinges.
- 11. Double-door enclosures with overlapping door design to include unobstructed full-width access.
 - a. Single-door enclosures 48 inches and taller, and all double-door enclosures, with three-point (top, middle and bottom) latch system.
- 12. Removable internal panel with white or gray polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 - a. Size Less Than 24 Inches: Solid or perforated steel, 0.053 inch thick.
 - b. Size 24 Inches and Larger: Solid aluminum, 0.10 inch or steel, 0.093 inch thick.
- 13. Internal panel mounting studs with hardware, grounding hardware, and sealing washers.
- 14. Grounding stud on enclosure body.
- 15. Thermoplastic pocket on inside of door for record Drawings and Product Data.
- E. Accessories:
 - 1. Ventilation Fans, Filtered Intake, and Exhaust Grilles:
 - a. Number and size of fans, filters, and grilles, as required by application.
 - b. Compact cooling fans engineered for 50,000 hours of continuous operation without lubrication or service.
 - c. Fans capable of being installed on any surface and in any position within enclosure for spot cooling or air circulation.
 - d. Thermostatic control with adjustable set point from 32 to 140 deg F.
 - e. Airflow Capacity at Zero Pressure:
 - 1) 4-Inch Fan: 100 cfm.
 - 2) 6-Inch Fan: 240 cfm.
 - 3) 10-Inch Fan: 560 cfm.
 - f. Maximum operating temperature of 158 deg F.
 - g. 4-inch fan thermally protected and provided with permanently lubricated ballbearings.
 - h. 6- and 10-inch fans with ball-bearing construction and split capacitor motors thermally protected to avoid premature failure.
 - i. Dynamically balanced impellers molded from polycarbonate material.
 - j. Fan furnished with power cord and polarized plug for power connection.

- k. Fan brackets, finger guards, and mounting hardware provided with fans to complete installation.
- 1. Removable Intake and Exhaust Grilles: ABS plastic, of size to match fan size and suitable for NEMA 250, Types 1 and 12 enclosures.
- m. Filters for NEMA 250, Type 1 Enclosures: Washable foam or aluminum, of size to match intake grille.
- n. Filters for NEMA 250, Type 12 Enclosures: Disposable, of size to match intake grille.

2.20 RELAYS

- A. General-Purpose Relays:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allen Bradley; by Rockwell Automation.
 - b. Eaton.
 - c. IDEC Corporation.
 - d. Omron Americas.
 - e. Siemens Industry, Inc., Building Technologies Division.
 - f. Square D; Schneider Electric USA.
 - 2. NRTL listed.
 - 3. Heavy-duty, electromechanical type; rated for at least 10 A at 250 V ac and 60 Hz.
 - 4. SPDT, DPDT, or three-pole double-throw, as required by control application.
 - 5. Plug-in-style relay with 8-pin octal or multiblade plug for DPDT relays and 11-pin octal or multiblade plug for three-pole double-throw relays.
 - 6. Construct contacts of silver, silver alloy, or gold.
 - 7. Enclose relay in a polycarbonate dust-tight cover.
 - 8. Include LED indication.
 - 9. Performance:
 - a. Mechanical Life: At least 10 million cycles.
 - b. Electrical Life: At least 100,000 cycles at rated load.
 - c. Pickup Time: 20 ms or less.
 - d. Dropout Time: 20 ms or less.
 - e. Pull-in Voltage: 85 percent of rated voltage.
 - f. Dropout Voltage: 50 percent of nominal rated voltage.
 - g. Power Consumption: 5 VA or less.
 - h. Ambient Operating Temperatures: Minus 40 to 115 deg F.
 - 10. Equip relays with coil transient suppression to limit transients to non-damaging levels.
 - 11. Plug each relay into industry-standard, 35 mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
 - 12. Include relay socket with screw terminals. Mold into socket the coincident screw terminal numbers.
- B. Multifunction Time-Delay Relays:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allen Bradley; by Rockwell Automation.
 - b. Eaton.
 - c. IDEC Corporation.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- d. Omron Americas.
- e. Siemens Industry, Inc., Building Technologies Division.
- f. Square D; Schneider Electric USA.
- 2. NRTL listed.
- 3. Continuous-duty type, rated for at least 10 A at 240 V ac and 60 Hz.
- 4. Relay with up to 4 programmable functions to provide on/off delay, interval, and recycle timing functions.
- 5. Plug-in-style relay with either multi-pin or blade plug.
- 6. Construct contacts of silver, silver alloy, or gold.
- 7. Enclose relay in a dust-tight cover.
- 8. Include knob and dial scale for alternative digital interface for setting delay time.
- 9. Visual Status Indication: Power "On" status.
- 10. Performance:
 - a. Mechanical Life: At least 10 million cycles.
 - b. Electrical Life: At least 100,000 cycles at rated load.
 - c. Timing Ranges: Multiple ranges from 0.1 seconds to 100 minutes.
 - d. Repeatability: Within 2 percent.
 - e. Recycle Time: 45 ms.
 - f. Minimum Pulse-Width Control: 50 ms.
 - g. Power Consumption: 5 VA or less.
 - h. Ambient Operating Temperatures: Minus 40 to 115 deg F.
- 11. Equip relays with transient suppression to limit transients to non-damaging levels.
- 12. Plug each relay into industry-standard, 35 mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
- 13. Include relay socket with screw terminals. Mold into socket the coincident screw terminal numbers.
- C. Latching Relays:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allen Bradley; by Rockwell Automation.
 - b. Eaton.
 - c. IDEC Corporation.
 - d. Omron Americas.
 - e. Siemens Industry, Inc., Building Technologies Division.
 - f. Square D; Schneider Electric USA.
 - 2. NRTL listed.
 - 3. Continuous-duty type, rated for at least 10 A at 250 V ac and 60 Hz.
 - 4. SPDT, DPDT, or three-pole double-throw, as required by control application.
 - 5. Plug-in-style relay with either multi-pin or blade plug.
 - 6. Construct contacts of silver, silver alloy, or gold.
 - 7. Enclose relay in a polycarbonate dust-tight cover.
 - 8. Performance:
 - a. Mechanical Life: At least 10 million cycles.
 - b. Electrical Life: At least 100,000 cycles at rated load.
 - c. Pickup Time: 20 ms or less.
 - d. Dropout Time: 20 ms or less.
 - e. Pull-in Voltage: 85 percent of rated voltage.
 - f. Dropout Voltage: 50 percent of nominal rated voltage.
 - g. Power Consumption: 5 VA or less.

- h. Ambient Operating Temperatures: Minus 40 to 115 deg F.
- 9. Equip relays with coil transient suppression to limit transients to non-damaging levels.
- 10. Plug each relay into industry-standard, 35 mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
- 11. Include relay socket with screw terminals. Mold into socket the coincident screw terminal numbers.
- D. Current Sensing Relays:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Eaton.
 - b. Functional Devices Inc.
 - c. NK Technologies.
 - d. Square D; Schneider Electric USA.
 - 2. NRTL listed.
 - 3. Monitors ac current.
 - 4. Independent adjustable controls for pickup and dropout current.
 - 5. Energized when supply voltage is present and current is above pickup setting.
 - 6. De-energizes when monitored current is below dropout current.
 - 7. Dropout current is adjustable from 50 to 95 percent of pickup current.
 - 8. Visual indication of contact status.
 - 9. Include current transformer, if required for application.
 - 10. House current sensing relay and current transformer if required in its own enclosure. Use NEMA 250, Type 1 or Type 12 enclosure for indoors applications and NEMA 250, Type 4 for outdoor applications.
- E. Combination On-Off Status Sensor and On-Off Control Relays:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Functional Devices Inc.
 - b. Veris Industries.
 - 2. Description:
 - a. On-off control and on-off status indication in a single device.
 - b. LED status indication of activated relay and current trigger.
 - c. Closed-Open-Auto override switch located on the load side of relay.
 - 3. Performance:
 - a. Ambient Temperature: Minus 30 to 140 deg F.
 - b. Voltage Rating: Single-phase loads rated for 300 V ac. Three-phase loads rated for 600 V ac.
 - 4. Status Indication:
 - a. Current Sensor: Integral sensing for single-phase loads up to 20 A and external solid or split sensing ring for three-phase loads up to 150 A.
 - b. Current Sensor Range: As required by application.
 - c. Current Set Point: Fixed or adjustable, as required by application.
 - d. Current Sensor Output:
 - 1) Solid-state, SPDT contact rated for 30 V ac and dc and for 0.4 A.
 - 2) Solid-state, SPDT contact rated for 120 V ac and 1.0 A.
 - 3) Analog, 0 to 5 or 10 V dc.
 - 4) Analog, 4 to 20 mA, loop powered.
 - 5. Relay: SPDT, continuous-duty coil; rated for 10-million mechanical cycles.

6. Enclosure: NEMA 250, Type 1 enclosure for indoor applications; NEMA 250, Type 4 enclosure for outdoor applications.

2.21 ELECTRICAL POWER DEVICES

- A. Control Transformers:
 - 1. Sizing Criteria: Size control transformers for total connected load, plus additional 25 percent of connected load for future spare capacity.
 - 2. Transformer Minimum Capacity: 40 VA.
 - 3. Protection: Provide transformers with both primary and secondary fuses. Integral circuit breaker is acceptable in lieu of fuses.
 - 4. Enclosure: House control transformers in NEMA 250 enclosures, type as indicated in "Performance Requirements" Article for application.
- B. Power-Line Conditioners:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Eaton.
 - b. Emerson Electric Co., Automation Solutions.
 - c. SolaHD; Emerson Electric Co., Automation Solutions.
 - 2. General Power-Line Conditioner Requirements:
 - a. Design to ensure maximum reliability, serviceability, and performance.
 - b. Overall function of power-line conditioner is to receive raw, polluted electrical power and purify it for use by electronic equipment. Power-line conditioner is to provide isolated, regulated, transient, and noise-free sinusoidal power to loads served.
 - 3. Standards: NRTL listed per UL 1012.
 - 4. Performance:
 - a. Single phase, continuous, 100 percent duty rated kVA/kW capacity. Design to supply power for linear or nonlinear, high crest factor, resistive and reactive loads.
 - b. Automatically regulate output voltage to within 2 percent or better with input voltage fluctuations of plus 10 to minus 20 percent of nominal when system is loaded 100 percent. Use Variable Range Regulation to obtain improved line voltage regulation when operating under less than full load conditions.
 - 1) At 75 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 35 percent of nominal.
 - 2) At 50 Percent Load: Output voltage automatically regulated to within3 percent with input voltage fluctuations of plus 10 to minus 40 percent of nominal.
 - 3) At 25 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 45 percent of nominal.
 - c. With input voltage distortion of up to 40 percent, limit the output voltage sine wave to maximum harmonic content of 5 percent.
 - d. Automatically regulate output voltage to within 2.5 percent when load (resistive) changes from zero to 100 to zero percent.
 - e. Output voltage returns to 95 percent of nominal level within two cycles and to 100 percent within three cycles when output is taken from no load to full-resistive load,

or vice versa. Recovery from partial resistive load changes is corrected in a shorter period.

- f. K Factor: 30, designed to operate with nonlinear, non-sinusoidal, high crest factor loads without overheating.
- g. Input power factor within 0.95 approaching unity with load power factor as poor as 0.6.
- h. Attenuate load-generated odd current harmonics 23 dB at the input.
- i. Electrically isolate the primary from the secondary. Meet isolation criteria as defined in NFPA 70, Article 250-5D.
- j. Lighting and Surge Protection: Compares to UL 1449 rating of 330 V when subjected to Category B3 (6000 V/3000 A) combination waveform as established by IEEE C62.41.1 and IEEE C62.41.2.
- k. Common-mode noise attenuation of 140 dB.
- 1. Transverse-mode noise attenuation of 120 dB.
- m. With loss of input power for up to 16.6 ms, output sine wave remains at usable ac voltage levels.
- n. Reliability of 200,000 hours' MTBF.
- o. At full load, when measured at 1 m distance, audible noise is not to exceed 54 dB.
- p. Approximately 92 percent efficient at full load.
- 5. Transformer Construction:
 - a. Ferroresonant, dry type, convection cooled, 600 V class. Transformer windings of Class H (220 deg C) insulated copper.
 - b. Use Class H installation system throughout with operating temperatures not to exceed 150 deg C over a 40 deg C ambient temperature.
 - c. Configure transformer primary for multi-input voltage. Include input terminals for source conductors and ground.
 - d. Manufacture transformer core using M-6 grade, grain-oriented, stress-relieved transformer steel.
 - e. Configure transformer secondary in 240/120 V split with 208 V tap or straight 120 V, depending on power output size.
 - f. Electrically isolate the transformer secondary windings from primary windings. Bond neutral conductor to cabinet enclosure and output neutral terminal.
 - g. Include interface terminals for output power hot, neutral, and ground conductors.
 - h. Label leads, wires, and terminals to correspond with circuit wiring diagram.
 - i. Vacuum impregnate transformer with epoxy resin.
- 6. Cabinet Construction:
 - a. Design for panel or floor mounting.
 - b. NEMA 250, Type 1 enclosure for indoor applications. NEMA 250, Type 3R for outdoor applications.
 - c. Manufacture the cabinet from heavy gauge steel complying with UL 50 or UL 508A.
 - d. Include textured baked-on paint finish.
- C. DC Power Supplies:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Acopian Technical Company.
 - b. Emerson Electric Co., Automation Solutions.
 - c. IDEC Corporation.
 - d. Omron Americas.

- 2. Description: Linear or switched, regulated power supplies with ac input to one dc output.
 - a. Include both line and load regulation to ensure stable output.
 - b. To protect both power supply and load, include power supply with an automatic current limiting circuit.
- 3. Features:
 - a. Connection: Plug-in style suitable for mating with standard 8-pin octal socket. Include power supply with mating mounting socket.
 - b. Housing: Enclose circuitry in a housing.
 - c. Local Adjustment: Include screw adjustment on exterior of housing for dc voltage output.
 - d. Mounting: DIN rail.
 - e. Visual status indicator.
- 4. Performance:
 - a. Input Voltage: Nominally 120 V ac, 60 Hz.
 - b. Output Voltage: Nominally 24 V dc with plus or minus 1 V dc adjustment.
 - c. Output Current: Minimum 100 mA.
 - d. Load Regulation: Within 0.1 percent.
 - e. Line Regulation: Within 0.05 percent.
 - f. Stability: Within 0.1 percent of rated volts after warmup period.
 - g. Ripple: 1 mV rms.

2.22 PRESSURE INSTRUMENT SIGNAL AIR PIPING AND TUBING

- A. Products in this article are intended for use with the following:
 - 1. Signal air between pressure instruments, such as sensors, switches, transmitters, controllers, and accessories.
- B. Copper Tubing:
 - 1. Seamless phosphor deoxidized copper, drawn tempered, or soft annealed, with chemical and physical properties in accordance with ASTM B75/B75M.
 - 2. Performance, dimensions, weight, and tolerance in accordance with ASTM B280.
 - 3. Diameter, as required by application, not less than nominal 1/4 inch.
 - 4. Wall thickness, as required by application, but not less than 0.030 inch.
 - 5. Copper Tubing Connectors and Fittings Brass, Compression Type:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) BrassCraft Manufacturing Co.; a Masco company.
 - 2) DK-LOK USA.
 - 3) Mid-America Fittings; a Midland Industries Company.
 - 4) Parker Hannifin Corporation.
 - b. Single or double ferrule design creating a constant tension between fitting body and fitting nut for leak-free seal.
 - 6. Copper Tubing Connectors and Fittings Copper, Solder-Joint Type:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Elkhart Products Corporation; a part of Aalberts Integrated Piping Systems.
 - 2) NIBCO INC.
 - 3) Paul Mueller Company.
 - b. Copper Solder-Joint Fittings: Cast, ASME B16.18 or wrought, ASME B16.22.
- C. Galvanized-Steel Piping (Pressure Instrument Signal Air):
 - 1. Pipe: ASTM A53/A53M, Schedule 40.
 - 2. Fittings: Galvanized malleable iron, ASME B16.3, Class 150.
- D. Polyethylene Tubing (Pressure Instrument Signal Air):
 - 1. Fire-resistant, black virgin polyethylene in accordance with ASTM D1248, Type 1, Class C, and Grade 5.
 - 2. Complying with stress crack test in accordance with ASTM D1693.
 - 3. Diameter, as required by application, of not less than nominal 1/4 inch.
 - 4. Polyethylene Tubing Connectors and Fittings Brass, Barb Fittings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) BrassCraft Manufacturing Co.; a Masco company.
 - 2) DK-LOK USA.
 - 3) Mid-America Fittings; a Midland Industries Company.
 - 4) Parker Hannifin Corporation.
 - b. Tapered and beaded hose barbs of push-on design; intended for low-pressure applications only.
 - 5. Polyethylene Tubing Connectors and Fittings Brass, Compression Type:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) BrassCraft Manufacturing Co.; a Masco company.
 - 2) DK-LOK USA.
 - 3) Mid-America Fittings; a Midland Industries Company.
 - 4) Parker Hannifin Corporation.
 - b. Specially designed for jointing polyethylene tubing to provide leak-free seal without twisting or weakening polyethylene tubing.

2.23 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate the following in accordance with industry standards for each product, and to verify DDC system reliability specified in performance requirements:
 - 1. DDC controllers.
 - 2. Gateways.
 - 3. Routers.
- B. Product(s) and materials will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 - 1. Verify compatibility with and suitability of substrates.

- B. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
- C. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.
- D. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.
- E. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 DDC SYSTEM INTERFACE WITH OTHER SYSTEMS AND EQUIPMENT

- A. Communication Interface to Equipment with Integral Controls:
 - 1. DDC system has communication interface with equipment having integral controls and having communication interface for remote monitoring or control.
 - 2. Equipment to Be Connected:
 - a. Air-handling units specified in Section 237313.13 "Indoor, Basic Air-Handling Units."
 - b. Variable refrigerant flow units specified in Section 238129 "Variable-Refrigerant-Flow HVAC Systems."
 - c. Fan-coil units specified in Section 238219 "Fan Coil Units."

3.3 PREINSTALLATION INTEGRATION TESTING

- A. Perform the following pretesting of other systems and equipment integration with DDC system before field installation:
 - 1. Test all communications in a controlled environment to ensure connectivity.
 - 2. Load software and demonstrate functional compliance with each control sequence of operation indicated.
 - 3. Using simulation, demonstrate compliance with sequences of operation and other requirements indicated including, but not limited to, the following:
 - a. HVAC equipment controlled through DDC system, such as boilers, chillers, pumps, and air-handling units.
 - b. Equipment faults and system recovery with fault annunciation.
 - c. Analog and Boolean value alarming and annunciation.
 - 4. Develop a method for testing interfaces before deployment.
 - 5. Submit documentation supporting compliance upon request.

3.4 GENERAL INSTALLATION REQUIREMENTS

- A. Install products to satisfy more stringent of all requirements indicated.
- B. Install products level, plumb, parallel, and perpendicular with building construction.

- C. If codes and referenced standards are more stringent than requirements indicated, comply with requirements in codes and referenced standards.
- D. Fabricate openings and install sleeves in ceilings, floors, roof, and walls required by installation of products. Before proceeding with drilling, punching, and cutting, check for concealed work to avoid damage. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
- E. Firestop Penetrations Made in Fire-Rated Assemblies: Comply with requirements in Section 078413 "Penetration Firestopping."
- F. Seal penetrations made in acoustically rated assemblies. Comply with requirements in Section 079200 "Joint Sealants."
- G. Welding Requirements:
 - 1. Restrict welding and burning to supports and bracing.
 - 2. No equipment is cut or welded without approval. Welding or cutting will not be approved if there is risk of damage to adjacent Work.
 - 3. Welding, where approved, is to be by inert-gas electric arc process and is to be performed by qualified welders in accordance with applicable welding codes.
 - 4. If requested on-site, show satisfactory evidence of welder certificates indicating ability to perform welding work intended.
- H. Fastening Hardware:
 - 1. Wrenches, pliers, and other tools that damage surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening fasteners.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
- I. If product locations are not indicated, install products in locations that are accessible and that will permit service and maintenance from floor, equipment platforms, or catwalks without removal of permanently installed furniture and equipment.

3.5 INSTALLATION OF SERVERS

- A. Install server(s) at location(s) indicated on Drawings.
- B. Install number of servers required to suit requirements indicated. Review Project requirements and indicate layout of proposed server location in Shop Drawings.
- C. Install software indicated on server(s) and verify that software functions properly.
- D. Develop Project-specific graphics, trends, reports, logs, and historical database.

3.6 INSTALLATION OF GATEWAYS

A. Install gateways if required for DDC system communication interface requirements indicated.
1. Install gateway(s) required to suit indicated requirements.

B. Test gateways to verify that communication interface functions properly.

3.7 INSTALLATION OF CONTROLLERS

- A. Install controllers in enclosures to comply with indicated requirements.
- B. Connect controllers to field power supply.
- C. Install controllers with latest version of applicable software and configure to execute requirements indicated.
- D. Test and adjust controllers to verify operation of connected I/O to achieve performance indicated requirements while executing sequences of operation.
- E. Installation of Network Controllers:
 - 1. DDC system provider and DDC system manufacturer to determine quantity and location of network controllers to satisfy requirements indicated.
 - 2. Install controllers in a protected location that is easily accessible by operators.
 - 3. Locate top of controller within 72 inches of finished floor.
- F. Application-Specific Controllers:
 - 1. DDC system provider and DDC system manufacturer to determine quantity and location of application-specific controllers to satisfy requirements indicated.
 - 2. For controllers not mounted directly on equipment being controlled, install controllers in a location that is easily accessible by operators.

3.8 INSTALLATION OF ENCLOSURES

- A. Install the following items in enclosures, to comply with indicated requirements:
 - 1. Gateways.
 - 2. Routers.
 - 3. Controllers.
 - 4. Electrical power devices.
 - 5. UPS units.
 - 6. Relays.
 - 7. Accessories.
 - 8. Instruments.
 - 9. Actuators.
- B. Attach wall-mounted enclosures to wall using the following types of steel struts:
 - 1. For NEMA 250, Type 1 Enclosures: Use galvanized-steel strut and hardware.
 - 2. For NEMA 250, Type 4 Enclosures and Enclosures Located Outdoors: Use stainless steel strut and hardware.
 - 3. Install plastic caps on exposed cut edges of strut.
- C. Align top or bottom of adjacent enclosures of like size.

D. Install continuous and fully accessible wireways to connect conduit, wire, and cable to multiple adjacent enclosures. Wireways used for application are to have protection equal to NEMA 250 rating of connected enclosures.

3.9 ELECTRIC POWER CONNECTIONS

- A. Connect electrical power to DDC system products requiring electrical power connections.
- B. Design of electrical power to products not indicated with electric power is delegated to DDC system provider and installing trade to provide a fully functioning DDC system. Work is to comply with NFPA 70 and other requirements indicated.
- C. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers" for electrical power circuit breakers.
- D. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.
- E. Comply with requirements in Section 260533 "Raceway and Boxes for Electrical Systems" for electrical power raceways and boxes.

3.10 INSTALLATION OF NETWORKS

- A. Install balanced twisted pair or copper cable (as required by equipment) when connecting between the following:
 - 1. Gateways.
 - 2. Gateways and network controllers or programmable application controllers.
 - 3. Routers.
 - 4. Routers and network controllers or programmable application controllers.
 - 5. Network controllers and programmable application controllers.
 - 6. Programmable application controllers.
 - 7. Programmable application controllers and application-specific controllers.
 - 8. Application-specific controllers.
- B. Install cable in continuous raceway.
 - 1. Where indicated on Drawings, cable trays may be used for copper cable in lieu of conduit.

3.11 NETWORK NAMING AND NUMBERING

- A. Coordinate with Owner and provide unique naming and addressing for networks and devices.
- B. ASHRAE 135 Networks:
 - 1. MAC Address:
 - a. Assign and document a MAC address unique to its network for every network device.
 - b. Ethernet Networks: Document MAC address assigned at its creation.
 - c. MS/TP Networks: Assign from 00 to 64.
 - 2. Network Numbering:

- a. Assign unique numbers to each new network.
- b. Provide ability for changing network number through device switches or operator interface.
- c. DDC system, with all possible connected LANs, can contain up to 65,534 unique networks.
- 3. Device Object Identifier Property Number:
 - a. Assign unique device object identifier property numbers or device instances for each device network.
 - b. Provide for future modification of device instance number by device switches or operator interface.
 - c. LAN is to support up to 4,194,302 unique devices.
- 4. Device Object Name Property Text:
 - a. Device object name property field to support 32 minimum printable characters.
 - b. Assign unique device "Object Name" property names with plain-English descriptive names for each device.
 - 1) Example 1: Device object name for device controlling heating water boiler plant at Building 1000 would be "Heating Water System Bldg. 1000."
 - 2) Example 2: Device object name for VAV terminal unit controller could be "VAV Unit 102."
- 5. Object Name Property Text for Other Than Device Objects:
 - a. Object name property field is to support 32 minimum printable characters.
 - Assign object name properties with plain-English names descriptive of application.
 - 1) Example 1: "Zone 1 Temperature."
 - 2) Example 2 "Fan Start and Stop."
- 6. Object Identifier Property Number for Other Than Device Objects:
 - a. Assign object identifier property numbers according to Drawings indicated.
 - b. If not indicated, object identifier property numbers may be assigned at Installer's discretion but must be approved by Owner in advance, be documented, and be unique for like object types within device.

3.12 INSTALLATION OF CONTROL WIRE, CABLE, AND RACEWAY

A. Comply with NECA 1.

b.

- B. Wire and Cable Installation:
 - 1. Comply with installation requirements in Section 260523 "Control-Voltage Electrical Power Cables."
 - 2. Comply with installation requirements in Section 271313 "Communications Copper Backbone Cabling."
 - 3. Comply with installation requirements in Section 271513 "Communications Copper Horizontal Cabling."
 - 4. Install cables with protective sheathing that is waterproof and capable of withstanding continuous temperatures of 90 deg C with no measurable effect on physical and electrical properties of cable.
 - a. Provide shielding to prevent interference and distortion from adjacent cables and equipment.
 - 5. Terminate wiring in a junction box.
 - a. Clamp cable over jacket in a junction box.

- b. Individual conductors in the stripped section of cable is to be slack between the clamping point and terminal block.
- 6. Terminate field wiring and cable not directly connected to instruments and control devices having integral wiring terminals using terminal blocks.
- 7. Install signal transmission components in accordance with IEEE C2, REA Form 511a, NFPA 70, and as indicated.
- 8. Use shielded cable to transmitters.
- 9. Use shielded cable to temperature sensors.
- 10. Perform continuity and meager testing on wire and cable after installation.
- C. Conduit Installation:
 - 1. Comply with Section 260533 "Raceway and Boxes for Electrical Systems" for controlvoltage conductors.
 - 2. Comply with Section 270528 "Pathways for Communications Systems" for balanced twisted pair cabling and optical fiber installation.

3.13 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and installations, including connections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.14 DDC SYSTEM I/O CHECKOUT PROCEDURES

- A. Check installed products before continuity tests, leak tests, and calibration.
- B. Check instruments for proper location and accessibility.
- C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.
- D. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material, and support.
- E. Control Damper Checkout:
 - 1. Verify that control dampers are installed correctly for flow direction.
 - 2. Verify that proper blade alignment, either parallel or opposed, has been provided.
 - 3. Verify that damper frame attachment is properly secured and sealed.
 - 4. Verify that damper actuator and linkage attachment are secure.
 - 5. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
 - 6. Verify that damper blade travel is unobstructed.

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

F. Control Valve Checkout:

- 1. Verify that control valves are installed correctly for flow direction.
- 2. Verify that valve body attachment is properly secured and sealed.
- 3. Verify that valve actuator and linkage attachment are secure.
- 4. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
- 5. Verify that valve ball, disc, or plug travel is unobstructed.
- 6. After piping systems have been tested and put into service, but before insulating and balancing, inspect each valve for leaks. Adjust or replace packing to stop leaks. Replace valve if leaks persist.
- G. Instrument Checkout:
 - 1. Verify that instrument is correctly installed for location, orientation, direction, and operating clearances.
 - 2. Verify that attachment is properly secured and sealed.
 - 3. Verify that conduit connections are properly secured and sealed.
 - 4. Verify that wiring is properly labeled with unique identification, correct type, and size and is securely attached to proper terminals.
 - 5. Inspect instrument tag against approved submittal.
 - 6. For instruments with tubing connections, verify that tubing attachment is secure and isolation valves have been provided.
 - 7. For flow instruments, verify that recommended upstream and downstream distances have been maintained.
 - 8. For temperature instruments, verify the following:
 - a. Sensing element type and proper material.
 - b. Length and insertion.

3.15 DDC SYSTEM I/O ADJUSTMENT, CALIBRATION, AND TESTING

- A. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.
- B. Provide written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.
- C. For each analog instrument, make three-point test of calibration for both linearity and accuracy.
- D. Equipment and procedures used for calibration to comply with instrument manufacturer's written instructions.
- E. Provide diagnostic and test equipment for calibration and adjustment.
 - 1. Use field testing and diagnostic instruments and equipment with an accuracy at least twice the instrument accuracy of instrument to be calibrated. For example, test and calibrate an installed instrument with accuracy of 1 percent using field testing and diagnostic instrument with accuracy of 0.5 percent or better.
- F. Calibrate each instrument in accordance with instruction manual supplied by instrument manufacturer.
- G. If after calibration the indicated performance cannot be achieved, replace out-of-tolerance instruments.

- H. Comply with field testing requirements and procedures indicated by ASHRAE's Guideline 11, "Field Testing of HVAC Controls Components," in the absence of specific requirements, and to supplement requirements indicated.
- I. Analog Signals:
 - 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 - 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 - 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.
- J. Digital Signals:
 - 1. Check digital signals using a jumper wire.
 - 2. Check digital signals using an ohmmeter to test for contact making or breaking.
- K. Control Dampers:
 - 1. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 - 2. Check and document open and close cycle times for applications with cycle time less than 30 seconds.
 - 3. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.
- L. Meters: Check meters at zero, 50, and 100 percent of Project design values.
- M. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.
- N. Switches: Calibrate switches to make or break contact at set points indicated.
- O. Transmitters:
 - 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 - 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistant source.

3.16 DDC SYSTEM CONTROLLER CHECKOUT

- A. Verify power supply.
 - 1. Verify voltage, phase, and hertz.
 - 2. Verify that protection from power surges is installed and functioning.
 - 3. Verify that ground fault protection is installed.
 - 4. If applicable, verify if connected to UPS unit.
 - 5. If applicable, verify if connected to backup power source.
 - 6. If applicable, verify that power conditioning units are installed.
- B. Verify that wire and cabling are properly secured to terminals and labeled with unique identification.
- C. Verify that spare I/O capacity is provided.

3.17 DDC CONTROLLER I/O CONTROL LOOP TESTS

- A. Testing:
 - 1. Test every I/O point connected to DDC controller to verify that safety and operating control set points are as indicated and as required to operate controlled system safely and at optimum performance.
 - 2. Test every I/O point throughout its full operating range.
 - 3. Test every control loop to verify that operation is stable and accurate.
 - 4. Adjust control loop proportional, integral, and derivative settings to achieve optimum performance while complying with performance requirements indicated. Document testing of each control loop's precision and stability via trend logs.
 - 5. Test and adjust every control loop for proper operation according to sequence of operation.
 - 6. Test software and hardware interlocks for proper operation. Correct deficiencies.
 - 7. Operate each analog point at the following:
 - a. Upper quarter of range.
 - b. Lower quarter of range.
 - c. At midpoint of range.
 - 8. Exercise each binary point.
 - 9. For every I/O point in DDC system, read and record each value at operator workstation, at DDC controller, and at field instrument simultaneously. Value displayed at operator workstation, at DDC controller, and at field instrument must match.
 - 10. Prepare and submit report documenting results for each I/O point in DDC system and include in each I/O point a description of corrective measures and adjustments made to achieve desire results.

3.18 DDC SYSTEM VALIDATION TESTS

- A. Perform validation tests before requesting final review of system. Before beginning testing, first submit Pretest Checklist and Test Plan.
- B. After approval of Pretest Checklist and Test Plan, execute all tests and procedures indicated in plan.
- C. After testing is complete, submit completed Pretest Checklist.
- D. Pretest Checklist: Submit the following list with items checked off once verified:
 - 1. Detailed explanation for any items that are not completed or verified.
 - 2. Required mechanical installation work is successfully completed and HVAC equipment is working correctly.
 - 3. HVAC equipment motors operate below full-load amperage ratings.
 - 4. Required DDC system components, wiring, and accessories are installed.
 - 5. Installed DDC system architecture matches approved Drawings.
 - 6. Control electric power circuits operate at proper voltage and are free from faults.
 - 7. Required surge protection is installed.
 - 8. DDC system network communications function properly, including uploading and downloading programming changes.
 - 9. Using BACnet protocol analyzer, verify that communications are error free.
 - 10. Each controller's programming is backed up.

- 11. Equipment, products, tubing, wiring cable, and conduits are properly labeled.
- 12. All I/O points are programmed into controllers.
- 13. Testing, adjusting, and balancing work affecting controls is complete.
- 14. Dampers and actuators zero and span adjustments are set properly.
- 15. Each control damper and actuator goes to failed position on loss of power.
- 16. Valves and actuators zero and span adjustments are set properly.
- 17. Each control valve and actuator goes to failed position on loss of power.
- 18. Meter, sensor, and transmitter readings are accurate and calibrated.
- 19. Control loops are tuned for smooth and stable operation.
- 20. View trend data where applicable.
- 21. Each controller works properly in standalone mode.
- 22. Safety controls and devices function properly.
- 23. Interfaces with fire-alarm system function properly.
- 24. Electrical interlocks function properly.
- 25. Operator workstations and other interfaces are delivered, all system and database software is installed, and graphics are created.
- 26. Record Drawings are completed.
- E. Test Plan:
 - 1. Prepare and submit validation Test Plan including test procedures for performance validation tests.
 - 2. Address all specified functions of DDC system and sequences of operation in Test Plan.
 - 3. Explain detailed actions and expected results to demonstrate compliance with requirements indicated.
 - 4. Explain method for simulating necessary conditions of operation used to demonstrate performance.
 - 5. Include Test Checklist to be used to check and initial that each test has been successfully completed.
 - 6. Submit Test Plan documentation 10 business days before start of tests.
- F. Validation Test:
 - 1. Verify operating performance of each I/O point in DDC system.
 - a. Verify analog I/O points at operating value.
 - b. Make adjustments to out-of-tolerance I/O points.
 - 1) Identify I/O points for future reference.
 - 2) Simulate abnormal conditions to demonstrate proper function of safety devices.
 - 3) Replace instruments and controllers that cannot maintain performance indicated after adjustments.
 - 2. Simulate conditions to demonstrate proper sequence of control.
 - 3. Readjust settings to design values and observe ability of DDC system to establish desired conditions.
 - 4. 24 hours after initial validation test, do as follows:
 - a. Re-check I/O points that required corrections during initial test.
 - b. Identify I/O points that still require additional correction and make corrections necessary to achieve desired results.
 - 5. 24 Hours after second validation test, do as follows:
 - a. Re-check I/O points that required corrections during second test.
 - b. Continue validation testing until I/O point is normal on two consecutive tests.

- 6. Completely check out, calibrate, and test all connected hardware and software to ensure that DDC system performs according to requirements indicated.
- 7. After validation testing is complete, prepare and submit report indicating results of testing. For all I/O points that required correction, indicate how many validation re-tests it took to pass. Identify adjustments made for each test and indicate instruments that were replaced.
- G. DDC System Response Time Test:
 - 1. Simulate HLC.
 - a. Heavy load to be occurrence of 50 percent of total connected binary COV, one-half of which represents "alarm" condition, and 50 percent of total connected analog COV, one-half of which represents "alarm" condition, that are initiated simultaneously on a one-time basis.
 - 2. Initiate 10 successive occurrences of HLC and measure response time to typical alarms and status changes.
 - 3. Measure with timer having at least 0.1-second resolution and 0.01 percent accuracy.
 - 4. Purpose of test is to demonstrate DDC system, as follows:
 - a. Reaction to COV and alarm conditions during HLC.
 - b. Ability to update DDC system database during HLC.
 - 5. Passing test is contingent on the following:
 - a. Alarm reporting at printer beginning no more than two seconds after initiation (time zero) of HLC.
 - b. All alarms, both binary and analog, are reported and printed; none are lost.
 - c. Compliance with response times specified.
 - 6. Prepare and submit report documenting HLC tested and results of test including time stamp and print out of all alarms.
- H. DDC System Network Bandwidth Test:
 - 1. Test network bandwidth usage on all DDC system networks to demonstrate bandwidth usage under DDC system normal operating conditions and under simulated HLC.
 - 2. To pass, none of DDC system networks are to use more than 70 percent of available bandwidth under normal and HLC operation.

3.19 FINAL REVIEW

- A. Submit written request to Architect Owner and Construction Manager when DDC system is ready for final review. State the following:
 - 1. DDC system has been thoroughly inspected for compliance with Contract Documents and found to be in full compliance.
 - 2. DDC system has been calibrated, adjusted, and tested and found to comply with requirements of operational stability, accuracy, speed, and other performance requirements indicated.
 - 3. DDC system monitoring and control of HVAC systems results in operation according to sequences of operation indicated.
 - 4. DDC system is complete and ready for final review.
- B. Upon receipt of written request for final review, Architect, Owner and Construction Manager to start review within 14 days and upon completion issue field report(s) documenting observations and deficiencies.

- C. Take prompt action to remedy deficiencies indicated in reviewer's field report(s) and submit second written request after all deficiencies have been corrected. Repeat process until no deficiencies are reported.
- D. Compensation for Subsequent Reviews: Should more than two reviews be required, DDC system manufacturer and Installer to compensate entity/entities performing reviews for total costs (labor and expenses) associated with subsequent reviews. Estimated cost of each subsequent review to be submitted and approved by DDC system manufacturer and Installer before review.
- E. Prepare and submit closeout submittals when no deficiencies are reported.
- F. Part of DDC system final review shall to include demonstration to parties participating in final review.
 - 1. Provide staff familiar with DDC system installed to demonstrate operation of DDC system during final review.
 - 2. Provide testing equipment to demonstrate accuracy and other performance requirements of DDC system that is requested by reviewers during final review.
 - 3. Demonstration to include, but not be limited to, the following:
 - a. Accuracy and calibration of 10 I/O points randomly selected by reviewers. If review finds that some I/O points are not properly calibrated and not satisfying performance requirements indicated, additional I/O points may be selected by reviewers until total I/O points being reviewed that satisfy requirements equals quantity indicated.
 - b. HVAC equipment and system hardwired and software safeties and life-safety functions are operating according to sequence of operation. Up to 10 I/O points to be randomly selected by reviewers. Additional I/O points may be selected by reviewers to discover problems with operation.
 - c. Correct sequence of operation after electrical power interruption and resumption after electrical power is restored for randomly selected HVAC systems.
 - d. Operation of randomly selected dampers and valves in normal-on, normal-off, and failed positions.
 - e. Reporting of alarm conditions for randomly selected alarms, including different classes of alarms, to ensure that alarms are properly received by operators and operator workstations.
 - f. Trends, summaries, logs, and reports set up for Project.
 - g. For up to three HVAC systems randomly selected by reviewers, use graph trends to show that sequence of operation is executed in correct manner and that HVAC systems operate properly through complete sequence of operation including different modes of operations indicated. Show that control loops are stable and operating at set points and respond to changes in set point of 20 percent or more.
 - h. Software's ability to communicate with controllers, operator workstations, and uploading and downloading of control programs.
 - i. Software's ability to edit control programs offline.
 - j. Data entry to show Project-specific customizing capability including parameter changes.
 - k. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - 1. Execution of digital and analog commands in graphic mode.
 - m. Spreadsheet and curve plot software and its integration with database.

- n. Online user guide and help functions.
- o. Multitasking by showing different operations occurring simultaneously on four quadrants of split screen.
- p. System speed of response compared to requirements indicated.
- q. For Each Programmable Application Controller:
 - 1) Memory: Programmed data, parameters, trend, and alarm history collected during normal operation are not to be lost during power failure.
 - 2) Operator Interface: Ability to connect directly to each type of digital controller with portable workstation and mobile device. Show that maintenance personnel interface tools perform as indicated in manufacturer's technical literature.
 - 3) Standalone Ability: Demonstrate that controllers provide stable and reliable standalone operation using default values or other method for values normally read over network.
 - 4) Electric Power: Ability to disconnect any controller safely from its power source.
 - 5) Wiring Labels: Match control drawings.
 - 6) Network Communication: Ability to locate controller's location on network and communication architecture matches Shop Drawings.
 - 7) Nameplates and Tags: Accurate and permanently attached to control panel doors, instrument, actuators, and devices.
- r. For Each Operator Workstation:
 - 1) I/O points lists agree with naming conventions.
 - 2) Graphics are complete.
 - 3) UPS unit, if applicable, operates.
- s. Communications and Interoperability: Demonstrate proper interoperability of data sharing, alarm and event management, trending, scheduling, and device and network management. Use ASHRAE 135 protocol analyzer to help identify devices, view network traffic, and verify interoperability. Requirements must be met even if only one manufacturer's equipment is installed.
 - 1) Data Presentation: On each operator workstation, demonstrate graphic display capabilities.
 - 2) Reading of Any Property: Demonstrate ability to read and display any used readable object property of any device on network.
 - 3) Set-Point and Parameter Modifications: Show ability to modify set points and tuning parameters indicated.
 - 4) Peer-to-Peer Data Exchange: Network devices are installed and configured to perform without need for operator intervention to implement Project sequence of operation and to share global data.
 - 5) Alarm and Event Management: Alarms and events are installed and prioritized according to Owner. Demonstrate that time delays and other logic are set up to avoid nuisance tripping. Show that operators with sufficient privileges are permitted.
 - 6) Schedule Lists: Schedules are configured for start and stop, mode change, occupant overrides, and night setback as defined in sequence of operations.
 - 7) Schedule Display and Modification: Ability to display any schedule with start and stop times for calendar year. Show that all calendar entries and schedules are modifiable from any connected operator workstation by an operator with sufficient privilege.

- 8) Archival Storage of Data: Data archiving is handled by operator workstation and server and local trend archiving and display is accomplished.
- 9) Modification of Trend Log Object Parameters: Operator with sufficient privilege can change logged data points, sampling rate, and trend duration.
- 10) Device and Network Management:
 - a) Display of network device status.
 - b) Display of BACnet object information.
 - c) Silencing devices transmitting erroneous data.
 - d) Time synchronization.
 - e) Remote device re-initialization.
 - f) Backup and restore network device programming and master database(s).
 - g) Configuration management of routers.

3.20 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.21 MAINTENANCE SERVICE

A. Beginning at Substantial Completion, verify that maintenance service includes 12 months' full maintenance by DDC system manufacturer's authorized service representative. Include semiannual preventive maintenance, repair or replacement of worn or defective components, cleaning, calibration, and adjusting as required for proper operation. Use only manufacturer's authorized replacement parts and supplies.

3.22 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, verify that service agreement includes software support for one year.

3.23 DEMONSTRATION

- A. Engage a factory-authorized service representative with complete knowledge of Project-specific system installed to train Owner's maintenance personnel to adjust, operate, and maintain DDC system.
- B. Extent of Training:
 - 1. Base extent of training on scope and complexity of DDC system indicated and training requirements indicated. Provide extent of training required to satisfy requirements indicated even if more than minimum training requirements are indicated.
 - 2. Inform Owner of anticipated training requirements if more than minimum training requirements are indicated.
 - 3. Minimum Training Requirements:
 - a. Provide not less than 2 days of training total.

- b. Stagger training over multiple training classes to accommodate Owner's requirements. All training to occur before end of warranty period.
- C. Training Schedule:
 - 1. Schedule training with Owner 20 business days before expected Substantial Completion.
 - 2. Schedule training to provide Owner with at least 10 business days of notice in advance of training.
 - 3. Provide staggered training schedule as requested by Owner.
- D. Training Attendee List and Sign-in Sheet:
 - 1. Request from Owner in advance of training a proposed attendee list with name, phone number, and email address.
 - 2. Provide preprinted sign-in sheet for each training session with proposed attendees listed and no fewer than six blank spaces to add additional attendees.
 - 3. Include preprinted sign-in sheet with training session number, date and time, instructor name, phone number, email address, and brief description of content to be covered during session. List attendees with columns for name, phone number, and email address and a column for attendee signature or initials.
 - 4. Circulate sign-in sheet at beginning of each session and solicit attendees to sign or initial in applicable location.
 - 5. At end of each training day, send Owner an email with attachment of scanned copy (PDF) of circulated sign-in sheet for each session.
- E. Attendee Training Manuals:
 - 1. Provide each attendee with color hard copy of all training materials and visual presentations.
 - 2. Organize hard-copy materials in three-ring binder with table of contents and individual divider tabs marked for each logical grouping of subject matter. Organize material to provide space for attendees to take handwritten notes within training manuals.
 - 3. In addition to hard-copy materials included in training manual, provide each binder with a sleeve or pocket that includes DVD or flash drive with PDF copy of all hard-copy materials.
- F. Organization of Training Sessions:
 - 1. Organize training sessions into logical groupings of technical content and to reflect different levels of operators having access to system. Plan training sessions to accommodate the following three levels of operators:
 - a. Daily operators.
 - b. Advanced operators.
 - c. System managers and administrators.
 - 2. Plan and organize training sessions to group training content to protect DDC system security. Some attendees may be restricted to some training sessions to ensure DDC system security.
- G. On-Site Training:
 - 1. Owner will provide conditioned classroom or workspace with ample desks or tables, chairs, power, and data connectivity for instructor and each attendee.
 - 2. Provide training materials, projector, and other audiovisual equipment used in training.
 - 3. Provide as much of training located on-site as deemed feasible and practical by Owner.

- 4. Include on-site training with regular walk-through tours, as required, to observe each unique product type installed with hands-on review of operation, calibration, and service requirements.
- 5. Use operator workstation that is to be used with DDC system in the training. If operator workstations are unavailable, provide temporary workstation to convey training content.
- H. Off-Site Training:
 - 1. Provide conditioned training rooms and workspace with ample tables desks or tables, chairs, power, and data connectivity for each attendee.
 - 2. Provide capability to remotely access to Project DDC system for use in training.
 - 3. Provide operator workstation for use by each attendee.
- I. Training Content for Daily Operators:
 - 1. Basic operation of system.
 - 2. Understanding DDC system architecture and configuration.
 - 3. Understanding each unique product type installed including performance and service requirements for each.
 - 4. Understanding operation of each system and equipment controlled by DDC system including sequences of operation, each unique control algorithm, and each unique optimization routine.
 - 5. Operating operator workstations, printers, and other peripherals.
 - 6. Logging on and off system.
 - 7. Accessing graphics, reports, and alarms.
 - 8. Adjusting and changing set points and time schedules.
 - 9. Recognizing DDC system malfunctions.
 - 10. Understanding content of operation and maintenance manuals including control drawings.
 - 11. Understanding physical location and placement of DDC controllers and I/O hardware.
 - 12. Accessing data from DDC controllers.
 - 13. Operating portable operator workstations.
 - 14. Review of DDC testing results to establish basic understanding of DDC system operating performance and HVAC system limitations as of Substantial Completion.
 - 15. Running each specified report and log.
 - 16. Displaying and demonstrating each data entry to show Project-specific customizing capability. Demonstrating parameter changes.
 - 17. Stepping through graphics penetration tree, displaying all graphics, demonstrating dynamic updating, and direct access to graphics.
 - 18. Executing digital and analog commands in graphic mode.
 - 19. Demonstrating control loop precision and stability via trend logs of I/O for not less than 10 percent of I/O installed.
 - 20. Demonstrating DDC system performance through trend logs and command tracing.
 - 21. Demonstrating scan, update, and alarm responsiveness.
 - 22. Demonstrating spreadsheet and curve plot software, and its integration with database.
 - 23. Demonstrating on-line user guide, and help function and mail facility.
 - 24. Demonstrating multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
 - 25. Demonstrating the following for HVAC systems and equipment controlled by DDC system:

- a. Operation of HVAC equipment in normal-off, normal-on, and failed conditions while observing individual equipment, dampers, and valves for correct position under each condition.
- b. For HVAC equipment with factory-installed software, show that integration into DDC system is able to communicate with DDC controllers or gateways, as applicable.
- c. Using graphed trends, show that sequence of operation is executed in correct manner, and HVAC systems operate properly through complete sequence of operation including seasonal change, occupied and unoccupied modes, warm-up and cool-down cycles, and other modes of operation indicated.
- d. Hardware interlocks and safeties function properly and DDC system performs correct sequence of operation after electrical power interruption and resumption after power is restored.
- e. Reporting of alarm conditions for each alarm, and confirm that alarms are received at assigned locations, including operator workstations.
- f. Each control loop responds to set-point adjustment and stabilizes within time period indicated.
- g. Sharing of previously graphed trends of all control loops to demonstrate that each control loop is stable and set points are being maintained.
- J. Training Content for Advanced Operators:
 - 1. Making and changing workstation graphics.
 - 2. Creating, deleting, and modifying alarms including annunciation and routing.
 - 3. Creating, deleting, and modifying point trend logs including graphing and printing on an ad-hoc basis and operator-defined time intervals.
 - 4. Creating, deleting, and modifying reports.
 - 5. Creating, deleting, and modifying points.
 - 6. Creating, deleting, and modifying programming including ability to edit control programs offline.
 - 7. Creating, deleting, and modifying system graphics and other types of displays.
 - 8. Adding DDC controllers and other network communication devices such as gateways and routers.
 - 9. Adding operator workstations.
 - 10. Performing DDC system checkout and diagnostic procedures.
 - 11. Performing DDC controllers operation and maintenance procedures.
 - 12. Performing operator workstation operation and maintenance procedures.
 - 13. Configuring DDC system hardware including controllers, workstations, communication devices, and I/O points.
 - 14. Maintaining, calibrating, troubleshooting, diagnosing, and repairing hardware.
 - 15. Adjusting, calibrating, and replacing DDC system components.
- K. Training Content for System Managers and Administrators:
 - 1. DDC system software maintenance and backups.
 - 2. Uploading, downloading, and offline archiving of all DDC system software and databases.
 - 3. Interface with Project-specific, third-party operator software.
 - 4. Understanding password and security procedures.
 - 5. Adding new operators and making modifications to existing operators.
 - 6. Operator password assignments and modification.
 - 7. Operator authority assignment and modification.

8. Workstation data segregation and modification.

END OF SECTION 230923

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 230923.10 – INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Rectangular control dampers with airfoil blades.
- 2. Airflow measurement stations and sensors.
- 3. Airflow switches.
- 4. Airflow transmitters.
- 5. Air-pressure sensors.
- 6. Air-pressure switches.
- 7. Air-pressure transmitters.
- 8. Air temperature sensors.
- 9. Combination air temperature sensors and switches.
- 10. Air temperature switches.
- 11. Air temperature RTD transmitters.
- B. Related Requirements:
 - 1. Section 230923 "Direct Digital Control (DDC) System for HVAC" control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.

1.2 DEFINITIONS

- A. Cv: Valve coefficient.
- B. DDC: Direct digital control.
- C. EPT: Ethylene-propylene terpolymer rubber.
- D. Ethernet: Local area network based on IEEE 802.3.1 standards.
- E. FEP: Fluorinated ethylene propylene.
- F. Firmware: Software (programs or data) that has been written onto read-only memory (ROM). Firmware is a combination of software and hardware. Storage media with ROMs that have data or programs recorded on them are firmware.
- G. HART: Highway addressable remote transducer protocol is the global standard for sending and receiving digital information across analog wires between smart devices and control or monitoring systems through bi-directional communication that provides data access between intelligent field instruments and host systems. A host can be any software application from technician's hand-held device or laptop to a plant's process control, asset management, safety, or other system using any control platform.
- H. HNBR: Hydrogenated nitrile butadiene rubber.

INSTRUMENTATION AND CONTROL FOR HVAC

- I. I/O: Input/output.
- J. NBR: Nitrile butadiene rubber.
- K. NDIR: Nondispersive infrared.
- L. PEEK: Polyether Ether Ketone rubber.
- M. PPS: Polyphenylene sulfide.
- N. PTFE: Polytetrafluoroethylene.
- O. RMS: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.
- P. RS-232: A TIA standard for asynchronous serial data communications between terminal devices.
- Q. RS-485: A TIA standard for multipoint communications using two twisted pairs.
- R. RTD: Resistance temperature detector.
- S. RTFE: Glass-fiber-reinforced PTFE.
- T. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- U. TFM: A chemically modified PTFE.
- V. Thermal Efficiency Ratio (E): Comparison of a tested damper's thermal performance against a v-groove blade reference damper. A damper with the same thermal efficiency as the reference damper would have an E value of 0 percent, while a damper that is 4 times as efficient would have an E value of 200 percent.

1.3 ACTION SUBMITTALS

- A. Product Data:
 - 1. Control dampers and actuators.
 - 2. Airflow measurement stations and sensors.
 - 3. Airflow switches.
 - 4. Airflow transmitters.
 - 5. Air-pressure sensors.
 - 6. Air-pressure switches.
 - 7. Air-pressure transmitters.
 - 8. Air temperature sensors.
 - 9. Combination air temperature sensors and switches.
 - 10. Air temperature switches.
 - 11. Air temperature RTD transmitters.
- B. Product Data: For each type of product, including the following:

- 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- 2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
- 3. Product description with complete technical data, performance curves, and product specification sheets.
- 4. Installation, operation, and maintenance instructions, including factors affecting performance.
- 5. Product certificates.
- C. Shop Drawings:
 - 1. Include plans, elevations, sections, and details.
 - 2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Include diagrams for pneumatic signal and main air tubing.
- D. Delegated Design Submittals:
 - 1. Schedule and design calculations for control dampers and actuators, including the following:
 - a. Unique designation for each damper/actuator assembly.
 - b. Service/application.
 - c. Damper assembly size.
 - d. Damper assembly weight, including actuator(s).
 - e. Damper and actuator action (modulating or two position).
 - f. Flow at project design and minimum flow conditions.
 - g. Face velocity at project design and minimum airflow conditions.
 - h. Pressure drop across damper at project design and minimum airflow conditions.
 - i. AMCA 500D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 - j. Maximum close-off pressure.
 - k. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 - 1. Damper torque required at worst-case condition for sizing actuator.
 - m. Actuator selection indicating torque provided.
 - n. Actuator fail-safe position on loss of power and loss of signal.
 - o. Remarks listing special requirements.
 - 2. Schedule and design calculations for flow instruments, including the following.
 - a. Flow at Project design and minimum flow conditions.
 - b. Pressure drop at Project design and minimum flow conditions.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plan drawings and corresponding product installation details, drawn to scale, on which the following items are indicated and coordinated with each other, using input from installers of the items involved:

- 1. Control system components installation location indicated in relationship to room, duct, pipe, and equipment.
- 2. Size and location of wall access panels for control system components installed behind walls.
- 3. Size and location of ceiling access panels for control system components installed above inaccessible ceilings.
- B. Product Certificates: For each product requiring a certificate.
- C. Product Test Reports: Tests performed by manufacturer and witnessed by a qualified testing agency.
- 1.5 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data For:
 - 1. Control dampers and associated actuators.
 - 2. Airflow measurement stations, sensors, switches and transmitters.
 - 3. Gas instruments and associated system components.
 - 4. Moisture sensors, switches, and transmitters.
 - 5. Pressure sensors, switches, and transmitters.
 - 6. Temperature sensors, switches, and transmitters.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- C. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.
- D. Code Compliance: Comply with governing energy code.
- E. Delegated Design: Engage a qualified professional, as defined in Section 014000 "Quality Requirements," to size products where indicated as delegated design.
- F. Ground Fault: Properly ground products to prevent failing due to ground fault conditions.
- G. Backup Power Source: Serve control valve actuators from a backup power source where associated with systems and equipment served by a backup power source.
- H. Environmental Conditions:
 - 1. Instruments must operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.

- If instrument alone cannot comply with requirement, install instrument in a a. protective enclosure that is isolated and protected from conditions impacting performance. Enclosure to be internally insulated, filtered, and ventilated as required by instrument and application.
- Instruments and accessories are to be protected with enclosures satisfying the following 2. minimum requirements unless more stringent requirements are indicated. Instruments not available with integral enclosures complying with requirements indicated ae to be housed in protective secondary enclosures. Instrument-installed location to dictate following NEMA 250 enclosure requirements:
 - Outdoors, Protected: Type 3. a.
 - Outdoors, Unprotected: Type 4. b.
 - Indoors, Heated with Filtered Ventilation: Type 1. c.
 - Indoors, Heated with Nonfiltered Ventilation: Type 12. d.
 - Indoors, Heated and Air-Conditioned: Type 1. e.
 - f. Mechanical Equipment Rooms:
 - Chiller and Boiler Rooms: Type 12. 1)
 - Air-Moving Equipment Rooms: Type 12. 2)
 - Localized Areas Exposed to Washdown: Type 4.
 - g. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible h. Condensation: Type 2.
 - Within Duct Systems and Air-Moving Equipment Exposed to Possible i. Condensation: Type 4.
 - Hazardous Locations: Explosion-proof rating for condition. j.
- 2.2 Control Damper Selection Criteria:
 - A. Multi-Blade Damper Configuration: As follows unless otherwise indicated on Drawings:
 - Two-Position Control: parallel. 1.
 - 2. Equipment Isolation Applications: parallel.
 - 3. Outdoor/Return Air-Mixing Applications: Opposed.
 - All Other Applications: Opposed. 4.
 - Β. Select dampers with smooth and stable operation throughout full range of operation over varying pressures and temperatures encountered.
 - С. Sizing: See Drawings
 - Two-Position Dampers: Full size of duct or equipment connection unless otherwise 1 indicated.

2.3 RECTANGULAR CONTROL DAMPERS WITH AIRFOIL BLADES

- General Requirements: A.
 - Factory assemble multiple damper sections to provide a single damper assembly of size 1. required by the application.
 - Include multisection damper assemblies with intermediate reinforcing where a. required between individual sections being joined together. Construct reinforcing of same material (aluminum, galvanized steel, stainless steel) as damper frame.

- 2. Factory install actuator(s) as integral part of damper assembly. Coordinate, with damper manufacturer, field requirements for actuators, such as type, fail-safe position, power supply, location, and mounting requirements.
- B. Rectangular Control Dampers with Aluminum Airfoil Blades and Frames:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Warming and Ventilating (AWV); Mestek, Inc.
 - b. Arrow United Industries; Mestek, Inc.
 - c. Greenheck Fan Corporation.
 - d. Johnson Controls, Inc.
 - e. Ruskin; Air Distribution Technologies, Inc.; Johnson Controls, Inc.
 - f. TAMCO (T. A. Morrison & Co. Inc.).
 - 3. Source Limitations: Obtain rectangular control dampers, with aluminum airfoil blades and frames, from single manufacturer.
 - 4. Performance:
 - a. Leakage:
 - 1) AMCA 511, Class 1A, at 1 in. wg differential static pressure: Leakage not to exceed 3 cfm/sq. ft. against 1 in. wg differential static pressure when tested in accordance with AMCA 500D.
 - 2) AMCA 511, Class 1, at 4 in. wg differential static pressure: Leakage not to exceed 8 cfm/sq. ft. against 4 in. wg differential static pressure when tested in accordance with AMCA 500D.
 - b. Pressure Drop: 0.05 in. wg at 1500 fpm across a 24-by-24-inch damper when tested in accordance with AMCA 500D, figure 5.3.
 - c. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/180 of blade length.
 - d. Temperature: Minus 40 to plus 250 deg F.
 - e. Velocity: Up to 4000 fpm.
 - 5. Construction:
 - a. Frame:
 - 1) Material: ASTM B211/B211M, Alloy 6063 T5 extruded-aluminum profiles, minimum 0.125 inch thick.
 - 2) Arrangement: Hat-shaped channel with integral extended face flange(s) having mating face of minimum 1 inch for attachment to duct flanges, plenum walls, and equipment.
 - 3) Width: Not less than 5 inches.
 - b. Blades:
 - 1) Configuration: Parallel or opposed blade configuration as required by application.
 - 2) Material: ASTM B211/B211M, Alloy 6063 T5 extruded-aluminum profiles, 0.07 inch thick.
 - 3) Shape: Hollow, airfoil.
 - 4) Length: As required by close-off pressure rating, not to exceed 48 inches.
 - 5) Width: Not to exceed 6 inches.
 - c. Seals:

- 1) Blades: Replaceable; extruded Santoprene, silicone, or damper manufacturer-offered equivalent, as required by performance requirements. Seals are mechanically attached in extruded blade slots.
- 2) Jambs: Replaceable; stainless steel, compression type or mechanically attached extruded silicone.
- d. Axles:
 - 1) Diameter: Minimum 0.5 inch.
 - 2) Material: Aluminum.
 - 3) Mechanically attached to blades.
- e. Bearings:
 - 1) Material: Molded acetal stainless steel sleeve, as required by operating conditions, mounted in frame.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
- f. Linkage:
 - 1) Hardware: Plated or stainless steel.
 - 2) Material: Aluminum.
 - 3) Mounting: Concealed in frame.
- g. Transitions with Sleeve:
 - 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connections.
 - 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 - a) Sleeve length not less than 12 inches for dampers without jackshafts and not less than 16 inches for dampers with jackshafts.
 - b) Oversize damper and sleeve for duct connection size plus minimum 4 inches.
 - 3) Fabricate sleeve and transitions of materials (aluminum, galvanized steel or stainless steel) to match damper frame or adjoining duct.
 - 4) Match end connections (flange or sleeve) to field connections.

2.4 GENERAL CONTROL-DAMPER ACTUATORS REQUIREMENTS

- A. Select actuators to operate related damper(s) with sufficient reserve power to provide smooth modulating action or two-position action and proper speed of response at velocity and pressure conditions to which the damper is subjected.
- B. Select actuators with sufficient power and torque to close off against the maximum system pressures encountered. Actuators are to be sized to close off against the fan shutoff pressure as a minimum requirement.
- C. The total damper area operated by an actuator is not to exceed 80 percent of manufacturer's maximum area rating.
- D. Provide one actuator for each damper assembly where possible. Operate multiple actuators required to drive a single damper assembly in unison.
- E. Avoid the use of excessively oversized actuators, which could overdrive and cause linkage failure when the damper blade has reached either its full open or closed position.

- F. Use jackshafts and shaft couplings in lieu of blade-to-blade linkages when driving axially aligned damper sections.
- G. Provide mounting hardware and linkages for connecting actuator to damper.
- H. Select actuators to fail-safe in desired position in the event of a power failure.
- I. Actuator Fail-Safe Positions: As follows, unless otherwise indicated on drawings. If a discrepancy exists between the list below and the Drawings, the contractor must submit a Request For Information to the Mechanical Engineer to determine intent prior to ordering.
 - 1. Exhaust Air: Close.
 - 2. Outdoor Air: Close.
 - 3. Supply Air: Open.
 - 4. Return Air: Open.
 - 5. Mixed Air: Open.
 - 6. Relief Air: Closed.

2.5 ELECTRIC AND ELECTRONIC CONTROL-DAMPER ACTUATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following, or engineer approved equal:
 - 1. Belimo Aircontrols (USA), Inc.
 - 2. Honeywell Building Solutions; Honeywell International, Inc.
 - 3. Johnson Controls, Inc.
 - 4. Schneider Electric USA, Inc.
 - 5. Siemens Industry, Inc., Building Technologies Division.
- B. Source Limitations: Obtain electric and electronic control-damper actuators from single manufacturer.
- C. Type: Motor operated, with or without gears, electric and electronic.
- D. Voltage:
 - 1. Voltage selection is delegated to professional designing control system.
 - 2. Actuator to deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
 - 3. Actuator to function properly within a range of 85 to 120 percent of nameplate voltage.
- E. Construction:
 - 1. Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed-steel enclosures.
 - 2. 100 up to 400 W: Gears ground steel, oil immersed, shaft-hardened steel running in bronze, copper alloy, or ball bearings. Operator and gear trains are to be totally enclosed in dustproof cast-iron, cast-steel, or cast-aluminum housing.
 - 3. Greater Than 400 W: Totally enclosed reversible induction motors with auxiliary hand crank and permanently lubricated bearings.
- F. Local Field Adjustment: Make spring-return actuators easily switchable from fail-safe open to fail-safe closed in the field without replacement.

- G. Local Manual Override: Provide gear-type actuators with an external manual adjustment mechanism to allow manual positioning of the damper when the actuator is not powered.
- H. Two-Position Actuators: Single direction, spring return or reversing type.
- I. Modulating Actuators:
 - 1. Capable of stopping at all points across full range, and starting in either direction from any point in range.
 - 2. Control Input Signal:
 - a. Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position, and other input drives actuator to close position. No signal of either input remains in last position.
 - b. Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for 2 to 10 V dc and 4 to 20 mA signals.
 - c. Pulse Width Modulation (PWM): Actuator drives to a specified position according to a pulse duration (length) of signal from a dry-contact closure, triac sink, or source controller.
 - d. Programmable Multifunction:
 - 1) Control input, position feedback, and running time are to be factory or field programmable.
 - 2) Diagnostic feedback of hunting or oscillation, mechanical overload, mechanical travel, and mechanical load limit.
 - 3) Service data, including at a minimum, number of hours powered and number of hours in motion.
- J. Position Feedback:
 - 1. Equip two-position actuators with limit switches or other positive means of a position indication signal for remote monitoring of open and close position.
 - 2. Equip modulating actuators with a position feedback through current or voltage signal for remote monitoring.
 - 3. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.
- K. Fail-Safe:
 - 1. Where indicated, provide actuator to fail-safe to an end position.
 - 2. Internal spring-return mechanism to drive controlled device to an end position (open or close) on loss of power.
 - 3. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.
- L. Integral Overload Protection:
 - 1. Provide against overload throughout the entire operating range in both directions.
 - 2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.
- M. Damper Attachment:
 - 1. Unless otherwise required for damper interface, provide actuator designed to be directly coupled to damper shaft without need for connecting linkages.
 - 2. Attach actuator to damper drive shaft in a way that ensures maximum transfer of power and torque without slippage.

- 3. Bolt and setscrew method of attachment is acceptable only if provided with at least two points of attachment.
- N. Temperature and Humidity:
 - 1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
 - 2. Humidity: Suitable for humidity range encountered by application; minimum operating range is to be from 5 to 95 percent relative humidity, noncondensing.

O. Enclosure:

- 1. Suitable for ambient conditions encountered by application.
- 2. NEMA 250, Type 2 for indoor and protected applications.
- 3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
- 4. Provide actuator enclosure with a heater and controller where required by application.
- P. Stroke Time:
 - 1. Select operating stroke time to be compatible with equipment and system operation, and as follows.
 - a. Operate damper from fully closed to fully open position within 75 seconds.
 - b. Operate damper from fully open to fully closed position within 75 seconds.
 - c. Move damper to fail-safe position within 30 seconds.
 - 2. For actuators operating in smoke-control and other life-safety systems, comply with governing code and NFPA requirements.

2.6 GENERAL REQUIREMENTS FOR FLOW INSTRUMENTS

- A. Air sensors and transmitters are to have an extended range of 10 percent above Project design flow and 10 percent below minimum Project flow to signal abnormal flow conditions and to provide flexibility for changes in operation.
- B. Source Limitations: For flow instruments, obtain products from single source from single manufacturer.

2.7 AIRFLOW MEASUREMENT STATIONS AND SENSORS

- A. Performance Requirements:
 - 1. Adjustable for changes in system operational parameters.
 - 2. Airflow Sensor and Transmitter Range: Extended range of 10 percent above Project design flow and 10 percent below minimum Project flow to signal abnormal flow conditions.
 - 3. Manufacturer is to certify that each flow instrument indicated complies with specified performance requirements and characteristics.
 - a. Product certificates are required.
- B. Thermal Airflow Measurement Stations:
 - 1. Common Performance Requirements:
 - a. Provide stations that are adjustable for changes in system operational parameters.
 - b. Manufacturer is to certify that each flow instrument indicated complies with specified performance requirements and characteristics.

- c. Thermal airflow stations with one or more sensor nodes mounted in a probe, and a remotely mounted microprocessor-based transmitter at each measurement location.
- d. Sensor Nodes: One self-heated and one zero-power bead-in-glass thermistor, using the principle of thermal dispersion.
- e. Airflow Rate and Temperature of Each Sensor: Equally weighted and averaged by the transmitter prior to output.
- f. Sensor-Node and Probe Assemblies:
 - Sensor-Node Construction: Two bead-in-glass, hermetically sealed thermistors potted in a marine-grade waterproof epoxy with sensor housings constructed of glass-filled polypropylene. Construct with only the thermistor located within the sensing node and all other electronic components outside the airstream. Epoxy- or glass-encapsulated chip thermistors or devices with exposed leads are not allowed. Devices that use epoxy- or glassencapsulated chip thermistors, or electronics in the airstream, are unacceptable. Devices with exposed leads are un acceptable.
 - 2) Store sensor-node airflow and temperature calibration data in a serial memory chip, in the cable connecting plug. Stored data does not require matching or adjustments to the transmitter in the field.
 - 3) Sensing-Node Temperature Accuracy: Within 0.15 deg F over an operating range of minus 20 to plus 160 deg F and humidity range of 0 to 100 percent RH.
 - 4) Sensor-Probe Mounting Bracket Construction: Type 304 stainless steel.
 - 5) Internal Probe Wiring: Kynar-coated copper between the connecting cable and sensor nodes. PVC-jacketed wiring is unacceptable.
 - 6) Internal Probe Wiring Connections: Solder joints and spot welds, sealed and protected from the elements, so that direct exposure to water will not affect instrument operation. Connectors within the probe, of any type, are unacceptable. Printed circuit boards within the probe are unacceptable.
 - 7) Sensor-Probe Jacket: Integral, FEP jacket, plenum-rated CMP/CL2P, UL/cUL-listed cable, rated for exposures from minus 67 to plus 392 deg F, and for continuous and direct UV exposure. Plenum-rated PVC jacket cables are unacceptable.
 - 8) Sensor-Probe Cable Connector Plug: Gold-plated pins for connection to the transmitter.
- g. Transmitter Features and Functions:
 - 1) High and/or low airflow alarm with user-defined set point and percent of set-point tolerance.
 - 2) Manual or automatic alarm reset, and low-limit cutoff value may be selected to disable the alarm.
 - 3) Alarm delay function, field defined.
 - 4) Sensor-node malfunction via the system status alarm and ignore the sensor node that is in a fault condition.
 - 5) Field configuration, diagnostics, and field output adjustment wizard that allow for a one- or two-point field adjustment to factory calibration for installations that require adjustment.
 - 6) Automatic reset after power disruption, transients, and brown-outs through a watchdog timer circuit.
 - 7) Operating temperature range of minus 20 to plus 120 deg F and humidity range of 5 to 95 percent RH.

- 8) Electrical Power Requirement: 24 V ac (between 22.8 and 26.4 V ac under load) at 20 VA maximum, using a switching power supply that is overcurrent and overvoltage protected.
- 9) Printed Circuit Board Interconnects: Gold-plated edge fingers, receptacle plug pins, and printed circuit board test points.
- 10) Printed Circuit Boards: Electroless nickel immersion gold (ENIG) plated.
- 11) Integrated Circuitry: Temperature-rated, industrial-grade. Commercial-grade integrated circuitry is not acceptable.
- 12) Integration Buffers: Separate integration buffers for display of airflow output, airflow signal output (analog and network), and individual sensor output (IR-interface).
- 2. For Air-Ducted/Plenum:
 - a. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Ebtron, Inc.
 - 2) Ruskin; Air Distribution Technologies, Inc.; Johnson Controls, Inc.
 - 3) Ruskin; Air Distribution Technologies, Inc.; Johnson Controls, Inc.
 - c. Airflow Station Performance:
 - 1) Independent processing of up to 16 separately wired sensor-node assemblies.
 - 2) Accuracy: Within 3 percent of reading for ducted applications, and within 5 percent of reading for non-ducted applications, when installed in accordance with manufacturer's recommended placement guidelines. Include the combined uncertainty of the sensor nodes and transmitter. For devices whose overall accuracy is based on individual accuracy specifications of the sensor probes and transmitter, demonstrate compliance with the accuracy requirement over the entire operating range.
 - d. Sensor-Node and Probe Assemblies:
 - 1) Performance rated and tested with a 100 percent survival rate in a 30-day saltwater and acid vapor test with written independent laboratory results.
 - 2) Sensor-Node Calibration: Individually calibrated at 16 measurement points to airflow standards directly calibrated at NIST to the NIST Laser Doppler Anemometer (LDA) primary velocity standard.
 - a) Accuracy: Within 2 percent of reading over the entire calibrated airflow range of 0 to 5000 fpm.
 - b) Individually calibrate thermistor at a minimum of three temperatures to NIST-traceable temperature standards.
 - 3) Provide the number of independent sensor nodes as follows:
 - a) For Duct/Plenum Area up to 0.5 sq. ft. (0.046 sq. m): One.
 - b) For Duct/Plenum Area Greater Than 0.5 through 1.0 sq. ft. (0.046 through 0.092 sq. m): Two.
 - c) For Duct/Plenum Area Greater Than 2.0 through 4.0 sq. ft. (0.186 through 0.372 sq. m): Six.
 - d) For Duct/Plenum Area Greater Than 4.0 through 8.0 sq. ft. (0.372 through 0.743 sq. m): Eight.
 - e) For Duct/Plenum Area Greater Than 8.0 through 12.0 sq. ft. (0.743 through 1.11 sq. m): 12.

- f) For Duct/Plenum Area Greater Than 12.0 through 14.0 sq. ft. (1.11 through 1.30 sq. m): 14.
- g) For Duct/Plenum Area Greater Than 14.0 sq. ft. (1.30 sq. m): 16.
- 4) For an aspect ratio of 1.5 or less, and an area of 25 sq. ft. or greater, four probes are required.
- 5) Sensor-Probe Construction: Gold-anodized, 6063 aluminum alloy tube or Type 316 stainless steel tube, with each sensor probe containing one or more independently wired sensing nodes.
- e. Transmitter:
 - 1) Transmitter determines the average airflow rate and temperature of connected sensor nodes in an array for a single location.
 - 2) User Interface: 16-character, alpha-numeric, LCD display, with two fieldselectable analog output signals and network output capability. Provide one of the following transmitter configurations:
 - Model GTC116 Transmitter: Two field-selectable 0-to 10-V dc, or 4a) to 20-mA, scalable, isolated, overcurrent protected analog output signals. The first output (AO1) provides the total airflow rate. The second output (AO2) is field configurable for temperature or low and/or high airflow set-point (user-defined) or system status alarm. The RS-485 (BACnet MS/TP, or Modbus RTU) network connection provides the average airflow rate, temperature, high and/or low airflow set-point alarm, system status alarm, individual sensor-node airflow rates, and individual sensor-node temperatures. The transmitter is to be provided with a Bluetooth low-energy interface card capable of transmitting all transmitter setup parameters, diagnostics, average airflow, and temperature of the device and the airflow and temperature of each sensor node. Software capable of capturing and displaying this transmission will be available via download to Android or iOS phone or tablet. Software is to allow for setup parameters, airflow, temperature, and diagnostic data to be saved on the phone or be emailed.
 - Model GTM116 Transmitter: Two field-selectable 0- to 10-V dc, or b) 4- to 20-mA, scalable, isolated, and overcurrent protected analog output signals. The first output (AO1) provides the total airflow rate. The second output (AO2) is field configurable for temperature or low and/or high airflow set-point (user-defined) or system status alarm. The Ethernet (BACnet Ethernet or BACnet IP, Modbus TCP and TCP/IP) network connection provides the average airflow rate, temperature, high and/or low airflow set-point alarm, system status alarm, individual sensor-node airflow rates, and individual sensornode temperatures. The transmitter is to be provided with a Bluetooth low-energy interface card capable of transmitting all transmitter setup parameters, diagnostics, average airflow, and temperature of the device and the airflow and temperature of each sensor node. Software capable of capturing and displaying this transmission will be available via download to Android or iOS phone or tablet. Software is to allow for setup parameters, airflow, temperature, and diagnostic data to be saved on the phone or be emailed.
 - c) Model GTD116 Transmitter with Data-Logger Interface: Capable of logging airflow and temperature rates over specified time intervals.

- 3. For Air-Ducted/Plenum Duct Size 2 sq. ft. (0.18 sq. m) or Less:
 - a. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1) Ebtron, Inc.
 - c. Airflow Station Performance:
 - 1) Independent processing of up to four separately wired sensor-node assemblies.
 - 2) Accuracy: Within 3 percent of reading for ducted applications, and within 5 percent of reading for non-ducted applications, when installed in accordance with manufacturer's recommended placement guidelines. Include the combined uncertainty of the sensor nodes and transmitter. For devices whose overall accuracy is based on individual accuracy specifications of the sensor probes and transmitter, demonstrate compliance with the accuracy requirement over the entire operating range.
 - d. Sensor-Node and Probe Assemblies:
 - 1) Performance rated and tested with a 100 percent survival rate in a 30-day saltwater and acid vapor test with written independent laboratory test results.
 - 2) Sensor-Node Calibration: Individually calibrated at 16 measurement points to airflow standards directly calibrated at NIST to the NIST Laser Doppler Anemometer (LDA) primary velocity standard.
 - a) Accuracy: Within 2 percent of reading over the entire calibrated airflow range of 0 to 5000 fpm.
 - b) Individually calibrate thermistor at a minimum of three temperatures to NIST-traceable temperature standards.
 - 3) Provide the number of independent sensor nodes as follows:
 - a) For Duct/Plenum Area up to 0.5 sq. ft. (0.046 sq. m): One.
 - b) For Duct/Plenum Area Greater Than 0.5 through 1.0 sq. ft. (0.046 through 0.092 sq. m): Two.
 - c) For Duct/Plenum Area Greater Than 1.0 sq. ft. (0.092 sq. m): Four.
 - 4) For probes less than 8 inches, one sensor node/probe is required.
 - 5) Sensor-Probe Construction: Gold-anodized, 6063 aluminum alloy tube or Type 316 stainless steel tube, with each sensor probe containing one or more independently wired sensing nodes.
 - e. Transmitter:
 - 1) Transmitter determines the average airflow rate and temperature of connected sensor nodes in an array for a single location.
 - User Interface: 16-character, alpha-numeric, LCD display, with two fieldselectable analog output signals or one isolated RS-485 (BACnet MS/TP, or Modbus RTU) field-selectable network connection.
 - 3) Model HTA104 Transmitter, Analog Capability: Two field-selectable 0- to 10-V dc, or 4- to 20-mA, scalable, isolated, and overcurrent protected analog output signals. The first output (AO1) provides the total airflow rate. The second output (AO2) is field configurable for temperature or low and/or high airflow set-point (user-defined) or system status alarm.
 - 4) Model HTAN104 Transmitter, Network Communications: The RS-485 (BACnet MS/TP or Modbus RTU) network connection provides the average airflow rate, temperature, high and/or low airflow set-point alarm, system

status alarm, individual sensor-node airflow rates, and individual sensor-node temperatures.

- 4. For Combination Control Damper and Airflow Station Equal Area Method Distribution Pattern:
 - a. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by the following:

1) Ebtron, Inc.

- c. Thermal airflow station and integral damper with two or more sensor nodes mounted in a probe, and a remotely mounted microprocessor-based transmitter at each measurement location. Sensor-node distribution pattern to be based on equal area method.
- d. Airflow Station Performance:
 - 1) Independent processing of up to 16 separately wired sensor-node assemblies.
 - 2) Accuracy: Within 3 percent of reading for ducted applications, and within 5 percent of reading for non-ducted applications, when installed in accordance with manufacturer's recommended placement guidelines. Include the combined uncertainty of the sensor nodes and transmitter. For devices whose overall accuracy is based on individual accuracy specifications of the sensor probes and transmitter, demonstrate compliance with the accuracy requirement over the entire operating range.
- e. Sensor-Node and Probe Assemblies:
 - 1) Performance rated and tested with a 100 percent survival rate in a 30-day saltwater and acid vapor test with written independent laboratory test results.
 - 2) Sensor-Node Calibration: Individually calibrated at 16 measurement points to airflow standards directly calibrated at NIST to the NIST Laser Doppler Anemometer (LDA) primary velocity standard.
 - a) Accuracy: Within 2 percent of reading over the entire calibrated airflow range of 0 to 5000 fpm.
 - b) Individually calibrate thermistor at a minimum of three temperatures to NIST-traceable temperature standards.
 - 3) Provide the number of independent sensor nodes as follows:
 - a) For Damper Area up to 1.0 sq. ft. (0.092 sq. m): Two.
 - b) For Duct/Plenum Area Greater Than 1.0 through 4.0 sq. ft. (0.092 through 0.372 sq. m): Four.
 - c) For Duct/Plenum Area Greater Than 4.0 through 8.0 sq. ft. (0.372 through 0.743 sq. m): Six.
 - d) For Duct/Plenum Area Greater Than 8.0 through 12.0 sq. ft. (0.743 through 1.11 sq. m): Eight.
 - e) For Duct/Plenum Area Greater Than 12.0 through 16.0 sq. ft. (1.11 through 1.49 sq. m): 12.
 - f) For Duct/Plenum Area Greater Than 16.0 sq. ft. (1.49 sq. m): 16.
 - 4) Sensor Probe Construction: Gold-anodized, 6063 aluminum alloy tube with each sensor probe containing one or more independently wired sensing nodes.
- f. Transmitter:
 - 1) Transmitter determines the average airflow rate and temperature of connected sensor nodes in an array for a single location.

- 2) User Interface: 16-character, alpha-numeric, LCD display, with two fieldselectable analog output signals and network output capability. Provide one of the following transmitter configurations:
 - a) Model GTC116 Transmitter: Two field-selectable 0- to 10-V dc, or 4to 20-mA, scalable, isolated, overcurrent protected analog output signals and network output capability. The first output (AO1) provides the total airflow rate. The second output (AO2) is field configurable for temperature or low and/or high airflow set-point (user-defined) or system status alarm. The RS-485 (BACnet MS/TP, or Modbus RTU) network connection provides the average airflow rate, temperature, high and/or low airflow set-point alarm, system status alarm, individual sensor-node airflow rates, and individual sensor-node temperatures. The transmitter is to be provided with a Bluetooth low-energy interface card capable of transmitting all transmitter setup parameters, diagnostics, average airflow, and temperature of the device and the airflow and temperature of each sensor node. Software capable of capturing and displaying this transmission will be available via download to Android or iOS phone or tablet. Software is to allow for setup parameters, airflow, temperature, and diagnostic data to be saved on the phone or be emailed.
- 3) Model GTM116 Transmitter: Two field-selectable 0- to 10-V dc, or 4- to 20-mA, scalable, isolated, and overcurrent protected analog output signals and network output capability. The first output (AO1) provides the total airflow rate. The second output (AO2) is field configurable for temperature or low and/or high airflow set-point (user-defined) or system status alarm. The Ethernet (BACnet Ethernet or BACnet IP, Modbus TCP and TCP/IP) network connection provides the average airflow rate, temperature, high and/or low airflow set-point alarm, system status alarm, individual sensornode airflow rates, and individual sensor-node temperatures. The transmitter is to be provided with a Bluetooth low-energy interface card capable of transmitting all transmitter setup parameters, diagnostics, average airflow, and temperature of the device and the airflow and temperature of each sensor node. Software capable of capturing and displaying this transmission will be available via download to Android or iOS phone or tablet. Software is to allow for setup parameters, airflow, temperature, and diagnostic data to be saved on the phone or be emailed.
- 4) Model GTL116 Transmitter with LonWorks Free Topology Network Interface: Connection capable of providing average airflow and temperature rates across the network.
- 5) Model GTD116 Transmitter with Data-Logger Interface: Capable of logging airflow and temperature rates over specified time intervals.
- g. Integral Control Damper and Sleeve:
 - 1) Frame and Sleeve: Extruded 6063T5 aluminum with an integral damper frame.
 - a) Thickness: Not less than 0.080-inch thickness for each damper section.
 - b) Sleeve Depth: 15 inches for ducted applications and 18 inches for non-ducted applications including damper frame. Non-ducted applications include a 3-inch- radius, aluminum entry flair.
- c) Installation: Provide an additional 7 inches for non-ducted, 10 inches for ducted, applications between the downstream edge of an intake louver and the leading edge of the entry flair for outside air intake applications that are close coupled to intake louvers.
- d) Leakage: The damper leakage is not to exceed 3 cfm/sq. ft. of face area against 1-inch wg differential static pressure.
- 2) Blades: Extruded 6063T5 aluminum airfoil blades not less than 0.060-inch thickness.
 - a) Blade Seals: Extruded EPDM.
 - b) Frame Seals: Extruded silicone secured in an integral slot within the aluminum extrusions.
 - c) Orientation: Parallel or opposed blade configuration as required by application.
- 3) Bearings: Celcon inner bearing fixed to a 7/16-inch aluminum hexagon blade pin, rotating within a polycarbonate outer bearing inserted in the frame, resulting in no metal-to-metal or metal-to-plastic contact.
- 4) Linkage: Aluminum- and corrosion-resistant zinc-plated steel, complete with cup-point trunnion screws for a slip-proof grip, installed inside the frame.
- 5) Control-Damper Actuator: Modulating, electronic, damper actuator of sufficient number and adequate size, factory mounted and tested. Control-damper actuators are specified in Section 230923.12 "Control Dampers."
- C. Pitot-Tube Airflow Sensor Station:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Air Monitor; an ONICON Brand.
 - b. Ruskin; Air Distribution Technologies, Inc.; Johnson Controls, Inc.
 - 3. Description: Multiple total- and static-pressure sensors positioned at the center of equal area of the station cross section and interconnected by respective averaging manifolds.
 - a. Stations 4 sq. ft. (0.4 sq. m) and Smaller: One total-pressure sensor and one staticpressure sensor for every 16 sq. in. of station area.
 - b. Stations Larger than 4 sq. ft. (0.4 sq. m): One total-pressure sensor and one staticpressure sensor for every 36 sq. in. of station area.
 - 4. Casing: Galvanized sheet steel at least 0.079 inch thick with coating complying with ASTM A653/A653M, G90. Casings are to be stainless steel, 0.0781 inch thick, when connected to stainless duct and aluminum, 0.063 inch thick, when connected to aluminum duct.
 - a. Joints and Seams: Continuously weld. Clean galvanized areas damaged by welding and coat with aluminum paint.
 - b. Casing Depth: At least 8 inches.
 - c. Casing Flanges: Outward flange, minimum flange face 1.5 inches.
 - d. Casing Configuration and Size: Match shape (rectangular, round, flat oval) and same size as adjacent duct unless otherwise indicated.
 - 5. Include an open parallel cell air straightener or air equalizer honeycomb mechanically fastened to casing.

- a. Construct straightener or equalizer from Type 3003 aluminum or Type 316 stainless steel, depending on casing material. Use stainless steel for units with stainless steel casings.
- 6. Construct pressure sensor array from drawn copper or stainless steel tubing. Use stainless steel for units with stainless steel casings. Copper tubing is to comply with ASTM B75 and ASTM B280. Minimum tube wall thickness is to be 0.030 inch. Include internal piping and external pressure transmitter ports.
- 7. Station Labeling: Identification label on each station casing indicating model number, size, area, and application-specific airflow range.
- 8. Performance:
 - a. Pressure Loss: 0.015-inch wg at 1000 fpm, or 0.085-inch wg at 2000 fpm.
 - b. Accuracy: Within 2 percent of actual airflow.
 - c. Self-Generated Sound: NC 40 and sound level within the duct is not to be amplified.
 - d. Performance rated and tested in accordance with AMCA 610. Each station shall bear the AMCA seal.

2.8 AIRFLOW SWITCHES

- A. Polymer Film Sail Switch:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Honeywell International Inc.
 - 3. Performance:
 - a. Suitable for applications operating at velocities up to 400 fpm.
 - b. Suitable for mounting with air direction in horizontal, vertical up or down.
 - c. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - d. Voltage: 24-, 120-, 240-V ac.
 - e. Normally Open Full Load Current: 2 A at 120-V ac.
 - f. Normally Closed Full Load Current: 1 A at 120-V ac.
 - g. Normally open switch actuates at 250 fpm and opens at 75 fpm.
 - h. Normally closed switch actuates at 75 fpm and closes at 250 fpm.
 - i. Maximum Process Temperature: 170 deg F.
 - j. Maximum Ambient Temperature: 125 deg F.
 - 4. Construction:
 - a. Polyester film sail encasing a wire frame.
 - b. Sail actuates a SPDT snap switch.
 - c. Enclosure Material: Zinc-plated steel.
 - d. Enclosure with removable cover.
 - e. NEMA 250, Type 1 enclosure.
 - f. Removable spring counterbalances sail to allow mounting in either vertical (up or down) or horizontal airflow.
 - g. Electrical Connections: Screw terminals.
 - h. Conduit Connections: 1/2-inch trade size conduit knock outs on top and bottom.

2.9 AIRFLOW TRANSMITTERS

- A. Airflow Transmitters with 0.25 Percent Accuracy and Auto-Zero Feature:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawingsor comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Air Monitor; an ONICON Brand.
 - 3. Transmitter is to receive total- and static-pressure signals from a flow element, amplify signals, extract the square foot, and scale the signals to produce 4- to 20-mA dc output signals linear to airflow.
 - 4. NEMA 250, Type 1 enclosure.
 - 5. Construct assembly so shock, vibration, and pressures surges of up to 1 psig will neither harm transmitter, nor affect its accuracy.
 - 6. Transmitter with automatic zeroing circuit capable of automatically readjusting transmitter zero at predetermined time intervals. The automatic zeroing circuit is to rezero the transmitter to within 0.1 percent of true zero.
 - 7. Performance:
 - a. Range: As required by application and at least 10 percent below minimum airflow and 10 percent greater than design airflow.
 - b. Calibrated Span: Field adjustable, minus 40 percent of the range.
 - c. Accuracy: Within 0.25 percent of natural span.
 - d. Repeatability: Within 0.15 percent of calibrated span.
 - e. Linearity: Within 0.2 percent of calibrated span.
 - f. Hysteresis and Deadband (Combined): Less than 0.2 percent of calibrated span.
 - 8. Integral digital display for continuous indication of airflow.
- B. Pressure Differential Transmitters for Airflow Measurement:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Setra System.
 - 3. Performance:
 - a. Range: As required by application and at least 10 percent below minimum airflow and 10 percent greater than design airflow.
 - b. Accuracy: Within 1 percent of the full-scale range.
 - c. Hysteresis: Within 0.10 percent of full scale.
 - d. Repeatability: Within 0.05 percent of full scale.
 - e. Stability: Within one percent of span per year.
 - f. Overpressure: 10 psig.
 - g. Temperature Limits: Zero to 150 deg F.
 - h. Compensate Temperature Limits: 40 to 150 deg F.
 - i. Thermal Effects: 0.033 percent of full scale per degree F.
 - j. Shock and vibration are not to harm the transmitter.
 - 4. Output Signals:
 - a. Analog Current Signal:
 - 1) Two-wire, 4- to 20-mA dc current source.
 - 2) Signal capable of operating into 800-ohm load.
 - b. Analog Voltage Signal:

- 1) Three wire, zero to 10 V.
- 2) Minimum Load Resistance: 1000 ohms.
- 5. Display: Four-digit digital with minimum 0.4-inch- high numeric characters.
- 6. Operator Interface:
 - a. Zero and span adjustments located behind cover.
- 7. Construction:
 - a. Plastic casing with removable plastic cover.
 - b. Fittings: Swivel fittings for connection to copper tubing or barbed fittings for connection to polyethylene tubing. Fittings on bottom of instrument case.
 - c. Screw terminal block for wire connections.
 - d. Vertical plane mounting.
 - e. NEMA 250, Type 4.
 - f. Mounting Bracket: Appropriate for installation.
- C. Pressure Differential Indicating Transmitter, Switch, and Controller for Airflow Measurement:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 3. Description:
 - a. Three-in-one instrument, including digital display, control relay switches, and a transmitter with a current output.
 - b. Field configurable for pressure, velocity, and volumetric flow applications through user interface.
 - Select instrument range based on application.
 - 4. Performance:

c.

- a. Accuracy including hysteresis and repeatability:
 - 1) Ranges Less than 5-Inch wg (1250 Pa): Within 1 percent.
 - 2) Other Ranges: Within 0.5 percent at 77 deg F.
- b. Stability: Within 1 percent per year.
- c. Response Time: 250 ms.
- d. Overpressure:
 - 1) Ranges Less than 50-Inch wg (12.5 kPa): 5 psi.
 - 2) Range of 100-Inch wg (25 kPa): 9 psi.
- e. Temperature Limits: 32 to 140 deg F.
- f. Thermal Effects: 0.020 percent per deg F.
- g. Warm-up Period: One hour.
- 5. Controller: Programming through menu keys to access five menus.
 - a. Security level.
 - b. Pressure, velocity, or flow application.
 - c. Engineering units.
 - d. K-factor for use with flow application.
 - e. Set-point control only; set-point and alarm operation; alarm operation as high, low, or high/low with manual; or automatic reset and delay.
 - f. View high and low readings.
 - g. Digital dampening for smoothing erratic applications.
 - h. Scaling of analog output to fit range and field calibration.
- 6. Display:
 - a. Four-digit digital, with minimum 0.4-inch- high alphanumeric characters.

- b. Four LED indicators; two LEDs for set point and two LEDs for alarm status.
- 7. Operator Interface:
 - a. Set-point adjustment through keypad on face of instrument.
 - b. Zero and span adjustments accessible through menu.
 - c. Programming through keypad.
- 8. Output Analog Signal: Two-wire, 4- to 20-mA dc current source; capable of operating into a 900-ohm load.
- 9. Output Digital Signal: Two, SPDT relays; each rated for 1 A at 30-V ac or 30-V dc.
- 10. Construction:
 - a. Die-cast aluminum casing and bezel.
 - b. Connections on side and back.
 - c. Vertical plane mounting.
 - d. NEMA 250, Type 1 rating.
 - e. Nominal 4-inch- diameter face.
 - f. Mounting Bracket: Appropriate for installation.

2.10 AIR-PRESSURE SENSORS

- A. Duct Insertion Static Pressure Sensor:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 3. Insertion length to be at 8 inches.
 - 4. Sensor with four radial holes of 0.04-inch diameter.
 - 5. Brass construction.
 - 6. Sensor with threaded end support, sealing washers and nuts.
 - 7. Connection: NPS 1/4 compression fitting.
 - 8. Suitable for flat oval, rectangular, and round duct configurations.
- B. Duct Insertion Static Pressure Sensor Dual Orifice Design:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. MAMAC Systems, Inc.
 - 3. Sensor probe with two opposing orifices designed to reduce error-associated air velocity.
 - 4. Sensor insertion length to be 4 inches or 8 inches.
 - 5. Construct sensor of 6061-T6 aluminum alloy.
 - 6. Connection: Threaded, NPS 1/8 swivel fitting for connection to copper tubing or NPS 1/4 barbed fitting for connection to polyethylene tubing.
 - 7. Sensor probe attached to a mounting flange with neoprene gasket and two holes for fasteners.
 - 8. Mounting flange to be suitable for flat oval, rectangular, and round duct configurations.
 - 9. Pressure Rating: 10 psig.
- C. Duct Traverse Static Pressure Sensor:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Air Monitor; an ONICON Brand.
- 3. Sensor to traverse the duct cross section and have at least one pickup point every 6 inches along length of sensor.
- 4. Construct sensor of 18-gauge Type T6063-T5 extruded and anodized aluminum.
- 5. Sensor supported with threaded rod, sealing washer, and nut at one end and a mounting plate with gasket at other end.
- 6. Mounting plate with threaded, NPS 3/8 compression fitting for connection to tubing.
- 7. Accuracy within 1 percent of actual operating static pressure.
- 8. Dual offset static sensor design to provide accurate sensing of duct static pressure in the presence of turbulent and rotational airflows with a maximum 30-degree yaw and pitch.
- 9. Suitable for velocities of 100 to 10000 fpm and temperatures of up to 200 deg F.
- 10. Sensor air resistance to be less than 0.1 times the velocity pressure at probe-operating velocity.
- 11. Suitable for flat oval, rectangular, and round duct configurations.
- D. Outdoor Static Pressure Sensor:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 3. Provides average outdoor pressure signal.
 - 4. Sensor with no moving parts.
 - 5. Kit includes sensor, vinyl tubing mounting hardware.
- E. Outdoor Static Pressure Sensor NEMA 250, Type 4X Enclosure:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 3. Provides average outdoor pressure signal.
 - 4. Sensor with no moving parts.
 - 5. NEMA 250, Type 4X enclosure.
 - 6. Pressure Connection: Brass barbed fitting for NPS 1/4 tubing.
 - 7. Conduit fitting around pressure fitting for sensor support and protection to pressure connection.
- F. Outdoor Static Pressure Sensor Unaffected/Unimpaired by Rain and Snow:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Air Monitor; an ONICON Brand.
 - 3. Sensor with no moving parts.
 - 4. Operation not affected and impaired by rain and snow.

- 5. Sensing plates constructed of 0.1406-inch Type 316 stainless steel.
- 6. Accuracy within:
 - a. 1 percent of the actual outdoor atmospheric pressure when subjected to varying horizontal radial wind velocities up to40 mph.
 - b. 2 percent of the actual outdoor atmospheric pressure while subjected to varying radial wind velocities up to40 mph with approach angles up to 30 degrees to horizontal.
 - c. 3 percent of the actual outdoor atmospheric pressure while subjected to varying radial wind velocities up to40 mph with approach angles up to 60 degrees to horizontal.
 - d. Threaded, NPS 2 connection.
- G. Space Static Pressure Sensor for Wall Mounting Stainless Steel Wall Plate:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawingsor comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 3. 100-micron filter mounted in stainless steel wall plate senses static pressure.
 - 4. Wall plate provided with gasket and screws, and sized to fit standard single-gang electrical box.
 - 5. Back of sensor plate fitted with brass barbed fitting for tubing connection.
- H. Space Static Pressure Sensor for Wall Mounting ABS Plastic Wall Plate:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. MAMAC Systems, Inc.
 - 3. White ABS plastic wall plate with integral sensing port to sense static pressure.
 - 4. Wall plate provided with matching colored screws and sized to fit standard single-gang electrical box.
 - 5. Back of sensor plate fitted with brass union fitting for tubing connection.
 - 6. Pressure rating: 10 psig.
- I. Space Static Pressure Sensor for Wall Mounting:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Air Monitor; an ONICON Brand.
 - 3. Stainless steel wall plate with perforated center arranged to sense space static pressure. Exposed surfaces are provided with brush finish.
 - 4. Wall plate provided with screws and sized to fit standard single-gang electrical box.
 - 5. Back of sensor plate fitted with multiple sensing ports, pressure impulse suppression chamber, airflow shielding, and 0.125-inch fitting for tubing connection.
 - 6. Performance: Within 1 percent of actual room static pressure in vicinity of sensor while being subjected to an air velocity of 1000 fpm from a 360-degree radial source.

2.11 AIR-PRESSURE SWITCHES

- A. Air-Pressure Differential Switch:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - Diaphragm operated to actuate an SPDT snap switch.
 - a. Fan safety shutdown applications: Switch with manual reset.
 - 4. Electrical Connections: Three-screw configuration, including one screw for common operation and two screws for field-selectable normally open or closed operation.
 - 5. Enclosure Conduit Connection: Knock out or threaded connection.
 - 6. User Interface: Screw-type set-point adjustment located inside removable enclosure cover.
 - 7. High and Low Process Connections: Threaded, NPS 1/8.
 - 8. Enclosure:

3.

- a. Dry Indoor Installations: NEMA 250, Type 1.
- b. Outdoor and Wet Indoor Installations: NEMA 250, Type 4.
- c. Hazardous Environments: Explosion proof.
- 9. Operating Data:
 - a. Electrical Rating: 15 A at 120- to 480-V ac.
 - b. Pressure Limits:
 - 1) Continuous: 45 inches wg.
 - 2) Surge: 10 psig.
 - c. Temperature Limits: Minus 30 to 180 deg F.
 - d. Operating Range: Approximately 2 times set point.
 - e. Repeatability: Within 3 percent.
 - f. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Air-Pressure Differential Switch with Set-Point Indicator:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 3. Diaphragm operated to actuate an SPDT snap switch.
 - 4. Electrical Connections: Three-screw configuration, including one screw for common operation and two screws for field-selectable normally open or closed operation.
 - 5. Enclosure Conduit Connection: Knock out or threaded connection.
 - 6. User Interface: Screw-type set-point adjustment with enclosed set-point indicator and scale.
 - 7. High and Low Process Connections: Threaded, NPS 1/8.
 - 8. Enclosure:
 - a. Dry Indoor Installations: NEMA 250, Type 1.
 - b. Outdoor and Wet Indoor Installations: NEMA 250, Type 4.
 - c. Hazardous Environments: Explosion proof.
 - 9. Operating Data:
 - a. Electrical Rating: 15 A at 120- to 480-V ac.

- b. Pressure Limits:
 - 1) Continuous: 10 psig.
 - 2) Surge: 25 psig.
- c. Temperature Limits: Minus 30 to 110 deg F.
- d. Operating Range: Approximately 2 times set point.
- e. Repeatability: Within 1 percent.
- f. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Air-Pressure Differential Switch with Dual Scale Adjustable Set Point:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 3. Diaphragm operated to actuate an SPDT snap switch.
 - 4. Electrical Connections: Push-on screw terminals.
 - 5. Enclosure Conduit Connection: Knock out or threaded connection.
 - 6. User Interface: Dual scale set-point adjustment knob located inside removable enclosure cover.
 - 7. High and Low Process Connections: Slip-on tubing connections.
 - 8. Enclosure:
 - a. Dry Indoor Installations: NEMA 250, Type 13.
 - 9. Operating Data:
 - a. Electrical Rating: 1.5 A at 250-V ac.
 - b. Pressure Limits: 40 inches wg
 - c. Temperature Limits: Minus 4 to 185 deg F.
 - d. Operating Range: Approximately 2 times set point.
- D. Air-Pressure Differential Indicating Switch:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 3. Combination gauge with low- and high-limit switches.
 - 4. Nominal 4-inch- diameter analog indication with white dial face, graduated black markings, pointer to indicate measured value, and a separate adjustable pointer for each switch set point.
 - 5. Switch zero and set-point adjustment screws or knobs on the dial face.
 - 6. Each switch used as a safety limit to have a manual reset button local to switch.
 - 7. Switch Type: Each set point to have two Form C relays, DPDT.
 - 8. Electrical Connections: Screw terminals.
 - 9. Enclosure Conduit Connection: NPS 3/4 threaded connection.
 - 10. High and Low Process Connections: Threaded, NPS 1/8.
 - 11. Enclosure:
 - a. Dry Indoor Installations: NEMA 250, Type 1.
 - b. Outdoor and Wet Indoor Installations: NEMA 250, Type 4.
 - c. Hazardous Environments: Explosion proof.
 - 12. Operating Data:

- a. Electrical Rating: 10 A at 120- to 240-V ac.
- b. Pressure Limits: 25 psig.
- c. Temperature Limits: 20 to 120 deg F.
- d. Operating Range: Approximately twice normal operating range unless otherwise required for application.
- e. Accuracy:
 - 1) 4 percent for ranges through 0.5 in. wg.
 - 2) 2 percent for ranges 1 in. wg and greater.
- f. Repeatability: Within 1 percent of full scale.
- g. Switch Deadband: One pointer width and within 1 percent of full scale for each switch set point.
- h. Power Supply: 24 or 120-V ac, 50/60 Hz.
- i. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.12 AIR-PRESSURE TRANSMITTERS

- A. Air-Pressure Differential Transmitter with Display:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Setra System.
 - 3. Performance:
 - a. Range: Approximately 2 times set point.
 - b. Accuracy: Within 1 percent of the full-scale range.
 - c. Hysteresis: Within 0.10 percent of full scale.
 - d. Repeatability: Within 0.05 percent of full scale.
 - e. Stability: Within 1 percent of span per year.
 - f. Overpressure: 10 psig.
 - g. Temperature Limits: Zero to 150 deg F.
 - h. Compensate Temperature Limits: 40 to 150 deg F.
 - i. Thermal Effects: 0.033 percent of full scale per degree F.
 - j. Shock and vibration to not harm the transmitter.
 - 4. Output Signals:
 - a. Analog Current Signal:
 - 1) Two-wire, 4- to 20-mA dc current source.
 - 2) Signal capable of operating into 800-ohm load.
 - b. Analog Voltage Signal:
 - 1) Three wire, zero to 10 V.
 - 2) Minimum Load Resistance: 1000 ohms.
 - 5. Display: Four-digit digital display with minimum 0.4-inch- high numeric characters.
 - 6. Operator Interface: Zero and span adjustments located behind cover.
 - 7. Construction:
 - a. Plastic casing with removable plastic cover.
 - b. Threaded, NPS 1/4 swivel fittings for connection to copper tubing or NPS 3/16 barbed fittings for connection to polyethylene tubing. Fittings on bottom of instrument case.
 - c. Screw terminal block for wire connections.

- d. Vertical plane mounting.
- e. NEMA 250, Type 4.
- f. Provide mounting bracket suitable for installation.
- B. Air-Pressure Differential Transmitter:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Ashcroft Inc.
 - 3. Performance:
 - a. Range: Approximately 2 times set point.
 - b. Accuracy: Within 0.5 percent of the span at reference temperature of 70 deg F.
 - c. Hysteresis: Within 0.02 percent of the span.
 - d. Repeatability: Within 0.05 percent of the calibrated span.
 - e. Stability: Within 0.25 percent of span per year.
 - f. Overpressure: 15 psig.
 - g. Temperature Limits: Minus 20 to 160 deg F.
 - h. Compensate Temperature Limits: 35 to 135 deg F.
 - i. Thermal Effects: 0.015 percent of full scale per degree F.
 - j. Warm-up Time: Within 5 seconds.
 - k. Response Time: 250 ms.
 - 1. Shock and vibration to not harm the transmitter.
 - 4. Output Signals:
 - a. Analog Current Signal:
 - 1) Two-wire, 4- to 20-mA dc current source.
 - 2) Signal capable of operating into 1000-ohm load.
 - b. Analog Voltage Signal:
 - 1) Three wire, zero to 5 V.
 - 2) Minimum Load Resistance: 1000 ohms.
 - 5. Operator Interface:
 - a. Zero and span adjustments within 10 percent of full span.
 - b. Potentiometer adjustments located on face of transmitter.
 - 6. Construction:
 - a. Type 300 stainless steel enclosure.
 - b. Swivel fittings for connection to copper tubing or barbed fittings for connection to polyethylene tubing. Fittings on front of instrument enclosure.
 - c. Screw terminal block for wire connections.
 - d. Vertical plane mounting.
 - e. NEMA 250, Type 2.
 - f. Mounting Bracket: Appropriate for installation.
 - g. Reverse wiring protected.
 - h. Calibrate to NIST-traceable standards and provide each transmitter with a certificate of calibration.
- C. Air-Pressure Differential Indicating Transmitter, Switch, and Controller:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:

- a. Dwyer Instruments, Inc.
- 3. Description:
 - a. Three-in-one instrument, including digital display, control relay switches, and a transmitter with a current output.
 - b. Field configurable for pressure, velocity, and volumetric flow applications through user interface.
 - c. Select instrument range based on application. Range to be approximately 2 times set point.
- 4. Performance:
 - a. Accuracy Including Hysteresis and Repeatability:
 - 1) Within 1 percent for ranges less than 5 in. wg.
 - 2) Within 0.5 percent at 77 deg F for other ranges.
 - b. Stability: Within 1 percent per year.
 - c. Response Time: 250 ms.
 - d. Overpressure: 5 psig for instrument ranges less than 50 in wg and 9 psig for 100 in. wg range.
 - e. Temperature Limits: 32 to 140 deg F.
 - f. Thermal Effects: 0.020 percent per degree F.
 - g. Warm-up Period: One hour.
- 5. Controller Programming through Menu Keys to Access Five Menus:
 - a. Security level.
 - b. Pressure, velocity, or flow application.
 - c. Engineering units.
 - d. K-factor for use with flow application.
 - e. Set-point control only; set-point and alarm operation; and alarm operation as high, low, or high/low with manual or automatic reset and delay.
 - f. View high and low readings.
 - g. Digital dampening for smoothing erratic applications.
 - h. Scaling of analog output to fit range and field calibration.
- 6. Display:
 - a. Digital, four-digit display with backlight, with 0.4-inch- high alphanumeric characters.
 - b. Four indicators; two for set point and two for alarm status.
- 7. Operator Interface:
 - a. Set-point adjustment through keypad on face of instrument.
 - b. Zero and span adjustments accessible through menu.
 - c. Programming through keypad.
- 8. Analog Output Signal:
 - a. Two-wire, 4- to 20-mA dc current source.
 - b. Signal capable of operating into a 900-ohm load.
- 9. Digital Output Signal:
 - a. Two SPDT relays.
 - b. Each rated for one amp at 30-V ac or dc.
- 10. Construction:
 - a. Die cast-aluminum casing and bezel.
 - b. Threaded, NPS 1/8 connections on side and back.
 - c. Vertical plane mounting.
 - d. NEMA 250, Type 1.
 - e. Nominal 4-inch- diameter face.
 - f. Mounting Bracket: Appropriate for installation.

2.13 AIR TEMPERATURE SENSORS

- A. Platinum RTDs: Common requirements:
 - 1. 100 or 1000 ohms at 0 deg C and a temperature coefficient of 0.00385 ohm/ohm/deg C.
 - 2. Two-wire, PTFE-insulated, 22-gage stranded copper leads.
 - 3. Performance Characteristics:
 - a. Range: Minus 50 to 275 deg F.
 - b. Interchangeable Accuracy: At 32 deg F within 0.5 deg F.
 - c. Repeatability: Within 0.5 deg F.
 - d. Self-Heating: Negligible.
 - 4. Transmitter Requirements:
 - a. Transmitter required for each 100-ohm RTD.
 - b. Transmitter optional for 1000-ohm RTD, contingent on compliance with end-toend control accuracy.
- B. Platinum RTD, Single-Point Air Temperature Duct Sensors:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Minco.
 - 3. 100 or 1000ohms.
 - 4. Temperature Range: Minus 50 to 275 deg F.
 - 5. Probe: Single-point sensor with a stainless steel sheath.
 - 6. Length: As required by application to achieve tip at midpoint of air tunnel, up to 18 inches long.
 - 7. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
 - 8. Gasket for attachment to duct or equipment to seal penetration airtight.
 - 9. Conduit Connection: 1/2-inch trade size.
- C. Platinum RTD, Air Temperature Averaging Sensors:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Minco.
 - 3. 100 or 1000ohms.
 - 4. Temperature Range: Minus 50 to 275 deg F.
 - 5. Multiple sensors to provide average temperature across entire length of sensor.
 - 6. Rigid probe of aluminum, brass, copper, or stainless steel sheath.
 - 7. Flexible probe of aluminum, brass, copper, or stainless steel sheath and formable to a 4-inch radius.
 - 8. Length: As required by application to cover entire cross section of air tunnel.
 - 9. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
 - 10. Gasket for attachment to duct or equipment to seal penetration airtight.
 - 11. Conduit Connection: 1/2-inch trade size.
- D. Platinum RTD Outdoor Air Temperature Sensors:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
- a. Minco. 3. 100 or 10000hms.
- 4. Temperature Range: Minus 50 to 275 deg F.
- 5. Probe: Single-point sensor with a stainless steel sheath.
- 6. Solar Shield: Stainless steel.
- 7. Enclosure: NEMA 250, Type 4 or 4X junction box or combination conduit and outlet box with removable cover and gasket.
- 8. Conduit Connection: 1/2-inch trade size.
- E. Platinum RTD Space Air Temperature Sensors:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Minco.
 - 3. 100 or 1000ohms.
 - 4. Temperature Range: Minus 50 to 212 deg F.
 - 5. Sensor assembly shall include a temperature sensing element mounted under a flush, brushed-aluminum cover.
 - 6. Provide a mounting plate that is compatible with the surface shape that it is mounted to and electrical box used.
 - 7. Concealed wiring connection.
- F. Thermal Resistors (Thermistors): Common requirements:
 - 1. 10,000 ohms at 25 deg C and a temperature coefficient of 23.5 ohms/ohm/deg C.
 - 2. Two-wire, PTFE-insulated, 22-gage stranded copper leads.
 - 3. Performance Characteristics:
 - a. Range: Minus 50 to 275 deg F.
 - b. Interchangeable Accuracy: At 77 deg F within 0.5 deg F.
 - c. Repeatability: Within 0.5 deg F.
 - d. Drift: Within 0.5 deg F over 10 years.
 - e. Self-Heating: Negligible.
 - 4. Transmitter optional, contingent on compliance with end-to-end control accuracy.
- G. Thermistor, Single-Point Duct Air Temperature Sensors:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Minco.
 - 3. Temperature Range: Minus 50 to 275 deg F.
 - 4. Probe: Single-point sensor with a stainless steel sheath.
 - 5. Length: As required by application to achieve tip at midpoint of air tunnel, up to 18 inches long.
 - 6. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.

- 7. Gasket for attachment to duct or equipment to seal penetration airtight.
- 8. Conduit Connection: 1/2-inch trade size.
- H. Thermistor Averaging Air Temperature Sensors:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Minco.
 - 3. Temperature Range: Minus 50 to 275 deg F.
 - 4. Multiple sensors to provide average temperature across entire length of sensor.
 - 5. Rigid probe of aluminum, brass, copper, or stainless steel sheath.
 - 6. Flexible probe of aluminum, brass, copper, or stainless steel sheath and formable to a 4-inch radius.
 - 7. Length: As required by application to cover entire cross section of air tunnel.
 - 8. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
 - 9. Gasket for attachment to duct or equipment to seal penetration airtight.
 - 10. Conduit Connection: 1/2-inch trade size.
- I. Thermistor Outdoor Air Temperature Sensors:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Minco.
 - 3. Temperature Range: Minus 50 to 275 deg F.
 - 4. Probe: Single-point sensor with a stainless steel sheath.
 - 5. Solar Shield: Stainless steel.
 - 6. Enclosure: NEMA 250, Type 4 or 4X junction box or combination conduit and outlet box with removable cover and gasket.
 - 7. Conduit Connection: 1/2-inch trade size.
- J. Thermistor Space Air Temperature Sensors:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Minco.
 - 3. Temperature Range: Minus 50 to 212 deg F.
 - 4. Sensor assembly shall include a temperature sensing element mounted under a flush, brushed-aluminum cover.
 - 5. Provide a mounting plate that is compatible with the surface shape that it is mounted to and electrical box used.
 - 6. Concealed wiring connection.
- K. Space Air Temperature Sensors for Use with DDC Controllers Controlling Terminal Units:
 - 1. 100- or 1000-ohm platinum RTD or thermistor.
 - 2. Thermistor:

- a. Pre-aged, burned in, and coated with glass; inserted in a metal sleeve; and entire unit encased in epoxy.
- b. Thermistor drift shall be less than plus or minus 0.5 deg F over 10 years.
- 3. Temperature Transmitter Requirements:
 - a. Mating transmitter required with each 100-ohm RTD.
 - b. Mating transmitters optional for 1000-ohm RTD and thermistor, contingent on compliance with end-to-end control accuracy.
- 4. Provide digital display of sensed temperature.
- 5. Provide sensor with local control.
 - a. Local override to turn HVAC on.
 - b. Local adjustment of temperature set point.
 - c. Both features shall be capable of manual override through control system operator.

2.14 COMBINATION AIR TEMPERATURE SENSORS AND SWITCHES

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by the following: 1. Minco.
- C. Source Limitations: Obtain temperature-measuring sensors and transmitters and airflow from single manufacturer.
- D. Combination temperature sensor and switch in same instrument.
- E. Air Temperature Switch:
 - 1. Factory preset set point of 38 deg F. Field-adjustable set point from 30 to 44 deg F.
 - 2. Responsive to coldest 12-inch section of sensor length.
 - 3. DPST latching relay rated at 25 A and 120-V ac, with powered controller, coil, and manual rest at panel. Wire one leg to fan start circuit and other leg to signal a remote alarm.
- F. Air Temperature Sensor:
 - 1. Temperature-averaging type over sensor length. Length to be determined by installing trade to provide uniform coverage over air tunnel. Consult manufacturer for recommendations.
 - 2. Platinum RTD with a value of 1000 ohms at 0 deg C and a temperature coefficient of 0.00385 ohm/ohm/deg C.
 - 3. Accuracy: Within 0.9 deg F.
 - 4. Output Signal: 4 to 20 mA for connection to remote monitoring.
 - 5. Encase RTDs in a flexible nominal 0.375-inch- diameter sheath constructed of brass.
 - 6. Lead wires shall be 18-gage AWG copper.
 - 7. Enclosure: NEMA 250, Type 4.

2.15 AIR TEMPERATURE SWITCHES

A. Thermostat and Switch for Low Temperature Control in Duct Applications:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Honeywell International Inc.
 - b. Siemens Industry, Inc., Building Technologies Division.
- 3. Description:
 - a. Two-position control.
 - b. Field-adjustable set point.
 - c. Manual reset.
 - d. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 4. Performance:
 - a. Operating Temperature Range: 15 to 55 deg F.
 - b. Temperature Differential: 5 deg F, non-adjustable and additive.
 - c. Enclosure Ambient Temperature: Minus 20 to 140 deg F.
 - d. Sensing Element Maximum Temperature: 250 deg F.
 - e. Voltage: 120-V ac.
 - f. Current: 16 FLA.
 - g. Switch Type: Two SPDT snap switches operate on coldest 12-inch section along element length.
- 5. Construction:
 - a. Vapor-Filled Sensing Element: Nominal 20 ft. long.
 - b. Dual Temperature Scale: Fahrenheit and Celsius visible on face.
 - c. Set-Point Adjustment: Screw.
 - d. Enclosure: Painted metal, NEMA 250, Type 1.
 - e. Electrical Connections: Screw terminals.
 - f. Conduit Connection: 1/2-inch trade size.
- B. Thermostat and Switch for High Temperature Control in Duct Applications:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Schneider Electric USA, Inc.
 - 3. Source Limitations: Obtain temperature-measuring sensors and transmitters and airflow from single manufacturer.
 - 4. Description:
 - a. Two-position control.
 - b. Field-adjustable set point.
 - c. Manual reset.
 - d. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 5. Performance:
 - a. Temperature Range: 100 to 160 deg F.
 - b. Temperature Differential: 5 deg F.
 - c. Ambient Temperature: Zero to 260 deg F.
 - d. Voltage: 120-V ac.
 - e. Current: 16 FLA.
 - f. Switch Type: SPDT snap switch.

- 6. Construction:
 - a. Sensing Element: Helical bimetal.
 - b. Enclosure: Metal, NEMA 250, Type 1.
 - c. Electrical Connections: Screw terminals.
 - d. Conduit Connection: 1/2-inch trade size.

2.16 AIR TEMPERATURE RTD TRANSMITTERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by the following: 1. Minco.
- C. Source Limitations: Obtain temperature-measuring sensors and transmitters and airflow from single manufacturer.
- D. House electronics in NEMA 250 enclosure.
 - 1. Duct: Type 1.
 - 2. Outdoor: Type 4.
 - 3. Space: Type 1.
- E. Conduit Connection: 1/2-inch trade size.
- F. Functional Characteristics:
 - 1. Input:
 - a. 100-ohm platinum RTD temperature coefficient of 0.00385 ohm/ohm/deg C, twowire sensors.
 - b. 1000-ohm platinum RTD temperature coefficient of 0.00385 ohm/ohm/deg C, twowire sensors.
 - 2. Span (Adjustable):
 - a. Space: 40 to 90 deg F.
 - b. Supply Air Cooling and Heating: 40 to 120 deg F.
 - c. Supply Air Cooling Only: 40 to 90 deg F.
 - d. Supply Air Heating Only: 40 to 120 deg F.
 - e. Exhaust Air: 50 to 100 deg F.
 - f. Return Air: 50 to 100 deg F.
 - g. Mixed Air: Minus 40 to 140 deg F.
 - h. Outdoor: Minus 40 to 140 deg F.
 - 3. Output: 4- to 20-mA dc, linear with temperature; RFI insensitive; minimum drive load of 600 ohms at 24-V dc.
 - 4. Zero and span field adjustments, plus or minus 5 percent of span. Minimum span of 50 deg F.
 - 5. Match sensor with temperature transmitter and factory calibrate together.
- G. Performance Characteristics:
 - 1. Calibration Accuracy: Within 0.1 percent of the span.
 - 2. Stability: Within 0.2 percent of the span for at least 6 months.
 - 3. Combined Accuracy: Within 0.5 percent.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for valves installed in piping to verify actual locations of piping connections before installation.
- C. Examine roughing-in for dampers and instruments installed in duct systems to verify actual locations of connections before installation.
- D. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
- E. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.
- F. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.
- G. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONTROL-DAMPER APPLICATIONS

- A. Select from damper types indicated to achieve performance requirements and characteristics indicated while subjected to full range of system operation encountered.
- B. Rectangular Control-Damper Applications:
 - 1. Exhaust Air: Rectangular dampers with aluminum airfoil blades; 0.5 maximum air pressure and 800 feet per second maximum air velocity.
 - 2. Outdoor Air: Rectangular dampers with aluminum airfoil blades; 0.5 maximum air pressure and 800 feet per second maximum air velocity.
 - 3. Return Air: Rectangular dampers with aluminum airfoil blades; 0.5 maximum air pressure and 800 feet per second maximum air velocity.
 - 4. Supply Air: Rectangular dampers with aluminum airfoil blades; 0.5 maximum air pressure and 800 feet per second maximum air velocity.

3.3 AIR FLOW INSTRUMENT APPLICATIONS

- A. Select from instrument types to achieve performance requirements and characteristics indicated while subjected to full range of system operation encountered.
- B. Thermal Airflow Measurement Stations:
 - 1. For Air-Ducted/Plenum:
 - a. Measured Velocities Greater Than 200 fpm (1.0 m/s): Thermal airflow measurement station.
 - b. Provide a remotely mounted microprocessor-based transmitter at each measurement location.

- 2. For Air-Ducted/Plenum Duct Size 2 sq. ft. (0.18 sq. m) or Less:
 - a. Measured Velocities Less Than 200 fpm (1.0 m/s): Thermal airflow measurement station.
 - b. Provide a remotely mounted microprocessor-based transmitter at each measurement location.
- 3. For Supply or Return Fan Array:
 - a. Measured Velocities Greater Than 200 fpm (1.0 m/s): Thermal airflow measurement station.
 - b. Provide a remotely mounted microprocessor-based transmitter at each measurement location.
- 4. For Supply or Return Fan, Single-Width Single-Inlet (SWSI) or Double-Width Double-Inlet (DWDI) Fans:
 - a. Measured Velocities Greater Than 200 fpm (1.0 m/s): Thermal airflow measurement station.
 - b. Provide a remotely mounted microprocessor-based transmitter at each measurement location.
- 5. For Air Terminal Units:
 - a. Measured Velocities Greater Than 200 fpm (1.0 m/s): Thermal airflow measurement station.
 - b. Provide a microprocessor-based transmitter at each measurement location.
- 6. For Packaged HVAC Units, 12.5 Tons (44.0 kW) or Smaller:
 - a. Measured Velocities Greater Than 200 fpm (1.0 m/s): Thermal airflow measurement station.
 - b. Provide a remotely mounted microprocessor-based transmitter at each measurement location.
- 7. For Directional Airflow Sensors:
 - a. Measured Velocities Greater Than 50 fpm (0.25 m/s): Thermal airflow measurement station.
 - b. Provide a remotely mounted microprocessor-based transmitter at each measurement location.
- 8. For Data Center Server Rack Airflow/Pressure and Temperature Monitor:
 - a. Measured Velocities Greater Than 200 fpm (1.0 m/s): Thermal airflow measurement station.
 - b. Provide a remotely mounted microprocessor-based transmitter at each measurement location.
- 9. For Damper-Mounted Airflow Stations:
 - a. Measured Velocities Greater Than 200 fpm (1.0 m/s): Thermal airflow measurement station.
 - b. Provide a remotely mounted microprocessor-based transmitter at each measurement location.
- C. Duct-Mounted Airflow Sensors:
 - 1. Measured Velocities 500 fpm (2.5 m/s) and Less: Thermal airflow station.
 - 2. Measured Velocities Greater than 500 fpm (2.5 m/s): Thermal airflow station.
- D. Damper-Mounted Airflow Sensors:
 - 1. Measured Velocities 400 fpm (2.0 m/s) and Less: Thermal airflow station.
 - 2. Measured Velocities Greater than 500 fpm (2.5 m/s): Thermal airflow station.
- E. Airflow Switches:

- 1. Measured Velocities 400 fpm (2.0 m/s) and Less: Polymer film sail switch.
- 2. Measured Velocities Greater than 400 fpm (2.0 m/s): Stainless steel single-vane switch.
- F. Airflow Transmitters for Use with Pitot-Tube-Type Sensors:
 - 1. Exhaust Air Airflow: Airflow transmitter with 0.25 percent accuracy and auto-zero feature.
 - 2. Outdoor Air Airflow: Airflow transmitter with 0.25 percent accuracy and auto-zero feature.
 - 3. Return Air Airflow: Airflow transmitter with 0.25 percent accuracy and auto-zero feature.
 - 4. Supply Air Airflow: Airflow transmitter with 0.25 percent accuracy and auto-zero feature.

3.4 INSTALLATION, GENERAL

- A. Furnish and install products required to satisfy most stringent requirements indicated.
- B. Install products level, plumb, parallel, and perpendicular with building construction.
- C. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.
- D. Properly support control system components, tubing, piping, wiring, and conduits to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to a seismic event, wind, or others forces common to the application.
- E. Provide ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
- F. Seal penetrations made in fire-rated and acoustically rated assemblies.
- G. Fastening Hardware:
 - 1. Wrenches, pliers, and other tools that will cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
- H. Corrosive Environments:
 - 1. Use products that are suitable for environment to which they will be subjected.
 - 2. Use Type 316 stainless steel tubing and fittings when in contact with a corrosive environment.
 - 3. When conduit is in contact with a corrosive environment, use Type 316 stainless steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.

4. Where control devices are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.5 CONTROL DAMPERS INSTALLATION REQUIREMENTS

A. Install smooth transitions, not exceeding 15 degrees, to dampers larger or smaller than adjacent duct. Install transitions as close to damper as possible but at distance to avoid interference and impact to performance. Consult manufacturer for recommended clearance.

B. Clearance:

- 1. Locate dampers for easy access and provide separate support of dampers that cannot be handled by service personnel without hoisting mechanism.
- 2. Install dampers with at least 24 inches of clear space on sides of dampers requiring service access unless more space is recommended by manufacturer. Provide code required clearances as applicable.
- C. Service Access:
 - 1. Install dampers and actuators to be accessible for visual inspection and service.
 - 2. Install access door(s) in duct or equipment located upstream of damper to allow service personnel to hand clean any portion of damper, linkage, and actuator. Comply with requirements in Section 233300 "Air Duct Accessories."
- D. Install dampers straight and true, level in all planes, and square in all dimensions.
- E. Install supplementary structural reinforcement for large multiple-section dampers if factoryfurnished support alone cannot handle loading.
- F. Attach field-installed actuator(s) to damper drive shaft.
- G. For duct-mounted and equipment-mounted dampers installed outside of equipment, install a visible and accessible indication of damper position from outside.

3.6 INSTRUMENTS, GENERAL INSTALLATION REQUIREMENTS

- A. Mounting Location:
 - 1. Rough-in: Outline instrument-mounting locations before setting instruments and routing cable, wiring, tubing, and conduit to final location.
 - 2. Install switches and transmitters for air and liquid flow associated with individual airhandling units and connected ductwork and piping near air-handlings units co-located in air-handling unit system control panel, to provide service personnel a single and convenient location for inspection and service.
 - 3. Install airflow switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 4. Mount switches and transmitters not required to be mounted within system control panels on walls, floor-supported freestanding pipe stands, or floor-supported structural support frames. Use manufacturer mounting brackets to accommodate field mounting. Securely support and brace products to prevent vibration and movement.

- 5. Install instruments in dry gas and non-condensable-vapor piped services above their process connection point. Slope process connection lines up to instrument with a minimum slope of 3 percent.
- B. Mounting Height:
 - 1. Mount instruments in user-occupied space to match mounting height of light switches unless otherwise indicated on Drawings. Mounting height is to comply with codes and accessibility requirements.
 - Mount switches and transmitters, located in mechanical equipment rooms and other similar space not subject to code, state, and federal accessibility requirements, within a range of 42 to 72 inches above the adjacent floor, grade, or service catwalk or platform.
 Make every effort to mount at 60 inches.
- C. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct staticpressure class and leakage and seal classes indicated using neoprene gaskets or grommets.

3.7 INSTALLATION OF FLOW INSTRUMENTS

- A. Airflow Sensors:
 - 1. Install sensors in straight sections of duct with manufacturer-recommended straight duct upstream and downstream of sensor.
 - 2. Installed sensors are to be accessible for visual inspection and service. Install access door(s) in duct or equipment located upstream of sensor, to allow service personnel to hand clean sensors.
- B. Transmitters:
 - 1. Install airflow transmitters serving an air system in a single location adjacent to or within system control panel.

3.8 INSTALLATION OF PRESSURE INSTRUMENTS

- A. Mounting Location:
 - 1. Rough-in: Outline instrument-mounting locations before setting instruments and routing, cable, wiring, tubing, and conduit to final location.
 - 2. Install switches and transmitters for air and liquid pressure associated with individual airhandling units and associated connected ductwork and piping near air-handlings units colocated in air-handling unit system control panel, to provide service personnel a single and convenient location for inspection and service.
 - 3. Install liquid and steam pressure switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 4. Install air-pressure switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 5. Mount switches and transmitters not required to be mounted within system control panels on walls, floor-supported freestanding pipe stands, or floor-supported structural support frames. Use manufacturer mounting brackets to accommodate field mounting. Securely support and brace products to prevent vibration and movement.

- 6. Install instruments (except pressure gauges) in steam, liquid, and liquid-sealed piped services below their process connection point. Slope tubing down to instrument with a slope of 3 percent.
- 7. Install instruments in dry gas and noncondensable vapor piped services above their process connection point. Slope process connection lines up to instrument with a minimum slope of 2 percent.
- B. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct static pressure class and leakage and seal classes indicated using neoprene gaskets or grommets.
- C. Duct Pressure Sensors:
 - 1. Install sensors using manufacturer's recommended upstream and downstream distances.
 - 2. Unless indicated on Drawings, locate sensors approximately 67 percent of distance of longest hydraulic run. Location of sensors to be submitted and approved before installation.
 - 3. Install mounting hardware and gaskets to make sensor installation airtight.
 - 4. Route tubing from the sensor to transmitter.
 - 5. Use compression fittings at terminations.
 - 6. Install sensor in accordance with manufacturer's instructions.
 - 7. Support sensor to withstand maximum air velocity, turbulence, and vibration encountered to prevent instrument failure.
- D. Outdoor Pressure Sensors:
 - 1. Install roof-mounted sensor in least-noticeable location and as far away from exterior walls as possible.
 - 2. Locate wall-mounted sensor in an inconspicuous location.
 - 3. Submit sensor location for approval before installation.
 - 4. Verify signal from sensor is stable and consistent to all connected transmitters. Modify installation to achieve proper signal.
 - 5. Route outdoor signal pipe full size of sensor connection to transmitters. Install branch connection of size required to match to transmitter.
 - 6. Install sensor signal pipe with dirt leg and drain valve below roof penetration.
 - 7. Insulate signal pipe with flexible elastomeric insulation as required to prevent condensation.
 - 8. Connect roof-mounted signal pipe exposed to outdoors to building grounding system.
- E. Air-Pressure Differential Switches:
 - 1. Install air-pressure sensor in system for each switch connection. Install sensor in an accessible location for inspection and replacement.
 - 2. A single sensor may be used to share a common signal to multiple pressure instruments.
 - 3. Install access door in duct and equipment to access sensors that cannot be inspected and replaced from outside.
 - 4. Route NPS 3/8 tubing from sensor to switch connection.
 - 5. Do not mount switches on rotating equipment.
 - 6. Install switches in a location free from vibration, heat, moisture, or adverse effects, which could damage the switch and hinder accurate operation.
 - 7. Install switches in an easily accessible location serviceable from floor.
 - 8. Install switches adjacent to system control panel if within 50 feet; otherwise, locate switch in vicinity of system connection.

3.9 INSTALLATION OF TEMPERATURE INSTRUMENTS

- A. Mounting Location:
 - 1. Roughing In:
 - a. Outline instrument mounting locations before setting instruments and routing cable, wiring, tubing, and conduit to final location.
 - b. Provide independent inspection to confirm that proposed mounting locations comply with requirements indicated and approved submittals.
 - 1) Indicate dimensioned locations with mounting height for all surfacemounted products on Shop Drawings.
 - 2) Do not begin installation without submittal approval of mounting location.
 - c. Complete installation rough-in only after confirmation by independent inspection is complete and approval of location is documented for review by Owner and Architect on request.
 - 2. Install switches and transmitters for air and liquid temperature associated with individual air-handling units and associated connected ductwork and piping near air-handling units co-located in air-handling unit system control panel to provide service personnel a single and convenient location for inspection and service.
 - 3. Install liquid and steam temperature switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 4. Install air temperature switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 5. Mount switches and transmitters on walls, floor-supported freestanding pipe stands, or floor-supported structural support frames. Use manufacturer's mounting brackets to accommodate field mounting. Securely support and brace products to prevent vibration and movement.
- B. Special Mounting Requirements:
 - 1. Protect products installed outdoors from solar radiation, building and wind effect with stand-offs and shields constructed of Type 316 stainless.
 - 2. Temperature instruments having performance impacted by temperature of mounting substrate shall be isolated with an insulating barrier located between instrument and substrate to eliminate effect. Where instruments requiring insulation are located in finished space, conceal insulating barrier in a cover matching the instrument cover.
- C. Mounting Height:
 - 1. Mount temperature instruments in user-occupied space to match mounting height of light switches unless otherwise indicated on Drawings. Mounting height shall comply with codes and accessibility requirements.
 - Mount switches and transmitters located in mechanical equipment rooms and other similar space not subject to code or state and Federal accessibility requirements within a range of 42 to 72 inches above the adjacent floor, grade, or service catwalk or platform.
 Make every effort to mount at 60 inches.
- D. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct staticpressure class and leakage and seal classes indicated using neoprene gaskets or grommets.
- E. Installation of Space Temperature Sensor:

- 1. Conceal assembly in an electrical box of sufficient size to house sensor and transmitter, if provided.
- 2. Install electrical box with a faceplate to match sensor cover if sensor cover does not completely cover electrical box.
- 3. In finished areas, recess electrical box within wall.
- 4. In unfinished areas, electrical box may be surface mounted if electrical light switches are surface mounted. Use a cast-aluminum electric box for surface-mounted installations.
- 5. Align electrical box with other electrical devices such as visual alarms and light switches located in the vicinity to provide a neat and well-thought-out arrangement. Where possible, align in both horizontal and vertical axis.
- F. Installation of Outdoor Air Temperature Sensor:
 - 1. Mount sensor in a discrete location facing north.
 - 2. Protect installed sensor from solar radiation and other influences that could impact performance.
 - 3. If required to have a transmitter, mount transmitter remote from sensor in an accessible and serviceable location indoors.
- G. Installation of Single-Point Duct Temperature Sensor:
 - 1. Install single-point-type, duct-mounted, supply- and return-air temperature sensors. Install sensors in ducts with sensitive portion of the element installed in center of duct cross section and located to sense near average temperature. Do not exceed 24 inches in sensor length.
 - 2. Install return-air sensor in location that senses return-air temperature without influence from outdoor or mixed air.
 - 3. Rigidly support sensor to duct and seal penetration airtight.
 - 4. If required to have transmitter, mount transmitter remote from sensor at accessible and serviceable location.
- H. Installation of Averaging Duct Temperature Sensor:
 - 1. Install averaging-type air temperature sensor for temperature sensors located within airhandling units, similar equipment, and large ducts with air tunnel cross-sectional area of 20 sq. ft. and larger.
 - 2. Install sensor length to maintain coverage over entire cross-sectional area. Install multiple sensors where required to maintain the minimum coverage.
 - 3. Fasten and support sensor with manufacturer-furnished clips to keep sensor taut throughout entire length.
 - 4. If required to have transmitter, mount transmitter in an accessible and serviceable location.
- I. Installation of Low-Limit Air Temperature Switch:
 - 1. Install multiple low-limit switches to maintain coverage over entire cross-sectional area of air tunnel.
 - 2. Fasten and support sensing element with manufacturer-furnished clips to keep element taut throughout entire length.
 - 3. Mount switches outside of airstream at a location and mounting height to provide easy access for switch set-point adjustment and manual reset.
 - 4. Install on entering side of cooling coil unless otherwise indicated on Drawings.
- J. Installation of Liquid Temperature Sensor:

- 1. Assembly shall include sensor, thermowell.
- 2. For pipe NPS 4 and larger, install sensor and thermowell length to extend into pipe between 50 to 75 percent of pipe cross section.
- 3. For pipe smaller than NPS 4:
 - a. Install reducers to increase pipe size to NPS 4 at point of thermowell installation.
 - b. For pipe sizes NPS 2-1/2 and NPS 3, thermowell and sensor may be installed at pipe elbow or tee to achieve manufacturer-recommended immersion depth in lieu of increasing pipe size.
 - c. Minimum insertion depth shall be 2-1/2 inches.
- 4. Install matching thermowell.
- 5. Fill thermowell with heat-transfer fluid before inserting sensor.
- 6. Tip of spring-loaded sensors shall contact inside of thermowell.
- 7. For insulated piping, install thermowells with extension neck to extend beyond face of insulation.
- 8. Install thermowell in top dead center of horizontal pipe positioned in an accessible location to allow for inspection and replacement. If top dead center location is not possible due to field constraints, install thermowell at location along top half of pipe.

3.10 ELECTRICAL CONNECTIONS

- A. Install electrical power to field-mounted control devices requiring electrical power.
- B. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260523 "Control-Voltage Electrical Power Cables."
- C. Ground equipment in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Furnish and install raceways. Comply with requirements in Section 260533.13 "Conduits for Electrical Systems."
- E. Furnish and install circuit breakers. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers."
- F. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.
- G. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate to be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 - 2. Nameplate to be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.11 CONTROL CONNECTIONS

A. Install control signal wiring to field-mounted control devices.

- B. Connect control signal wiring in accordance with Section 260523 "Control-Voltage Electrical Power Cables."
- C. Furnish and install raceways. Comply with requirements in Section 260533 "Raceway and Boxes for Electrical Systems."

3.12 CLEANING

A. Remove grease, mastic, adhesives, dust, dirt, stains, fingerprints, labels, and other foreign materials from exposed surfaces.

3.13 STARTUP

- A. Control-Damper Checkout:
 - 1. Check installed products before continuity tests, leak tests, and calibration.
 - 2. Check dampers for proper location and accessibility.
 - 3. Verify that control dampers are installed correctly for flow direction.
 - 4. Verify that proper blade alignment, either parallel or opposed, has been provided.
 - 5. Verify that damper frame attachment is properly secured and sealed.
 - 6. Verify that damper actuator and damper linkage attachment are secure.
 - 7. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
 - 8. Verify that damper blade travel is smooth and unobstructed throughout operating range.
 - 9. Pneumatic Control Dampers:
 - a. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material, and support.
 - b. Verify air supply for each product is properly installed.
 - c. Verify that pressure gauges are provided in each air line to damper actuator and positioner.
- B. Air Flow Instrument Checkout:
 - 1. Check out installed products before continuity tests, leak tests, and calibration.
 - 2. Check instruments for proper location and accessibility.
 - 3. Check instruments for proper installation with respect to direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.
 - 4. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material, and support.
 - 5. Verify that sensors are installed correctly with respect to flow direction.
 - 6. Verify that sensor attachment is properly secured and sealed.
 - 7. Verify that processing tubing attachment is secure and isolation valves have been provided.
 - 8. Inspect instrument tag against approved submittal.
 - 9. Verify that recommended upstream and downstream distances have been maintained.
- C. Temperature Instrument Checkout:
 - 1. Check out installed products before continuity tests, leak tests, and calibration.
 - 2. Check temperature instruments for proper location and accessibility.
 - 3. Verify sensing element type and proper material.
 - 4. Verify location and length.

5. Verify that wiring is correct and secure.

3.14 ADJUSTMENT, CALIBRATION, AND TESTING

- A. Check and document open and close cycle times for applications with a cycle time of less than 15 seconds.
- B. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed back to 100 percent open.
- C. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed, and 100 percent open at proper air pressure.
- D. Check and document open and close cycle times for applications with a cycle time of less than 30 seconds.
- E. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.
- F. Description:
 - 1. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.
 - 2. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.
 - 3. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.
 - 4. Equipment and procedures used for calibration are to meet instrument manufacturer's recommendations.
 - 5. Provide diagnostic and test equipment for calibration and adjustment.
 - 6. Field instruments and equipment used to test and calibrate installed instruments are to have accuracy at least twice the instrument accuracy being calibrated. For example, an installed instrument with an accuracy of 1 percent is to be checked by an instrument with an accuracy of 0.5 percent.
 - 7. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.
 - 8. If after-calibration-indicated performance cannot be achieved, replace out-of-tolerance instruments.
 - 9. Comply with field-testing requirements and procedures indicated by ASHRAE Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.
- G. Analog Signals:
 - 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 - 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 - 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.
- H. Digital Signals:

- 1. Check digital signals using a jumper wire.
- 2. Check digital signals using an ohmmeter to test for contact.
- I. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.
- J. Switches: Calibrate switches to make or break contact at set points indicated.
- K. Transmitters:
 - 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 - 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistance source.

3.15 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.16 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of systems and equipment Installer. Include semiannual preventive maintenance, repair or replacement of worn or defective components, cleaning and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.17 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain instrumentation and control devices.
- B. Provide a complete set of instructional videos covering each product specified and installed and showing the following:
 - 1. Software programming.
 - 2. Calibration and test procedures.
 - 3. Operation and maintenance requirements and procedures.
 - 4. Troubleshooting procedures.
- C. Coordinate video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.
- D. Record videos on DVD disks.
- E. Owner is to have right to make additional copies of video for internal use without paying royalties.

END OF SECTION 230923.11

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Single-wall rectangular ducts and fittings.
- 2. Single-wall round ducts and fittings.
- 3. Sheet metal materials.
- 4. Duct liner.
- 5. Sealants and gaskets.
- 6. Hangers and supports.
- B. Related Requirements:
 - 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.
 - 3. Section 235123 "Gas Vents" for listed metal duct systems attached to gas-fired appliances.

1.2 DEFINITIONS

A. SMACNA "HVAC Duct Construction Standards - Metal and Flexible": Sheet Metal and Air Conditioning Contractors' National Association "HVAC Duct Construction Standards - Metal and Flexible" Third Edition – 2005.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of all duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.
 - 8. Seam and joint construction.
 - 9. Penetrations through fire-rated and other partitions.
 - 10. Equipment installation based on equipment being used on Project.

- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment and vibration isolation.
- C. Delegated Design Submittals:
 - 1. Sheet metal thicknesses. Follow SMACNA "HVAC Duct Construction Standards -Metal and Flexible" or minimum thicknesses indicated in "HVAC DUCT SCHEDULE" on drawings in M-600 sheet series, whichever is more stringent.
 - 2. Joint and seam construction and sealing. Follow SMACNA "HVAC Duct Construction Standards Metal and Flexible" for joint type that meets indicated pressure class. Follow "HVAC DUCT SCHEDULE" on drawings in M-600 sheet series for seal class requirements.
 - 3. Reinforcement details and spacing. Follow SMACNA "HVAC Duct Construction Standards Metal and Flexible."
 - Materials, fabrication, assembly, and spacing of hangers and supports. Follow SMACNA "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated in drawings.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: A single set of plans or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.
- B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and with performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Airstream Surfaces: Surfaces in contact with airstream must comply with requirements in ASHRAE 62.1.
 - 1. Material surfaces must be determined to be resistant to mold growth in accordance with Mold Growth and Humidity test in UL 181. Sheet metal is exempt from this requirement.
 - 2. Airstream surface materials must be evaluated in accordance with the erosion tests in UL 181 or ASTM C 1071, and must not break away, crack, peel, flake off, or show evidence of delamination or continued erosion under test conditions.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7 "Construction and System Startup."
 - 1. Air duct systems must be constructed in accordance with the following standards:
 - a. SMACNA's HVAC Duct Construction Standards Metal and Flexible

- b. NFPA 90A, Standard for the Installation of Air-Conditioning and Ventilating Systems
- D. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 "HVAC System Construction and Insulation."
- E. Duct Dimensions: Unless otherwise indicated, all duct dimensions indicated on Drawings are inside clear dimensions and do not include insulation or duct wall thickness.

2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
 - 1. Construct ducts of galvanized sheet steel unless otherwise indicated.
 - 2. For ducts exposed to weather, construct of Type 316 stainless steel indicated by manufacturer to be suitable for outdoor installation.
- B. Transverse Joints: Fabricate joints in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. For ducts with longest side less than 36 inches, select joint types in accordance with Figure 2-1.
 - 2. For ducts with longest side 36 inches or greater, use flange joint connector Type T-22, T-24, T-24A, T-25a, or T-25b. Factory-fabricated flanged duct connection system may be used if submitted and approved by engineer of record.
- C. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." All longitudinal seams are to be Pittsburgh lock seams unless otherwise specified for specific application.
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Ch. 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Construct ducts of galvanized sheet steel unless otherwise indicated.
 - 2. For ducts exposed to weather, construct of Type 316 stainless steel indicated by manufacturer to be suitable for outdoor installation.

- 3. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Elgen Manufacturing.
 - b. GSI; a DMI Company.
 - c. Linx Industries; a DMI company (formerly Lindab).
 - d. McGill AirFlow LLC.
 - e. MKT Metal Manufacturing.
 - f. Nordfab Ducting.
 - g. SEMCO, LLC; part of FlaktGroup.
 - h. Set Duct Manufacturing.
 - i. Sheet Metal Connectors, Inc.
 - j. Spiral Manufacturing Co., Inc.
 - k. Spiral Pipe of Texas
 - 1. Stamped Fittings Inc.
- B. Source Limitations: Obtain single-wall round ducts and fittings from single manufacturer.
- C. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.4 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials are to be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Reinforcement Shapes and Plates: ASTM A36/A36M, steel plates, shapes, and bars; black and galvanized.

- 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- D. Tie Rods: Galvanized steel, 1/4-inch- minimum diameter for lengths 36 inches or less; 3/8-inchminimum diameter for lengths longer than 36 inches.

2.5 DUCT LINER

- A. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C534/C534M, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Aeroflex USA.
 - b. Armacell LLC.
 - c. Ductmate Industries, Inc; a DMI company.
 - d. K-Flex USA.
 - e. Sekisui Voltek, LLC.
 - 2. Source Limitations: Obtain flexible elastomeric duct liner from single manufacturer.
 - 3. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.
 - 4. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
- B. Insulation Pins and Washers:
 - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick galvanized steel; with beveled edge sized as required to hold insulation securely in place, but not less than 1-1/2 inches in diameter.
- C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure buttededge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm or greater.
 - 7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.

- 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
 - c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
- 9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 - a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
- 10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.6 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets are to be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10 inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- C. Flanged Joint Sealant: Comply with ASTM C920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- E. Round Duct Joint O-Ring Seals:
 - 1. Seal is to provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and is to be rated for10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.7 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Galvanized-steel rods and nuts.
- B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A603.
- D. Steel Cable End Connections: Galvanized-steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- F. Trapeze and Riser Supports:
 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and coordination drawings.
- B. Install ducts in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install ducts in maximum practical lengths with fewest possible joints.
- D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

- H. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- I. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- J. Install fire, combination fire/smoke, and smoke dampers where indicated on Drawings and as required by code, and by local authorities having jurisdiction. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers and specific installation requirements of the damper UL listing.
- K. Install heating coils, cooling coils, air filters, dampers, and all other duct-mounted accessories in air ducts where indicated on Drawings.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials both before and after installation. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."
- M. Elbows: Use long-radius elbows wherever they fit.
 - 1. Fabricate 90-degree rectangular mitered elbows to include turning vanes.
 - 2. Fabricate 90-degree round elbows with a minimum of five segments for 14 inches and larger.
- N. Branch Connections: Use lateral or conical branch connections.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts according to "HVAC DUCT SCHEDULE" on drawings in M-600 sheet series.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 12 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 DUCTWORK CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Systems indicated to be leak tested according to "HVAC DUCT SCHEDULE" on drawings in M-600 sheet series.
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

- 4. Testing of each duct section is to be performed with access doors, coils, filters, dampers, and other duct-mounted devices in place as designed. No devices are to be removed or blanked off so as to reduce or prevent additional leakage.
- 5. Test for leaks before applying external insulation.
- 6. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 7. Give seven days' advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.
- 3.7 STARTUP
 - A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."
- 3.8 DUCT SCHEDULE
 - A. Refer to "HVAC DUCT SCHEDULE" on drawings in M-600 sheet series for duct systems' pressure class, seal class, and predicted leakage class.
 - B. Fitting Configuration:
 - 1. Refer to Duct Fitting Standards on drawings in M-500 sheet series.

END OF SECTION 233113

SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Motor-operated backdraft dampers.
 - 2. Manual volume dampers.
 - 3. Flange connectors.
 - 4. Turning vanes.
 - 5. Remote damper operators.
 - 6. Duct access panel assemblies.
 - 7. Flexible connectors.
 - 8. Duct accessory hardware.
- B. Related Requirements:
 - 1. Section 230923.10 "Direct Digital Control (DDC) Field Devices" for control dampers.
 - 2. Section 233346 "Flexible Ducts" for insulated and non-insulated flexible ducts.
 - 3. Section 284621.11 "Addressable Fire-Alarm Systems" for duct-mounted fire and smoke detectors.
 - 4. Section 284621.13 "Conventional Fire-Alarm Systems" for duct-mounted fire and smoke detectors.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For duct silencers, include pressure drop, dynamic insertion loss, and self-generated noise data. Include breakout noise calculations for high-transmission-loss casings.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail duct accessories' fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control-damper installations.
 - d. Duct security bars.
 - e. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, or BIM model, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from installers of the items involved.
- B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with NFPA 90A and NFPA 90B.
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials must be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MOTOR-OPERATED BACKDRAFT DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Pottorff.
 - 3. Ruskin Company.
- B. Description: Parallel-blade dampers intended for shutoff and isolation of building exhaust, relief and outside air intake .
- C. Performance:
 - 1. Maximum Air Velocity: 4,000 fpm.
 - 2. Maximum System Pressure: 8 inches wg.
 - 3. AMCA Certification: Test and rate in accordance with AMCA 511.
 - 4. Leakage:
 - a. Class IA: Leakage must not exceed 3 cfm/sq. ft. against 1-inch wg differential static pressure.
- D. Construction:
 - 1. Frame:
 - a. Hat shaped.
 - b. 16-gauge- thick, galvanized sheet steel, with welded or mechanically attached corners and mounting flange where required.

- 2. Blades:
 - a. Multiple single-piece blades.
 - b. Airfoil type with two skins of 20 gauge galvanized steel with sealed edges.
- 3. Blade Action: Parallel.
- E. Blade Seals: Thermoplastic.
- F. Blade Axles:
 - 1. Material: Plated steel.
- G. Bearings: Synthetic pivot bushings.
- H. Damper Actuator Electric:
 - 1. Electric 24 V ac.
 - 2. UL 873 plenum rated.
 - 3. Two position with fail-safe spring return.
 - a. Sufficient motor torque and spring torque to drive damper fully closed with adequate force to achieve required damper seal.
 - b. Minimum 90-degree drive rotation.
 - 4. Clockwise or counterclockwise drive rotation as required for application.
 - 5. Environmental Operating Range:
 - a. Temperature: Minus 40 to plus 130 deg F.
 - b. Humidity: 5 to 95 percent relative humidity noncondensing.
 - 6. Environmental Enclosure: NEMA 1.
 - 7. Actuator to be factory mounted and provided with a single-point wiring connection.
- I. Controllers, Electrical Devices, and Wiring:
 - 1. Comply with requirements for electrical devices and connections specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 - 2. Electrical Connection: 24 V, 60 Hz.

2.3 MANUAL VOLUME DAMPERS

- A. Round, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Greenheck Fan Corporation.
 - b. McGill AirFlow LLC.
 - c. Pottorff.
 - d. Ruskin Company.
 - 2. Performance:
 - a. Pressure: Up to 1 inch w.g. pressure differential.
 - b. Velocity: Up to 2,000 fpm.
 - c. Temperature: Up to 180°F.
 - 3. Construction:
 - a. Suitable for horizontal or vertical airflow applications.
 - 4. Frames:
 - a. 20 gauge galvanized steel.
 - 5. Blades:

- a. Single blade, 20 gauge galvanized steel.
- 6. Blade Axles: Plated steel.
- 7. Bearings:
 - a. Molded synthetic.
- 8. Locking device to hold damper blades in a fixed position without vibration with 2-inch standoff bracket to accommodate insulated ducts. Ducts without insulation do not require the standoff bracket.
- B. Rectangular, Steel, Manual Volume Dampers Up to 36-inch x 12-inch:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Greenheck Fan Corporation.
 - b. McGill AirFlow LLC.
 - c. Pottorff.
 - d. Ruskin Company.
 - 2. Performance:
 - a. Pressure: Up to 1 inch w.g. pressure differential.
 - b. Velocity: Up to 2,000 fpm.
 - c. Temperature: Up to 180°F.
 - 3. Construction:
 - a. Suitable for horizontal or vertical airflow applications.
 - 4. Frames:
 - a. 22 gauge galvanized steel.
 - 5. Blades:
 - a. Single blade, 20 gauge galvanized steel.
 - 6. Blade Axles: Plated steel.
 - 7. Bearings:
 - a. Molded synthetic.
 - 8. Locking device to hold damper blades in a fixed position without vibration with 2-inch standoff bracket to accommodate insulated ducts. Ducts without insulation do not require the standoff bracket.
- C. Rectangular, Steel, Manual Volume Dampers Greater than 36-inch x 12-inch:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Greenheck Fan Corporation.
 - b. McGill AirFlow LLC.
 - c. Pottorff.
 - d. Ruskin Company.
 - 2. Performance:
 - a. Pressure: Up to 4 inch w.g. pressure differential.
 - b. Velocity: Up to 2,000 fpm.
 - c. Temperature: Up to 180°F.
 - 3. Construction:
 - a. Linkage out of airstream.
 - b. Suitable for horizontal or vertical airflow applications.
 - 4. Frames:
 - a. Channel-type, 16 gauge galvanized steel.
 - 5. Blades:

- a. Multi-blade, opposed-blade operation, 16 gauge galvanized steel.
- 6. Blade Axles: Plated steel.
- 7. Bearings:
 - a. Molded synthetic.
- 8. Locking device to hold damper blades in a fixed position without vibration with 2-inch standoff bracket to accommodate insulated ducts. Ducts without insulation do not require the standoff bracket.
- D. Jackshaft:
 - 1. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 2. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- E. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle, made of 3/32-inch- thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.4 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. CL WARD & Family Inc.
 - 2. Ductmate Industries, Inc.
 - 3. DynAir; a Carlisle Company.
 - 4. Elgen Manufacturing.
 - 5. Greenheck.
 - 6. Ruskin.
 - 7. Ward Industries; a brand of Hart & Cooley, Inc.
- B. Description: Add-on or roll-formed, factory fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gauge and Shape: Match connecting ductwork.

2.5 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Aero-Dyne Sound Control Co.
 - 2. CL WARD & Family Inc.

- 3. Ductmate Industries, Inc.
- 4. Duro Dyne Inc.
- 5. DynAir; a Carlisle Company.
- 6. Elgen Manufacturing.
- 7. Ward Industries; a brand of Hart & Cooley, Inc.
- C. Manufactured Turning Vanes for Metal Ducts: Fabricate curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- E. Vane Construction:
 - 1. Single wall.
 - 2. Refer to Duct Fitting Standards on drawings in M-500 sheet series for vane geometry configuration.

2.6 REMOTE DAMPER OPERATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. DynAir; a Carlisle Company.
 - 2. United Enertech.
 - 3. Young Regulator Company.
- B. Description: Cable system designed for remote manual damper adjustment.
- C. Cable: Stainless steel.
- D. Ceiling-Box Mounting: Recessed.
- E. Ceiling-Box Cover-Plate Material: Steel. Paint to match ceiling color.

2.7 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cesco Products; a division of MESTEK, Inc.
 - 2. CL WARD & Family Inc.
 - 3. Ductmate Industries, Inc.
 - 4. Duro Dyne Inc.
 - 5. Elgen Manufacturing.
 - 6. Flexmaster U.S.A., Inc.
 - 7. McGill AirFlow LLC.
 - 8. Ruskin Company.
 - 9. United Enertech.
 - 10. Ward Industries; a brand of Hart & Cooley, Inc.

- B. Low-Pressure Duct-Mounted Access Doors: Fabricate access panels in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figure 7-2 (7-2M), "Duct Access Doors and Panels," and Figure 7-3, "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. 24-gauge- thick galvanized steel door panel.
 - d. Hinges: Full length galvanized steel piano hinge.
 - e. Cam and Latch: 16 gauge galvanized steel cam and 20 gauge galvanized steel latch.
 - f. Fabricate doors airtight and suitable for duct pressure class.
 - g. Application: Ducts with pressure class of plus or minus 2-inches water gauge.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - a. 24-gauge- thick galvanized steel for 12-inch and smaller and 22-gauge greater than 12-inches.
- C. Medium-Pressure Duct-Mounted Access Doors: Fabricate access panels in accordance with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figure 7-2 (7-2M), "Duct Access Doors and Panels," and Figure 7-3, "Access Doors Round Duct."
 - 1. Sandwich Access Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Gasket: Neoprene rated to 200°F.
 - d. Knobs: Polymer, hand-turn type. No tools required.
 - e. Performance: Plus or minus 10-inches water gauge with no air leakage.
 - f. Geometry: Flat profile access door for rectangular ducts. Must use curved profile access door specific to spiral ducts for round and flat-oval ducts.

2.8 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. CL WARD & Family Inc.
 - 2. Ductmate Industries, Inc.
 - 3. Duro Dyne Inc.
 - 4. DynAir; a Carlisle Company.
 - 5. Elgen Manufacturing.
 - 6. Ventfabrics, Inc.
 - 7. Ward Industries; a brand of Hart & Cooley, Inc.
- B. Fire-Performance Characteristics: Adhesives, sealants, fabric materials, and accessory materials must have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested in accordance with ASTM E84.
- C. Airstream Surfaces: Surfaces in contact with the airstream must comply with requirements in ASHRAE 62.1.

- D. Materials: Flame-retardant or noncombustible fabrics.
- E. Coatings and Adhesives: Comply with UL 181, Class 1.
- F. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch thick, galvanized sheet steel. Provide metal compatible with connected ducts.
- G. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- H. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- I. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.9 DUCT ACCESSORY HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. CL WARD & Family Inc.
 - 2. Ductmate Industries, Inc.
 - 3. Duro Dyne Inc.
 - 4. DynAir; a Carlisle Company.
 - 5. Elgen Manufacturing.
 - 6. Hardcast; a Carlisle Company.
 - 7. United Enertech.
 - 8. Ventfabrics, Inc.
 - 9. Ward Industries; a brand of Hart & Cooley, Inc.

- B. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- C. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
- 2.10 MATERIALS
 - A. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
 - B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless steel ducts.
 - C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories in accordance with applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless steel accessories in stainless steel ducts, and aluminum accessories in aluminum ducts.
- C. Install motor-operated backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Where multiple damper sections are necessary to achieve required dimensions, provide reinforcement to fully support damper assembly when fully closed at full system design static pressure.
- E. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.
- F. Set dampers to fully open position before testing, adjusting, and balancing.
- G. Install test holes at fan inlets and outlets and elsewhere as indicated and as needed for testing and balancing.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

- 1. On both sides of duct coils.
- 2. At outdoor-air intakes and mixed-air plenums.
- 3. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
- 4. Upstream from turning vanes.
- 5. Control devices requiring inspection.
- 6. Elsewhere as indicated.
- I. Install access doors with swing against duct static pressure.
- J. Access Door Sizes:
 - 1. Provide largest size access door for specific duct location.
- K. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- L. Install flexible connectors to connect ducts to equipment.
- M. For fans developing static pressures of 5 inches wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- N. Install duct test holes where required for testing and balancing purposes.
- O. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors, and verify that size and location of access doors are adequate to perform required operation.
 - 3. Inspect turning vanes for proper and secure installation, and verify that vanes do not move or rattle.
 - 4. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300

SECTION 233346 - FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Non-insulated flexible ducts.
 - 2. Insulated flexible ducts.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For flexible ducts.1. Include plans showing locations and mounting and attachment details.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from installers of the items involved.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials must be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."
- D. Comply with ASTM E96/E96M, "Test Methods for Water Vapor Transmission of Materials."

2.2 NON-INSULATED FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ATCO Rubber Products, Inc.
 - 2. Flexmaster U.S.A., Inc
 - 3. JP Lamborn Co.
 - 4. McGill AirFlow LLC.
 - 5. Thermaflex; a Flex-Tek Group company.
 - 6. Ward Industries; a brand of Hart & Cooley, Inc.
- B. Non-Insulated, Flexible Duct: UL 181, Class 1, two-ply vinyl film supported by helically wound, spring-steel wire.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 10 to plus 160 deg F.

2.3 INSULATED FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ATCO Rubber Products, Inc.
 - 2. Flexmaster U.S.A., Inc.
 - 3. JP Lamborn Co.
 - 4. McGill AirFlow LLC.
 - 5. Thermaflex; a Flex-Tek Group company.
 - 6. Ward Industries; a brand of Hart & Cooley, Inc.
- B. Insulated, Flexible Duct: UL 181, Class 1, two-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 10 to plus 160 deg F.
 - 4. Insulation R-Value: R6.

2.4 FLEXIBLE DUCT CONNECTORS

A. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts.
- B. Install in indoor applications only. Flexible ductwork should not be exposed to UV lighting.

- C. Connect terminal units to supply ducts directly.
- D. Connect diffusers or light troffer boots to ducts with flexible duct clamped in place.
- E. Connect flexible ducts to metal ducts with clamp connector.
- F. Install duct test holes where required for testing and balancing purposes.
- G. Installation:
 - 1. Install ducts fully extended.
 - 2. Do not bend ducts across sharp corners.
 - 3. Bends of flexible ducting must not exceed a minimum of one duct diameter.
 - 4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
 - 5. Install flexible ducts in a direct line, without sags, twists, or turns.
- H. Supporting Flexible Ducts:
 - 1. Suspend flexible ducts with bands 1-1/2 inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports must not exceed 1/2 inch per 12 inches.
 - 2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.
 - 3. Ducts may rest on ceiling joists or truss supports. Spacing between supports must not exceed the maximum spacing per manufacturer's written installation instructions.
 - 4. Vertically installed ducts must be stabilized by support straps at a maximum of 72 inches o.c.

END OF SECTION 233346

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 233400 - HVAC GENERAL-DUTY FANS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Square in-line centrifugal fans.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes for fans.
 - 2. Include rated capacities, furnished specialties, and accessories for each fan.
 - 3. Fans:
 - a. Certified fan performance curves with system operating conditions indicated.
 - b. Certified fan sound-power ratings.
 - c. Fan construction and accessories.
 - d. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - e. Fan speed controllers.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 - 5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show fan room layout and relationships between components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate and certify field measurements.

- B. Startup service reports.
- C. Field quality-control reports.
- 1.5 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For fans, include the following:
 - 1. Operation in normal and emergency modes.
 - 2. Operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of unit components.
- C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

2.2 SQUARE IN-LINE CENTRIFUGAL FANS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Greenheck Fan Corporation.
 - 2. Loren Cook Company.
 - 3. Twin City Fan Company.
- B. Description: Square in-line centrifugal fans.
- C. Housing:
 - 1. Housing Material: Galvanized steel.
 - 2. Housing Coating: None.
 - 3. Housing Construction: Side panels must be easily removable for service. Include inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
 - 4. Insulation: Minimum 1/2-inch thick, factory-installed.
- D. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.
- E. Fan Wheels:

- 1. Aluminum airfoil blades welded to aluminum hub for fans with backward inclined blades.
- 2. Galvanized steel or polypropylene blades for fans with forward curved blades.
- F. Accessories:
 - 1. Refer to "GENERAL-DUTY FANS" schedule in M-600 sheet series for applicable accessories and options for each fan.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
- B. Where variable-frequency drives are indicated or scheduled, provide fan motor compatible with variable-frequency drive.

2.4 DAMPERS

- A. Dampers and Damper Actuators: Comply with requirements in Section 230923.10 "Instrumentation and Control for HVAC."
 - 1. Damper actuators must be sized, provided and installed by the controls contractor. The controls contractor is responsible for damper actuator power wiring and providing interlocks with unit power as part of the control sequence.
 - 2. Fail position for outside air damper must be closed. When unit is powered off, outside air damper must be closed.
 - 3. Fail position for exhaust/relief air damper, if provided with unit or separate relief fan, must be closed. When unit is powered off, exhaust/relief air damper associated with unit must be closed.
- B. Outdoor and Exhaust Air Dampers: AMCA 500D Class 1 low-leakage, double-skin, airfoilblade, galvanized-steel or aluminum dampers with compressible jamb seals and extruded-vinyl blade edge seals in opposed-blade arrangement. Leakage rate must not exceed 4 cfm/sq. ft. at 1inch wg and 8 cfm/sq. ft. at 4-inch wg.

2.5 SOURCE QUALITY CONTROL

- A. AMCA Certification for Fan Sound Performance Rating: Test, rate, and label in accordance with AMCA 311.
- B. AMCA Certification for Fan Aerodynamic Performance Ratings: Test, rate, and label in accordance with AMCA 211.
- C. AMCA Certification for Fan Energy Index (FEI): Test, rate, and label in accordance with AMCA 211.
- D. Fan Operating Limits: Classify fans in accordance with AMCA 99, Section 14.
- E. UL Standards: Power ventilators must comply with UL 705.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install HVAC fans level and plumb.
- B. Disassemble and reassemble units, as required for moving to the final location, in accordance with manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.
- D. Equipment Mounting:
 - 1. Support duct-mounted and other hanging axial fans directly from the building structure, using suitable hanging systems as specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- E. Install units with adequate clearances for service and maintenance.

3.2 DUCTWORK CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."
- B. Where installing ducts adjacent to fans, allow space for service and maintenance.
- 3.3 ELECTRICAL CONNECTIONS
 - A. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
 - B. Ground equipment in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."
 - C. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.5 STARTUP SERVICE:

A. Perform startup service.

- 1. Complete installation and startup checks in accordance with manufacturer's written instructions.
- 2. Verify that shipping, blocking, and bracing are removed.
- 3. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
- 4. Verify that cleaning and adjusting are complete.
- 5. For direct-drive fans, verify proper motor rotation direction and verify fan wheel free rotation and smooth bearing operation.
- 6. Adjust damper linkages for proper damper operation.
- 7. Verify lubrication for bearings and other moving parts.
- 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
- 9. Disable automatic temperature-control operators, energize motor and confirm proper motor rotation and unit operation, adjust fan to indicated rpm, and measure and record motor voltage and amperage.
- 10. Shut unit down and reconnect automatic temperature-control operators.
- 11. Remove and replace malfunctioning units and retest as specified above.

3.6 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.7 CLEANING

A. After completing system installation and testing, adjusting, and balancing and after completing startup service, clean fans internally to remove foreign material and construction dirt and dust.

3.8 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Test and adjust controls and safeties.
 - 3. Fans and components will be considered defective if they do not pass tests and inspections.
 - 4. Prepare test and inspection reports.

3.9 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain HVAC fans.

END OF SECTION 233400

SECTION 233600 - AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Modulating, single-duct air terminal units.
- 2. Critical environment control valve.
- 3. Exhaust single-duct terminal units.
- 4. DOAS, series, fan-powered air terminal units.
- 5. Casing liner.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of air terminal unit.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for air terminal units.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For air terminal units.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Hangers and supports, including methods for duct and building attachment and vibration isolation.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans and other details, or BIM model, drawn to scale, indicating the items described in this Section, and coordinated with all building trades.
- B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For air terminal units to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Instructions for resetting minimum and maximum air volumes.
 - b. Instructions for adjusting software set points.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a Qualified Electrical Testing Laboratory, and marked for intended location and application.
- B. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment," and Section 7 "Construction and System Start-up."
- C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, "Section 6 Heating, Ventilating, and Air Conditioning."

2.2 MODULATING, SINGLE-DUCT AIR TERMINAL UNITS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Carrier Corporation.
 - 2. Daikin Applied.
 - 3. ENVIRO-TEC; by Johnson Controls, Inc.
 - 4. Johnson Controls.
 - 5. Krueger-HVAC, a division of Air System Components; Johnson Controls, Inc.
 - 6. METALAIRE, Inc.
 - 7. Price Industries.
 - 8. Titus, a division of Air System Components; Johnson Controls, Inc.
 - 9. Trane.
- B. Description: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.
- C. Casing: Minimum 22-gauge thick galvanized steel.
 - 1. Casing Liner: Comply with requirements in "Casing Liner" Article below.
 - 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 - 3. Air Outlet: S-slip and drive connections.
 - 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
- D. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 - 1. Maximum Damper Leakage: AHRI 880 rated, 1 percent of nominal airflow at 3-inch wg inlet static pressure.
- E. Velocity Sensors: Multipoint array with velocity inlet sensors.
- F. Electric-Resistance Heating Coils: Nickel-chromium heating wire, free of expansion noise and hum, mounted in ceramic inserts in a galvanized-steel housing; with primary automatic, and secondary manual, reset thermal cutouts. Terminate elements in stainless steel, machine-staked terminals secured with stainless steel hardware. Provide electric-resistance heating coils for air terminal units scheduled on Drawings.
 - 1. SCR controlled.

- 2. Access door interlocked disconnect switch.
- 3. Downstream air temperature sensor with local connection to override discharge-air temperature to not exceed a maximum temperature set point (adjustable).
- 4. Nickel chrome 80/20 heating elements.
- 5. Airflow switch for proof of airflow.
- 6. Fan interlock contacts.
- 7. Fuses in terminal box for overcurrent protection (for coils of more than 48 A).
- 8. Pneumatic-electric switches and relays.
- 9. Magnetic contactor for each step of control (for three-phase coils).
- G. Direct Digital Controls:
 - 1. Terminal Unit Controller: Pressure-independent, VAV controller and integrated actuator, and electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum air volumes.
 - a. Occupied and unoccupied operating mode.
 - b. Remote reset of airflow or temperature set points.
 - c. Adjusting and monitoring with portable terminal.
 - d. Communication with temperature-control system specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 - 2. Room Sensor: Wall mounted with temperature set-point adjustment and access for connection of portable operator terminal.
 - 3. Terminal Unit Controller, Section 230923: Controller is to be factory mounted and wired by air terminal manufacturer; unit controllers, integrated actuators, and room sensors to be furnished under Section 230923 "Direct Digital Controls (DDC) for HVAC."
- H. Control Sequence: See Drawings for control sequences.

2.3 CASINGLINER

- A. Casing Liner, Flexible Elastomeric: Flexible elastomeric duct liner fabricated of preformed, cellular, closed-cell, sheet materials complying with ASTM C534/C534M, Type II, Grade 1; and with NFPA 90A or NFPA 90B.
 - 1. Minimum Thickness: 1 inch.
 - 2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.
 - 3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.

2.4 SOURCE QUALITY CONTROL

- A. AHRI 880 Certification: Test, rate, and label assembled air terminal units in accordance with AHRI 880.
- B. Water Coils: Factory pressure test to 300 psig in accordance with AHRI 410 and ASHRAE 33.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Comply with Section 230529 "Hangers and Supports for HVAC Piping and Equipment" and Section 233113 "Metal Ducts" for hangers and supports.
- B. Install air terminal units according to NFPA 90A.
- C. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.
- D. Install wall-mounted thermostats.

3.2 DUCTWORK CONNECTIONS

- A. Comply with requirements in Section 233113 "Metal Ducts" for connecting ducts to air terminal units.
- B. Make connections to air terminal units with flexible connectors complying with requirements in Section 233300 "Air Duct Accessories."
- 3.3 ELECTRICAL CONNECTIONS
 - A. Install field power to each air terminal unit electrical power connection. Coordinate with air terminal unit manufacturer and installers.
 - B. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
 - C. Ground equipment in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."
 - D. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.
 - E. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate must be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring in accordance with Section 260523 "Control-Voltage Electrical Power Cables."

3.5 IDENTIFICATION

A. Label each air terminal unit with drawing designation. Comply with requirements in Section 230553 "Identification for HVAC" for equipment labels and warning signs and labels.

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks in accordance with manufacturer's written instructions.
 - 2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
 - 3. Verify that controls and control enclosure are accessible.
 - 4. Verify that control connections are complete.
 - 5. Verify that nameplate and identification tag are visible.
 - 6. Verify that controls respond to inputs as specified.

3.7 ADJUSTING

A. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air terminal unit testing, adjusting, and balancing.

3.8 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Air terminal unit will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 233600

SECTION 233713 - AIR DIFFUSERS, REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Rectangular and square ceiling diffusers.
 - 2.
- B. Related Requirements:
 - 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Method of attaching hangers to building structure.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 - 5. Duct access panels.
- B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 RECTANGULAR AND SQUARE CEILING DIFFUSERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

- 1. Krueger-HVAC, a division of Air System Components; Johnson Controls, Inc.
- 2. METALAIRE, Inc.
- 3. Price Industries.
- 4. Titus, a division of Air System Components; Johnson Controls, Inc.
- B. Devices must be specifically designed for variable-air-volume flows.
- 2.2 SOURCE QUALITY CONTROL
 - A. Verification of Performance: Rate diffusers according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers, registers and grilles are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install diffusers, registers and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713

SECTION 233723 - HVAC GRAVITY VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:1. Louvered-penthouse ventilators.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product
- B. Shop Drawings: For gravity ventilators.
 - 1. Include plans, elevations, sections, details, ventilator attachments to curbs, and curb attachments to roof structure.
 - 2. Show weep paths, gaskets, flashing, sealant, and other means of preventing water intrusion.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Roof-framing plans and other details, drawn to scale, and coordinated with each other, based on input from installers of the items involved:
- B. Seismic Qualification Data: Certificates for ventilators, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design ventilators.
- B. Structural Performance: Ventilators shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of ventilator components, noise or metal fatigue caused by ventilator blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.
 - 1. Wind Loads, Indicated on Drawings: Determine loads based on pressures as indicated on Drawings.
 - 2. Wind Loads, Basis: Determine loads based on a uniform pressure of 20 lbf/sq. ft., acting inward or outward.
 - 3. Snow Load: Unit to withstand a minimum of 20-lbf/sq. ft.snow load.
- C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1.
- D. ASHRAE 62.1 Compliance: Section 5, "Systems and Equipment" and Section 7, "Construction and System Start-up."
- E. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes, without buckling, opening of joints, overstressing of components, failure of connections, or other detrimental effects.
 - 1. Temperature Change (Range):
 - a. Ambient: 120 deg F.
 - b. Material Surfaces: 180 deg F.
- F. Water Entrainment: Limit water penetration through unit to comply with ASHRAE 62.1.
- G. Capacities and Characteristics:
 - 1. Refer to drawings

2.2 FABRICATION

- A. Factory or shop fabricate gravity ventilators to minimize field splicing and assembly. Disassemble units to the minimum extent as necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.
- B. Fabricate frames, including integral bases, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
- C. Fabricate units with closely fitted joints and exposed connections accurately located and secured.
- D. Fabricate supports, anchorages, and accessories required for complete assembly.

E. Perform shop welding by AWS-certified procedures and personnel.

2.3 LOUVERED-PENTHOUSE VENTILATORS

- A. Description: Multitier rectangular louvered penthouse for intake air.
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
- C. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme Engineering & Manufacturing Corp.
 - 2. Aire Technologies, Inc.; DMI Companies.
 - 3. Arrow United Industries; Mestek, Inc.
 - 4. Carnes Company.
 - 5. Greenheck Fan Corporation.
 - 6. JencoFan.
 - 7. Loren Cook Company.
 - 8. PennBarry; division of Air System Components.
 - 9. Ruskin; Air Distribution Technologies, Inc.; Johnson Controls, Inc.
 - 10. Safe Air Dowco.
- D. Source Limitations: Obtain louvered-penthouse ventilators from single manufacturer.
- E. Construction:
 - 1. Material: All-welded assembly with minimum 4-inch deep louvers, mitered corners, and aluminum sheet roof.
 - 2. Frame and Blade Material, Extruded Aluminum: Thickness required to comply with structural performance requirements, but not less than 0.080 inch for frames and 0.080 inch for blades.
 - 3. Insect Screening: Aluminum, 18-by-16 mesh wire.
- F. Dampers:
 - 1. Location: damper tray.
 - 2. Control: Motorized.
 - 3. Tray: Provide damper tray or shelf with opening 3 inches less than interior curb dimensions indicated.
- G. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch- thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 - 2. Overall Height: 14 inches.

2.4 MATERIALS

A. Aluminum Extrusions: ASTM B221, Alloy 6063-T5 or T-52.

- B. Aluminum Sheet: ASTM B209, Alloy 3003 or 5005, with temper as required for forming or as otherwise recommended by metal producer for required finish.
- C. Galvanized-Steel Sheet: ASTM A653/A653M, G90 zinc coating, mill phosphatized.
- D. Fasteners: Same basic metal and alloy as fastened metal or 300 Series stainless steel unless otherwise indicated. Do not use metals that are incompatible with joined materials.
 - 1. Use types and sizes to suit unit installation conditions.
 - 2. Use Phillips flat-head screws for exposed fasteners unless otherwise indicated.
- E. Post-Installed Fasteners for Concrete and Masonry: Torque-controlled expansion anchors made from stainless-steel components, with capability to sustain without failure a load equal to 4 times the loads imposed for concrete, or 6 times the load imposed for masonry, as determined by testing according to ASTM E488/E488M, conducted by a qualified independent testing agency.
- F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D1187/D1187M.

PART 3 - EXECUTION

- 3.1 INSTALLATION, GENERAL
 - A. Install gravity ventilators level, plumb, and at indicated alignment with adjacent work.
 - B. Secure gravity ventilators to roof curbs with zinc-plated hardware. Use concealed anchorages where possible. Refer to Section 077200 "Roof Accessories."
 - C. Install gravity ventilators with clearances for service and maintenance.
 - D. Install perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
 - E. Install concealed gaskets, flashings, joint fillers, and insulation as installation progresses. Comply with Section 079200 "Joint Sealants" for sealants applied during installation.
 - F. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.
 - G. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes, so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.
 - H. Refer to Section 077200 "Roof Accessories" for flashing and counterflashing of roof curbs.

3.2 DUCT CONNECTIONS

A. Duct installation and connection requirements are specified in Section 233113 "Metal Ducts." Drawings indicate general arrangement of ducts and duct accessories.
TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

3.3 ADJUSTING

A. Adjust damper linkages for proper damper operation.

END OF SECTION 233723

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 236200 - PACKAGED COMPRESSOR AND CONDENSER UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Compressor and condenser units, air cooled, 1 to 5 tons (3.5 to 17.6 kW).
 - 2. Compressor and condenser units, air cooled, 6 to 120 tons (21 to 422 kW).

1.3 ACTION SUBMITTALS

- A. Product Data: For each compressor and condenser unit.
 - 1. Include rated capacities, operating characteristics, and furnished specialties and accessories.
 - 2. Include equipment dimensions, weights and structural loads, required clearances, method of field assembly, components, and location and size of each field connection.
- B. Shop Drawings: For compressor and condenser units.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include diagrams for power, signal, and control wiring.
- C. Delegated-Design Submittal: For compressor and condenser units indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by qualified professional engineer responsible for their preparation.
 - 1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 2. Design Calculations: Calculate requirements for selecting vibration isolators for designing vibration isolation bases.
 - 3. Indicate compliance with "Performance Requirements" Article.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.
- B. Startup service reports.
- C. Field quality-control reports.
- D. Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For compressor and condenser units to include in emergency, operation, and maintenance manuals.

1.6 COORDINATION

- A. Coordinate sizes and locations of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 033000 "Cast-In-Place Concrete."
- B. Coordinate location of piping and electrical rough-ins.

1.7 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of compressor and condenser units that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Compressor failure.
 - b. Condenser coil leak.
 - 2. Warranty Period: Four years from date of Substantial Completion.
 - 3. Warranty Period (Compressor Only): One year from date of Substantial Completion.
 - 4. Warranty Period (Components Other Than Compressor): Four years from date of Substantial Completion.
 - 5. Warranty Period (Condenser Coil Only): One years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 COMPRESSOR AND CONDENSER UNITS, AIR COOLED, 6 TO 120 TONS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carrier Global Corporation.
 - 2. Daikin Applied.
 - 3. Dunham-Bush, Inc.
 - 4. Engineered Air.
 - 5. Lennox Industries, Inc.; Lennox International.
 - 6. Trane.
 - 7. YORK; brand of Johnson Controls International plc, Building Solutions North America.
- C. Description: Factory assembled and tested, air cooled; consisting of casing, compressors, condenser coils, condenser fans and motors, and unit controls.
- D. Compressor:

- 1. Hermetic scroll compressor designed for service with crankcase sight glass, crankcase heater, and backseating service access valves on suction and discharge ports.
 - a. Capacity Control: Stepped / Staged.

Refrigerant: R-410A.

- E. Condenser Coil: Aluminum microchannel-tube, aluminum-fin coil, including subcooling circuit and backseating liquid-line service access valve.
 - 1. Factory pressure test coils, then dehydrate by drawing a vacuum and fill with a holding charge of nitrogen or refrigerant.
- F. Condenser Fans: Propeller-type vertical discharge; either directly or belt driven. Include the following:
 - 1. Permanently lubricated, ball-bearing motors.
 - 2. Separate motor for each fan.
 - 3. Dynamically and statically balanced fan assemblies.
- G. Operating and safety controls include the following:
 - 1. Manual-reset, high-pressure cutout switches.
 - 2. Automatic-reset, low-pressure cutout switches.
 - 3. Low-oil-pressure cutout switch.
 - 4. Compressor-winding thermostat cutout switch.
 - 5. Three-leg, compressor-overload protection.
 - 6. Control transformer.
 - 7. Magnetic contactors for compressor and condenser fan motors.
 - 8. Timer to prevent excessive compressor cycling.
- H. Accessories:
 - 1. Electronic programmable thermostat to control compressor and condenser unit and its associated evaporator fan.
 - 2. Low-Ambient Controller:
 - a. Cycles condenser fan to permit operation down to 45 deg F.
 - 3. Gauge Panel: Package with refrigerant circuit suction and discharge gauges.
 - 4. Hot-gas bypass kit.
 - 5. Part-winding-start timing relay, circuit breakers, and contactors.
 - 6. Non-fused disconnect switch, factory mounted and wired, for single external electrical power connection. See Section 262816 "Enclosed Switches and Circuit Breakers."
 - 7. Low-noise fans.
 - 8. 115 V ac convenience, ground-fault circuit interrupter receptacle in weatherproof enclosure.
- I. Unit Casings: Designed for outdoor installation with weather protection for components and controls and with removable panels for required access to compressors, controls, condenser fans, motors, and drives. Additional features include the following:
 - 1. Steel, galvanized or zinc coated, for exposed casing surfaces; treated and finished with manufacturer's standard paint coating.
 - 2. Perimeter base rail with forklift slots and lifting holes to facilitate rigging.
 - 3. Gasketed control panel door.
 - 4. Condenser coil hail guard.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- J. Capacities and Characteristics:
 - 1. Compressor and Condenser Unit:
 - a. Refer to Drawings
 - 2. Refrigerant Connections:
 - a. Liquid Pipe Size: 7/8".
 - b. Suction Pipe Size: 1-5/8".
 - 3. Compressors:
 - a. Number of Compressors: 3.
 - b. Steps: 4
 - 4. Air-Cooled Condenser:
 - a. Refer to drawings
 - 5. Electrical Characteristics:
 - a. Refer to drawings

2.2 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 SOURCE QUALITY CONTROL

- A. Performance Ratings: Certify capacity performance ratings of compressor and condenser units in accordance with AHRI 340/360.
- B. Sound-Power Level Ratings: Factory test sound-power-level ratings in accordance with AHRI 370.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of compressor and condenser units.
- B. Examine roughing-in for refrigerant piping systems to verify actual locations of piping connections before equipment installation.
- C. Examine walls, floors, and roofs for suitable conditions where compressor and condenser units will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install units level and plumb, firmly anchored in locations indicated.
- B. Install roof-mounting units on equipment supports specified in Section 077200 "Roof Accessories."
- C. Equipment Mounting:
 - 1. Install compressor and condenser units on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-In-Place Concrete."
- D. Maintain manufacturer's recommended clearances for service and maintenance.
- E. Loose Components: Install piping specialties, electrical components, devices, and accessories that are not factory mounted.

3.3 PIPING CONNECTIONS

- A. Where installing piping adjacent to equipment, allow space for service and maintenance.
- B. Connect precharged refrigerant tubing to unit's quick-connect fittings. Install tubing so it does not interfere with access to unit. Install furnished accessories.
- C. Connect refrigerant piping to air-cooled compressor and condenser units; maintain required access to unit. Install furnished field-mounted accessories.

3.4 ELECTRICAL CONNECTIONS

- A. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.

3.5 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring in accordance with Section 260523 "Control-Voltage Electrical Power Cables."

3.6 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 1. Complete installation and startup checks in accordance with manufacturer's written instructions and perform the following:
 - a. Inspect for physical damage to unit casing.
 - b. Verify that access doors move freely and are weathertight.
 - c. Clean units and inspect for construction debris.
 - d. Verify that all bolts and screws are tight.
 - e. Adjust vibration isolation and flexible connections.
 - f. Verify that controls are connected and operational.
- B. Start unit in accordance with manufacturer's written instructions and complete manufacturer's startup checklist.
- C. Measure and record airflow and air temperature rise over coils.
- D. Verify operation of condenser capacity control device.
- E. Verify that vibration isolation and flexible connections prevent vibration transmission to structure.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections:
 - 1. Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.
 - 2. Leak Test: After installation, charge system with refrigerant and oil and test for leaks. Repair leaks, replace lost refrigerant and oil, and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor operation and unit operation, product capability, and compliance with requirements.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 5. Verify manufacturer's required airflow over coils.
- D. Verify that vibration isolation and flexible connections prevent vibration transmission to structure.
- E. Compressor and condenser units will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain compressor and condenser units.

END OF SECTION 236200

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 237313.13 - INDOOR, BASIC AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes factory-assembled, indoor air-handling units with limited features, including the following components and accessories:
 - 1. Casings.
 - 2. Fans, drives, and motors.
 - 3. Coils.
 - 4. Air filtration.
 - 5. Dampers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each air-handling unit.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 3. Include unit dimensions and weight.
 - 4. Include cabinet material, metal thickness, finishes, insulation, and accessories.
 - 5. Fans:
 - a. Include certified fan-performance curves with system operating conditions indicated.
 - b. Include certified fan-sound power ratings.
 - c. Include fan construction and accessories.
 - d. Include motor ratings, electrical characteristics, and motor accessories.
 - 6. Include certified coil-performance ratings with system operating conditions indicated.
 - 7. Include filters with performance characteristics.
 - 8. Include dampers, including housings, linkages, and operators.
- B. Shop Drawings: For each type and configuration of indoor, basic, air-handling unit.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail fabrication and assembly of indoor, basic air-handling units, as well as procedures and diagrams.
 - 4. Include diagrams for power, signal, and control wiring.

- C. Delegated Design Submittal: For vibration isolation indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for selecting vibration isolators, for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans and other details, or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.
- B. Seismic Qualification Data: Certificates for indoor, basic air-handling units, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 - 4. Restraint of internal components.
- C. Source quality-control reports.
- D. Startup service reports.
- E. Field quality-control reports.
- F. Sample Warranty: For manufacturer's warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-handling units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set for each air-handling unit.
 - 2. Gaskets: One set(s) for each access door.

1.7 WARRANTY

- A. Warranty: Manufacturer agrees to repair or replace components of indoor, basic, air-handling units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Manufacturer's standard, but not less than one year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of airhandling units and components.
- C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- E. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design vibration isolation, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- F. Structural Performance: Casing panels shall be self-supporting and capable of withstanding positive/negative 4-inch wg of internal static pressure, without exceeding a midpoint deflection of 0.005 inches/inch of panel span.

2.2 CAPACITIES AND CHARACTERISTICS

A. Refer to drawings.

2.3 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Airtherm; a Mestek company.
 - 2. Buffalo Air Handling.
 - 3. Carrier Global Corporation.
 - 4. Daikin Applied.
 - 5. Dunham-Bush, Inc.
 - 6. ENVIRO-TEC; brand of Johnson Controls International plc, Building Solutions North America.
 - 7. Titus; brand of Johnson Controls International plc, Global Products.
 - 8. Trane.
 - 9. YORK; brand of Johnson Controls International plc, Building Solutions North America.

2.4 UNIT CASINGS

- A. General Fabrication Requirements for Casings;
 - 1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
 - 2. Joints: Sheet metal screws or pop rivets.
 - 3. Sealing: Seal all joints with water-resistant sealant. Hermetically seal at each corner and around entire perimeter.
 - 4. Base Rail:
 - a. Material: Galvanized steel.
 - b. Height: 6 inches.
- B. Double-Wall Construction:
 - 1. Outside Casing Wall: Galvanized steel 18 gauge thick, with manufacturer's standard finish.
 - 2. Inside Casing Wall: G90 galvanized steel, solid, minimum 18 gauge thick.
 - 3. Floor Plate: G90 galvanized steel, minimum 18 gauge thick.
 - 4. Casing Insulation:
 - a. Materials: injected polyurethane foam insulation.
 - b. Casing Panel R-Value: Minimum 6.0.
 - c. Insulation Thickness: 1 inch.
 - d. Thermal Break: Provide continuity of insulation with no through-casing metal in casing walls, floors, or roofs of air-handling unit.
- C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.
- D. Static-Pressure Classifications:
 - 1. For Unit Sections Upstream of Fans: Minus 4-inch wg.
 - 2. For Unit Sections Downstream and Including Fans: 4-inch wg.
- E. Panels and Doors:
 - 1. Panels:
 - a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
 - b. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against airflow.
 - c. Gasket: Neoprene, applied around entire perimeters of panel frames.
 - d. Size: Large enough to allow unobstructed access for inspection and maintenance of air-handling unit's internal components. At least 18 inches wide by full height of unit casing up to a maximum height of 60 inches.
 - 2. Doors:
 - a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
 - b. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against airflow. Provide safety latch retainers on doors so that doors do not open uncontrollably.
 - c. Gasket: Neoprene, applied around entire perimeters of frame.

- d. Size: Large enough to allow for unobstructed access for inspection and maintenance of air-handling unit's internal components. At least 18 inches wide by full height of unit casing up to a maximum height of 60 inches.
- 3. Locations and Applications:
 - a. Fan Section: Doors.
 - b. Coil Section: Panels.
 - c. Access Sections Immediately Upstream and Downstream of Coil Sections: Doors.
 - d. Damper Section: Panels.
 - e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 - f. Mixing Section: Panels.
- F. Condensate Drain Pans:
 - 1. Location: Each type of cooling coil.
 - 2. Construction:
 - a. Single-wall, stainless-steel sheet.
 - 3. Drain Connection:
 - a. Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 - b. Minimum Connection Size: NPS ³/₄".
 - 4. Slope: Minimum 0.125 in./ft. slope
 - 5. Length: Extend drain pan downstream from leaving face
 - 6. Width: Entire width of water producing device.
 - 7. Depth: A minimum of 2 inches deep.

2.5 FAN, DRIVE, AND MOTOR SECTION

- A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.
- B. Fans: Centrifugal, galvanized steel; mounted on solid-steel shaft.
 - 1. Shafts: With field-adjustable alignment.
 - a. Turned, ground, and polished hot-rolled steel with keyway.
 - 2. Shaft Bearings:
 - a. Heavy-duty, self-aligning, pillow-block type with an L-50 rated life of minimum 100,000 hours according to ABMA 9.
 - 3. Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 - a. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 - 4. Airfoil, Centrifugal Fan Wheels (Plenum Fan Wheels): Smooth-curved inlet flange, backplate, and hollow die-formed airfoil-shaped blades continuously welded at tip flange and backplate; steel hub riveted to backplate and fastened to shaft with setscrews.
 - 5. Mounting: For internal vibration isolation. Factory-mount fans with manufacturer's standard vibration isolation mounting devices having a minimum static deflection of 1 inch.
 - 6. Shaft Lubrication Lines: Extended to a location outside the casing.

- 7. Flexible Connector: Factory fabricated with a fabric strip minimum 3-1/2 inches wide, attached to two strips of minimum 2-3/4-inch- wide by 0.028-inch- thick, galvanized-steel sheet.
 - a. Flexible Connector Fabric: Glass fabric, double coated with neoprene. Fabrics, coatings, and adhesives shall comply with UL 181, Class 1.
- C. Drive, Direct: Factory-mounted, direct drive.
- D. Motors:
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Enclosure Type: Open, dripproof.
 - 3. Enclosure Materials: Cast iron.
 - 4. Efficiency: Premium efficient as defined in NEMA MG 1.
 - 5. NEMA Design: 1.
 - 6. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 - 7. Electronically commutated motor.
- E. Motor Controller: Serving all fans combined in fan array.
 - 1. Provide electronically commutated fan controller.

2.6 COIL SECTION

- A. General Requirements for Coil Section:
 - 1. Comply with AHRI 410.
 - 2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 - 3. Coils shall not act as structural component of unit.
- B. Preheat Coils:

e.

- 1. Electrical Coils: Comply with UL 1995.
 - a. Casing Assembly: Slip-in type with galvanized-steel frame.
 - b. Open Heating Elements: Resistance wire of 80 percent nickel and 20 percent chromium supported and insulated by floating ceramic bushings recessed into casing openings, fastened to supporting brackets, and mounted in galvanized-steel frame.
 - c. Overtemperature Protection: Disk-type, automatically resetting, thermal-cutout, safety device; serviceable through terminal box without removing heater from coil section.
 - d. Secondary Protection: Load-carrying, manually resetting or manually replaceable, thermal cutouts; factory wired in series with each heater stage.
 - Control Panel: Unit mounted with disconnecting means and overcurrent protection.
 - 1) Magnetic contactor.
 - 2) Solid-state, stepless pulse controller.
 - 3) Toggle switches, one per step.
 - 4) Step controller.
 - 5) Time-delay relay.
 - 6) Pilot lights, one per step.

- 7) Airflow proving switch.
- C. Cooling Coils:
 - 1. Refrigerant Coil:
 - a. Tubes: Copper.
 - b. Fins:
 - 1) Material: Aluminum.
 - c. Fin and Tube Joints: Mechanical bond.
 - d. Headers: Seamless-copper headers with brazed connections.
 - e. Frames: Galvanized steel.
 - f. Coatings: None.
 - g. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 - 1) Working Pressure: Minimum 300 psig.

2.7 AIR FILTRATION SECTION

- A. Panel Filters:
 - 1. Description: Flat, non-pleated factory-fabricated, self-supported disposable air filters with holding frames.
 - 2. Filter Unit Class: UL 900.
 - 3. Media: Interlaced glass, synthetic, or cotton fibers coated with nonflammable adhesive and antimicrobial coating.
- B. Adhesive, Sustainability Projects: As recommended by air-filter manufacturer and with a VOC content of 80 g/L or less.
- C. Adhesive, LEED for Schools Projects: As recommended by air-filter manufacturer and that complies with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- D. Side-Access Filter Mounting Frames:
 - 1. Particulate Air Filter Frames: Match inner casing and outer casing material, and insulation thickness. Galvanized steel track.
 - a. Sealing: Incorporate positive-sealing device to ensure seal between gasketed material on channels to seal top and bottom of filter cartridge frames to prevent bypass of unfiltered air.

2.8 MATERIALS

- A. Steel:
 - 1. ASTM A36/A36M for carbon structural steel.
 - 2. ASTM A568/A568M for steel sheet.
- B. Stainless Steel:
 - 1. Manufacturer's standard grade for casing.
 - 2. Manufacturer's standard type, ASTM A240/A240M for bare steel exposed to airstream or moisture.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- C. Galvanized Steel: ASTM A653/A653M.
- D. Aluminum: ASTM B209.
- E. Comply with Section 230546 "Coatings for HVAC" for corrosion-resistant coating.
- 2.9 SOURCE QUALITY CONTROL
 - A. AHRI 430 Certification: Test, rate, and label air-handling units and their components in accordance with AHRI 430.
 - B. Fan Aerodynamic Performance Rating: Factory test and rate fan performance for airflow, pressure, power, air density, rotation speed, and efficiency in accordance with AMCA 210.
 - C. Fan Energy Index (FEI): Test in accordance with AMCA 210 and rate in accordance with AMCA 99, AMCA 207, and AMCA 208.
 - D. Fan Operating Limits: Classify fans in accordance with AMCA 99, Section 14.
 - E. Refrigerant Coils: Factory tested to minimum 450-psig internal pressure, and to minimum 300-psig internal pressure while underwater, according to AHRI 410 and ASHRAE 33.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine casing insulation materials and filter media before air-handling unit installation. Replace with new insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for steam, hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Equipment Mounting:
 - 1. Install air-handling units on cast-in-place concrete equipment bases. Coordinate sizes and locations of concrete bases with actual equipment provided. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
- B. Arrange installation of units to provide access space around air-handling units for service and maintenance.

- C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.
- D. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 233300 "Air Duct Accessories."

3.3 ELECTRICAL CONNECTIONS

- A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.5 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that shipping, blocking, and bracing are removed.
 - 3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
 - 4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
 - 5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
 - 6. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.
 - 7. Comb coil fins for parallel orientation.
 - 8. Verify that proper thermal-overload protection is installed for electric coils.
 - 9. Install new, clean filters.
 - 10. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.
- B. Starting procedures for air-handling units include the following:
 - 1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm.
 - 2. Measure and record motor electrical values for voltage and amperage.

3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.6 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.
- C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.7 CLEANING

A. After completing system installation and testing, adjusting, and balancing of air-handling unit and air-distribution systems, and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Contractor will engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Leak Test: After installation, fill water and steam coils with water, and test coils and connections for leaks.
 - 2. Charge refrigerant coils with refrigerant and test for leaks.
 - 3. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Air-handling unit and components will be considered defective if unit or components do not pass tests and inspections.
 - 5. Prepare test and inspection reports.

3.9 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 237313.13

SECTION 238126 - SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 **RELATED DOCUMENTS**

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

SUMMARY 1.2

Section includes split-system air-conditioning and heat-pump units consisting of separate A. evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS

- Product Data: For each type of product indicated. Include rated capacities, operating Α. characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics. 1.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - Detail equipment assemblies and indicate dimensions, weights, loads, required 1 clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
- C. Samples for Initial Selection: For units with factory-applied color finishes.

1.4 INFORMATIONAL SUBMITTALS

- Field quality-control reports. A.
- Β. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

Operation and Maintenance Data: For split-system air-conditioning units to include in A. emergency, operation, and maintenance manuals.

1.6 **QUALITY ASSURANCE**

Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by A. a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:

- 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
- 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - " Procedures," and Section 7 - "Construction and System Start-up."
- C. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1.

1.7 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork are specified in Section 033000 "Cast-in-Place Concrete."
- B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. For Compressor: One year from date of Substantial Completion.
 - b. For Parts: One year from date of Substantial Completion.
 - c. For Labor: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:
 - 1. Carrier Corporation.
 - 2. Coleman Company Inc. (The).
 - 3. First Operations LP.
 - 4. Friedrich Air Conditioning Company.
 - 5. Koldwave, Inc.
 - 6. Lennox Industries, Inc.; Lennox International.
 - 7. Mitsubishi Electric & Electronics USA, Inc.
 - 8. Mitsubishi Electric Sales Canada Inc.
 - 9. Mitsubishi Heavy Industries America, Inc.
 - 10. Samsung HVAC.
 - 11. SANYO North America Corporation.

- 12. Trane.
- 13. YORK; a Johnson Controls company.

2.2 INDOOR UNITS (5 TONS OR LESS)

- A. Wall-Mounted, Evaporator-Fan Components:
 - 1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
 - 2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermalexpansion valve. Comply with ARI 206/110.
 - 3. Fan: Direct drive, centrifugal.
 - 4. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 - d. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 - e. Mount unit-mounted disconnect switches on exterior of unit.
 - 5. Condensate Drain Pans:
 - a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 - 1) Depth: A minimum of 1 inch deep.
 - b. Single-wall, galvanized-steel sheet.
 - c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 - 1) Minimum Connection Size: NPS 1.
 - d. Pan-Top Surface Coating: Asphaltic waterproofing compound.
 - 6. Air Filtration Section:
 - a. Disposable Panel Filters:
 - 1) Factory-fabricated, viscous-coated, flat-panel type.
 - 2) Thickness: 1 inch.

2.3 CAPACITIES AND CHARACTERISTICS

A. Refer to Drawings

PART 3 - EXECUTION

- 3.1 INSTALLATION
 - A. Install units level and plumb.
 - B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.

- C. Install roof-mounted, compressor-condenser components on equipment supports specified in Section 077200 "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.
- D. Equipment Mounting:
 - 1. Install ground-mounted, compressor-condenser components on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
- E. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.

3.4 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 238126

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 238239.13 - CABINET UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes cabinet unit heaters with centrifugal fans and electric-resistance heating coils.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. DDC: Direct digital control.
- C. PTFE: Polytetrafluoroethylene plastic.
- D. TFE: Tetrafluoroethylene plastic.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include location and size of each field connection.
 - 4. Include details of anchorages and attachments to structure and to supported equipment.
 - 5. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
 - 6. Indicate location and arrangement of integral controls.
 - 7. Wiring Diagrams: Power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide **product indicated on Drawings** or comparable product by one of the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Airtherm; a Mestek company.
 - 2. Berko; Marley Engineered Products.
 - 3. Carrier Global Corporation.
 - 4. Chromalox, Inc.
 - 5. Dunham-Bush, Inc.
 - 6. Engineered Air.
 - 7. IEC (International Environmental Corporation); LSB Industries.
 - 8. INDEECO.
 - 9. Markel Products Company; a subsidiary of TPI Corporation.
 - 10. Marley Engineered Products.
 - 11. Ouellet Canada Inc.
 - 12. QMark; Marley Engineered Products.
 - 13. Reznor HVAC
 - 14. Rosemex Products.
 - 15. Trane.
 - 16. USA Coil & Air.

2.2 DESCRIPTION

- A. Factory-assembled and -tested unit complying with AHRI 440.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with UL 2021.

2.3 PERFORMANCE REQUIREMENTS

- A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

2.4 CABINETS

A. Material: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 1. Vertical Unit, Exposed Front Panels: Minimum 20 gauge steel thick sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.
- 2. Horizontal Unit, Exposed Bottom Panels: Minimum **0.0528-inch-**thick **galvanized** sheet steel, removable panels secured with tamperproof cam fasteners and safety chain.
- 3. Recessed Flanges: Steel, finished to match cabinet.
- 4. False Back: Minimum 0.0428-inch- thick steel, finished to match cabinet.

2.5 COILS

A. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and hum, mounted in ceramic inserts in galvanized-steel housing; with fuses in terminal box for overcurrent protection and limit controls for high-temperature protection. Terminate elements in stainless-steel machine-staked terminals secured with stainless-steel hardware.

2.6 CONTROLS

- A. Fan and Motor Board: Removable.
 - 1. Fan: Forward curved, centrifugal, directly connected to motor; thermoplastic or paintedsteel wheels and aluminum, painted-steel, or galvanized-steel fan scrolls.
 - 2. Motor: Permanently lubricated, multispeed; resiliently mounted on motor board. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 3. Wiring Terminations: Connect motor to chassis wiring with plug connection.
- B. Basic Unit Controls:
 - 1. Control voltage transformer.
 - 2. Unit-mounted thermostat with the following features:
 - a. Heat-off switch.
 - b. Fan on-auto switch.
 - c. Manual fan-speed switch.
 - d. Adjustable deadband.
 - 3. **Unit**-mounted temperature sensor.
 - 4. Unoccupied period override push button.
 - 5. Data entry and access port.
 - a. Input data includes room temperature and occupied and unoccupied periods.
 - b. Output data includes room temperature, supply-air temperature, entering-water temperature, operating mode, and status.
- C. Electrical Connection: Factory-wired motors and controls for a single field connection.

2.7 CAPACITIES AND CHARACTERISTICS

A. Refer to Drawings

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive cabinet unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Section 079200 "Joint Sealants."
- B. Install cabinet unit heaters to comply with NFPA 90A.
- C. Suspend cabinet unit heaters from structure with elastomeric hangers.
- D. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- E. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

3.3 CONNECTIONS

- A. Comply with safety requirements in UL 1995.
- B. Unless otherwise indicated, install union and gate or ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of cabinet unit heater. Hydronic specialties are specified in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties."
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.

- 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Units will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.
- 3.5 ADJUSTING
 - A. Adjust initial temperature set points.

END OF SECTION 238239.13

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Electrical equipment coordination and installation.
 - 2. Sleeves for raceways and cables.
 - 3. Sleeve seals.
 - 4. Grout.
 - 5. Common electrical installation requirements.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For sleeve seals.

1.5 COORDINATION

- A. Coordinate arrangement, mounting, and support of electrical equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."

D. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel.
 - 1. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 3. Pressure Plates: Stainless steel. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- E. Cut sleeves to length for mounting flush with both surfaces of walls.
- F. Extend sleeves installed in floors 6 inches above finished floor level.
- G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.
- H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
- I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.".
- J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."
- K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

- L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

- A. Install to seal exterior wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 260500
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Copper building wire rated 600 V or less.
- 2. Metal-clad cable, Type MC, rated 600 V or less.
- 3. Connectors, splices, and terminations rated 600 V and less.

1.2 DEFINITIONS

- A. RoHS: Restriction of Hazardous Substances.
- B. VFC: Variable-frequency controller.
- 1.3 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
- 1.4 INFORMATIONAL SUBMITTALS
 - A. Qualification Data: For testing agency.
- 1.5 QUALITY ASSURANCE
 - A. Testing Agency Qualifications: Member company of NETA.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

- A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alpha Wire Company.
 - 2. American Bare Conductor.
 - 3. Belden Inc.
 - 4. Cerro Wire LLC.
 - 5. Encore Wire Corporation.
 - 6. General Cable Technologies Corporation.
 - 7. Okonite Company (The).

- 8. Service Wire Co.
- 9. Southwire Company.
- 10. WESCO.
- C. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. RoHS compliant.
 - 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
- E. Conductor Insulation:1. Type THHN and Type THWN-2: Comply with UL 83.

2.2 METAL-CLAD CABLE, TYPE MC

- A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems; a part of Atkore International.
 - 2. Alpha Wire Company.
 - 3. American Bare Conductor.
 - 4. Belden Inc.
 - 5. Encore Wire Corporation.
 - 6. General Cable Technologies Corporation.
 - 7. Okonite Company (The).
 - 8. Service Wire Co.
 - 9. Southwire Company.
 - 10. WESCO.
- C. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. Comply with UL 1569.
 - 3. RoHS compliant.
 - 4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- D. Circuits:
 - 1. Single circuit.
 - 2. Power-Limited Fire-Alarm Circuits: Comply with UL 1424.
- E. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- F. Ground Conductor: Insulated.
- G. Conductor Insulation:1. Type THHN/THWN-2: Comply with UL 83.
- H. Armor: Steel, interlocked.
- I. Jacket: PVC applied over armor.

2.3 CONNECTORS AND SPLICES

- A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. 3M Electrical Products.
 - 2. AFC Cable Systems; a part of Atkore International.
 - 3. Gardner Bender.
 - 4. Hubbell Power Systems, Inc.
 - 5. Ideal Industries, Inc.
 - 6. ILSCO.
 - 7. NSi Industries LLC.
 - 8. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - 9. Service Wire Co.
 - 10. TE Connectivity Ltd.
 - 11. Thomas & Betts Corporation; A Member of the ABB Group.
- C. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.
- D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
 - 1. Material: Copper.
 - 2. Type: One hole with standard barrels.
 - 3. Termination: Compression.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Feeders: Copper for feeders smaller than No. 4 AWG; copper or aluminum for feeders No. 4 AWG and larger. Conductors shall be solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- C. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

- D. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.
- E. Power-Limited Fire Alarm and Control: Solid for No. 12 AWG and smaller.
- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
 - B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
 - C. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
 - D. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway or Metal-clad cable, Type MC.
 - E. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."
- G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

- B. Make splices, terminations, and taps that are compatible with conductor material.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. Perform each of the following visual and electrical tests:
 - a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 - b. Test bolted connections for high resistance using one of the following:
 - 1) A low-resistance ohmmeter.
 - 2) Calibrated torque wrench.
 - 3) Thermographic survey.
 - c. Inspect compression-applied connectors for correct cable match and indentation.
 - d. Inspect for correct identification.
 - e. Inspect cable jacket and condition.
 - f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 - g. Continuity test on each conductor and cable.
 - h. Uniform resistance of parallel conductors.
 - 3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 - a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

- b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- 4. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.
- C. Cables will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes grounding and bonding systems and equipment.
- B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - 1. Underground distribution grounding.
 - 2. Ground bonding common with lightning protection system.
 - 3. Foundation steel electrodes.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Ground rods.
 - 2. Grounding arrangements and connections for separately derived systems.
- B. Qualification Data: For testing agency and testing agency's field supervisor.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 - 1. Include the following:
 - Plans showing as-built, dimensioned locations of system described in "Field Quality Control" Article, including the following:
 - 1) Ground rods.
 - 2) Grounding arrangements and connections for separately derived systems.
 - b. Instructions for periodic testing and inspection of grounding features at test wells grounding connections for separately derived systems Insert locations based on NFPA 70B.
 - 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 - 2) Include recommended testing intervals.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advanced Lightning Technology, Ltd.
 - 2. Burndy; Part of Hubbell Electrical Systems.
 - 3. Dossert; AFL Telecommunications LLC.
 - 4. ERICO; a brand of nVent.
 - 5. Fushi Copperweld Inc.
 - 6. Galvan Industries, Inc.; Electrical Products Division, LLC.
 - 7. Harger Lightning & Grounding.
 - 8. ILSCO.
 - 9. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - 10. Robbins Lightning, Inc.
 - 11. Siemens Industry, Inc., Energy Management Division.
 - 12. Thomas & Betts Corporation; A Member of the ABB Group.

2.3 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B3.
 - 2. Stranded Conductors: ASTM B8.
 - 3. Tinned Conductors: ASTM B33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.4 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
- D. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.
- E. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- F. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.
- G. Conduit Hubs: Mechanical type, terminal with threaded hub.
- H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- I. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.
- J. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.
- K. Straps: Solid copper. Rated for 600 A.
- L. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

M. Water Pipe Clamps:

- 1. Mechanical type, two pieces with stainless-steel bolts.
 - a. Material: Die-cast zinc alloy.
 - b. Listed for direct burial.
- 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.5 GROUNDING ELECTRODES

- A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet.
- B. Ground Plates: 1/4 inch thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 - 1. Bury at least 30 inches below grade.
 - 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.
- C. Grounding Conductors: Green-colored insulation.
- D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.
- E. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-

copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.5 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.
- C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- E. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

3.6 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
- C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.

- 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
- 2. Use exothermic welds for all below-grade connections.
- 3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
- D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- E. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- F. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.
- G. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized-steel connections with tin-plated copper jumpers and mechanical clamps.
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. The grounding and bonding system main components are existing. Inspection and testing shall be performed to verify the integrity of the following:
 - a. Grounding electrode system
 - b. Grounding electrode conductors
 - c. Main bonding jumpers
 - d. Equipment bonding jumpers
 - e. Equipment grounding conductors (for feeders)
 - 2. Perform point-to-point testing of feeder equipment grounding conductors between the grounding electrode system and the terminal equipment (panel, switch or transformer) chassis. Total resistance of the equipment grounding conductor between these points must not exceed 1.0 ohm. For any equipment with a measurement which exceeds 1.0 ohm, remedial action, such as cleaning mechanical connections, shall be taken and additional measurement taken.
 - 3. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 4. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
 - 5. Prepare dimensioned Drawings locating each ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- D. Grounding system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.
- F. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 - 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 - 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

G. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Steel slotted support systems.
- 2. Conduit and cable support devices.
- 3. Support for conductors in vertical conduit.
- 4. Structural steel for fabricated supports and restraints.
- 5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
- 6. Fabricated metal equipment support assemblies.

1.2 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.
- B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame Rating: Class 1.
 - 2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inchdiameter holes at a maximum of 8 inches o.c. in at least one surface.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit; a part of Atkore International.
 - b. B-line, an Eaton business.
 - c. CADDY; a brand of nVent.
 - d. Flex-Strut Inc.
 - e. Gripple Inc.

- f. GS Metals Corp.
- g. G-Strut.
- h. Haydon Corporation.
- i. Metal Ties Innovation.
- j. MIRO Industries.
- k. Thomas & Betts Corporation; A Member of the ABB Group.
- l. Unistrut; Part of Atkore International.
- m. Wesanco, Inc.
- 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
- 3. Material for Channel, Fittings, and Accessories: Galvanized steel.
- 4. Channel Width: 1-5/8 inches.
- 5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
- 6. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
- 7. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
- 8. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Hilti, Inc.
 - 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) B-line, an Eaton business.
 - 2) Empire Tool and Manufacturing Co., Inc.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 3) Hilti, Inc.
- 4) ITW Ramset/Red Head; Illinois Tool Works, Inc.
- 5) MKT Fastening, LLC.
- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F 3125/F 3125M, Grade A325.
- 6. Toggle Bolts: All Stainless-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA 101
 - 3. NECA 102.
 - 4. NECA 105.
 - 5. NECA 111.
- B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.

F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT IMC and RMC may be supported by openings through structure members, according to NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for sitefabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base as follows:
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touchup: Comply with requirements in Section 099113 "Exterior Painting" Section 099123 "Interior Painting" and Section 099600 "High-Performance Coatings" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Metal conduits and fittings.
- 2. Nonmetallic conduits and fittings.
- 3. Metal wireways and auxiliary gutters.
- 4. Nonmetal wireways and auxiliary gutters.
- 5. Surface raceways.
- 6. Boxes, enclosures, and cabinets.
- 7. Handholes and boxes for exterior underground cabling.

1.2 DEFINITIONS

- A. GRC: Galvanized rigid steel conduit.
- B. IMC: Intermediate metal conduit.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. Metal Conduit:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AFC Cable Systems; a part of Atkore International.
 - b. Allied Tube & Conduit; a part of Atkore International.
 - c. Anamet Electrical, Inc.
 - d. Calconduit.
 - e. Electri-Flex Company.
 - f. FSR Inc.
 - g. Korkap.
 - h. Opti-Com Manufacturing Network, Inc (OMNI).
 - i. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - j. Perma-Cote.
 - k. Picoma Industries, Inc.
 - l. Plasti-Bond.
 - m. Republic Conduit.
 - n. Southwire Company.
 - o. Thomas & Betts Corporation; A Member of the ABB Group.
 - p. Topaz Electric; a division of Topaz Lighting Corp.
 - q. Western Tube and Conduit Corporation.
 - r. Wheatland Tube Company.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 3. GRC: Comply with ANSI C80.1 and UL 6.
- 4. IMC: Comply with ANSI C80.6 and UL 1242.
- 5. PVC-Coated Steel Conduit: PVC-coated IMC.
 - a. Comply with NEMA RN 1.
 - b. Coating Thickness: 0.040 inch, minimum.
- 6. EMT: Comply with ANSI C80.3 and UL 797.
- 7. FMC: Comply with UL 1; zinc-coated steel.
- 8. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- B. Metal Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AFC Cable Systems; a part of Atkore International.
 - b. Allied Tube & Conduit; a part of Atkore International.
 - c. Anamet Electrical, Inc.
 - d. Calconduit.
 - e. Electri-Flex Company.
 - f. FSR Inc.
 - g. Korkap.
 - h. Opti-Com Manufacturing Network, Inc (OMNI).
 - i. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - j. Perma-Cote.
 - k. Picoma Industries, Inc.
 - l. Plasti-Bond.
 - m. Republic Conduit.
 - n. Southwire Company.
 - o. Thomas & Betts Corporation; A Member of the ABB Group.
 - p. Topaz Electric; a division of Topaz Lighting Corp.
 - q. Western Tube and Conduit Corporation.
 - r. Wheatland Tube Company.
 - 2. Comply with NEMA FB 1 and UL 514B.
 - 3. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 4. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 5. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 - 6. Fittings for EMT:
 - a. Material: Steel or die cast.
 - b. Type: Compression. Set screw type fittings are <u>not</u> permitted.
 - 7. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - 8. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.
- C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

- A. Nonmetallic Conduit:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AFC Cable Systems; a part of Atkore International.
 - b. Anamet Electrical, Inc.
 - c. Arnco Corporation.
 - d. CANTEX INC.
 - e. CertainTeed Corporation.
 - f. Champion Fiberglass, Inc.
 - g. Condux International, Inc.
 - h. Electri-Flex Company.
 - i. FRE Composites.
 - j. Kraloy.
 - k. Lamson & Sessions.
 - l. Niedax Inc.
 - m. RACO; Hubbell.
 - n. Thomas & Betts Corporation; A Member of the ABB Group.
 - o. Topaz Electric; a division of Topaz Lighting Corp.
 - p. United Fiberglass.
 - 2. Listing and Labeling: Nonmetallic conduit shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Fiberglass:
 - a. Comply with NEMA TC 14.
 - b. Comply with UL 2515 for aboveground raceways.
 - c. Comply with UL 2420 for belowground raceways.
 - 4. ENT: Comply with NEMA TC 13 and UL 1653.
 - 5. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
 - 6. LFNC: Comply with UL 1660.
 - 7. Rigid HDPE: Comply with UL 651A.
 - 8. Continuous HDPE: Comply with UL 651A.
 - 9. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.
 - 10. RTRC: Comply with UL 2515A and NEMA TC 14.
- B. Nonmetallic Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AFC Cable Systems; a part of Atkore International.
 - b. Anamet Electrical, Inc.
 - c. Arnco Corporation.
 - d. CANTEX INC.
 - e. CertainTeed Corporation.
 - f. Champion Fiberglass, Inc.
 - g. Condux International, Inc.
 - h. Electri-Flex Company.
 - i. FRE Composites.

- j. Kraloy.
- k. Lamson & Sessions.
- l. Niedax Inc.
- m. RACO; Hubbell.
- n. Thomas & Betts Corporation; A Member of the ABB Group.
- o. Topaz Electric; a division of Topaz Lighting Corp.
- p. United Fiberglass.
- 2. Fittings, General: Listed and labeled for type of conduit, location, and use.
- 3. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
 - a. Fittings for LFNC: Comply with UL 514B.
- 4. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. B-line, an Eaton business.
 - 2. Hoffman; a brand of Pentair Equipment Protection.
 - 3. MonoSystems, Inc.
 - 4. Square D.
- B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 Type 3R unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Screw-cover type unless otherwise indicated.
- E. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Adalet.
 - 2. Crouse-Hinds, an Eaton business.
 - 3. EGS/Appleton Electric.
 - 4. Erickson Electrical Equipment Company.
 - 5. FSR Inc.
 - 6. Hoffman; a brand of Pentair Equipment Protection.
 - 7. Hubbell Incorporated.
 - 8. Hubbell Incorporated; Wiring Device-Kellems.
 - 9. Kraloy.
 - 10. Milbank Manufacturing Co.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 11. MonoSystems, Inc.
- 12. Oldcastle Enclosure Solutions.
- 13. O-Z/Gedney; a brand of Emerson Industrial Automation.
- 14. Plasti-Bond.
- 15. RACO; Hubbell.
- 16. Spring City Electrical Manufacturing Company.
- 17. Thomas & Betts Corporation; A Member of the ABB Group.
- 18. Topaz Electric; a division of Topaz Lighting Corp.
- 19. Wiremold / Legrand.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- F. Metal Floor Boxes:
 - 1. Material: Cast metal.
 - 2. Type: Fully adjustable.
 - 3. Shape: Rectangular.
 - 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- I. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, with gasketed cover.
- J. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- K. Device Box Dimensions: 4 inches square by 2-1/8 inches deep 4 inches by 2-1/8 inches by 2-1/8 inches deep.
- L. Gangable boxes are prohibited.
- M. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 Type 3R with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Fiberglass.
 - 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

N. Cabinets:

- 1. NEMA 250, Type 1 Type 3R galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- 2. Hinged door in front cover with flush latch and concealed hinge.
- 3. Key latch to match panelboards.
- 4. Metal barriers to separate wiring of different systems and voltage.
- 5. Accessory feet where required for freestanding equipment.
- 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC IMC.
 - 2. Concealed Conduit, Aboveground: GRC IMC.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC, direct buried.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: GRC IMC. Raceway locations include the following:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: GRC.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 - 3. EMT: Use setscrew or compression, cast-metal fittings. Comply with NEMA FB 2.10.

- 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Install surface raceways only where indicated on Drawings.
- F. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.
- 3.2 INSTALLATION
 - A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
 - B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
 - C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.
 - D. Do not fasten conduits onto the bottom side of a metal deck roof.
 - E. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
 - F. Complete raceway installation before starting conductor installation.
 - G. Arrange stub-ups so curved portions of bends are not visible above finished slab.
 - H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
 - I. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
 - J. Conceal conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
 - K. Support conduit within 12 inches of enclosures to which attached.
 - L. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 1 inch of concrete cover in all directions.

- 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
- 5. Change from ENT to GRC before rising above floor.
- M. Stub-Ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- O. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- P. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- Q. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- R. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- S. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- T. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- U. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- V. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- W. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Conduit extending from interior to exterior of building.
 - 4. Conduit extending into pressurized duct and equipment.

- 5. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
- 6. Where otherwise required by NFPA 70.
- X. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- Y. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 - d. Attics: 135 deg F temperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- Z. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semi-recessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- AA. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- BB. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- CC. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel. Where back-to back box installations cannot be avoided in the same framing cavity, provide "putty pads" to seal each box in the same cavity to wall and cover cutouts.
- DD. Locate boxes so that cover or plate will not span different building finishes.

- EE. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- FF. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- GG. Set metal floor boxes level and flush with finished floor surface. Boxes that fully penetrate demising floor-ceiling assembly structural floor slabs shall be sealed with putty pads or appropriate fire stop on bottom of penetration.
- HH. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.4 **PROTECTION**

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 - 2. Labels.
 - 3. Bands and tubes.
 - 4. Tapes and stencils.
 - 5. Tags.
 - 6. Signs.
 - 7. Cable ties.
 - 8. Paint for identification.
 - 9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
- C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.
- D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.

- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Comply with NFPA 70E and Section 260573.19 "Arc-Flash Hazard Analysis" requirements for arc-flash warning labels.
- F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 - 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - d. Color for Neutral: White.
 - e. Color for Equipment Grounds: Green.
 - 3. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - d. Color for Neutral: Grey.
 - e. Color for Equipment Grounds: Green.
- C. Warning Label Colors:
 - 1. Identify system voltage with black letters on an orange background.
- D. Warning labels and signs shall include, but are not limited to, the following legends:
 1. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."
- E. Equipment Identification Labels:1. Black letters on a white field.

2.3 TAPES AND STENCILS

A. Floor Marking Tape: 2-inch- wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Carlton Industries, LP.
 - b. Seton Identification Products.
- B. Underground-Line Warning Tape:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Ideal Industries, Inc.
 - c. LEM Products Inc.
 - d. Marking Services, Inc.
 - e. Reef Industries, Inc.
 - f. Seton Identification Products.
 - 2. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 3. Color and Printing:
 - a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.
 - b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 - c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".
- C. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.4 SIGNS

- A. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Marking Services, Inc.
 - 2. Engraved legend.
 - 3. Thickness:
 - a. For signs up to 20 sq. in., minimum 1/16 inch thick.
 - b. For signs larger than 20 sq. in., 1/8 inch thick.
 - c. Engraved legend with black letters on white face.
 - d. Punched or drilled for mechanical fasteners with 1/4-inch grommets in corners for mounting.
 - e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.5 CABLE TIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. HellermannTyton.
 - 2. Ideal Industries, Inc.
 - 3. Marking Services, Inc.
 - 4. Panduit Corp.
- B. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg F according to ASTM D638: 7000 psi.
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F.
 - 5. Color: Black.

2.6 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.

- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
- G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.
- H. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
- I. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- J. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
 - 4. "COMMUNICATIONS."
 - 5. "FIRE ALARM."
 - 6. "ACCESS CONTROL"
 - 7. "CCTV."
- K. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.
- L. Underground Line Warning Tape:
 - 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench exceeds 16 inches overall.
 - 2. Limit use of underground-line warning tape to direct-buried cables.
 - 3. Install underground-line warning tape for direct-buried cables and cables in raceways.
- M. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on 1-1/2-inch- high sign; where two lines of text are required, use labels 2 inches high.
- N. Cable Ties: General purpose, for attaching tags, except as listed below:

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

- C. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Vinyl wraparound labels.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- D. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive vinyl tape applied in bands.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- E. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
- F. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use vinyl wraparound labels to identify the phase.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- G. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
- H. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- I. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.
- J. Arc Flash Warning Labeling: Self-adhesive labels.
- K. Equipment Identification Labels:
 - 1. Indoor Equipment: Laminated acrylic or melamine plastic sign.
 - 2. Outdoor Equipment: Stenciled legend 1 inch high.
 - 3. Equipment to Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.
 - d. Switchgear.
 - e. Switchboards.
TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- f. Emergency system boxes and enclosures.
- g. Enclosed switches.
- h. Enclosed circuit breakers.
- i. Enclosed controllers.
- j. Variable-speed controllers.
- k. Power-transfer equipment.
- l. Contactors.
- m. Remote-controlled switches, dimmer modules, and control devices.
- n. Power-generating units.
- o. Monitoring and control equipment.
- p. UPS equipment.

END OF SECTION 260553

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Photoelectric switches.
 - 2. Standalone daylight-harvesting switching and dimming controls.
 - 3. Indoor occupancy and vacancy sensors.
 - 4. Switchbox-mounted occupancy sensors.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Show installation details for the following:
 - a. Occupancy sensors.
 - b. Vacancy sensors.
 - 2. Interconnection diagrams showing field-installed wiring.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and elevations, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Structural members to which equipment will be attached.
 - 3. Items penetrating finished ceiling, including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Control modules.
- B. Field quality-control reports.
- C. Sample Warranty: For manufacturer's warranties.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.
- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: Provide names, versions, and website addresses for locations of installed software.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Faulty operation of lighting control software.
 - b. Faulty operation of lighting control devices.
 - 2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Industries, Inc.
 - 2. Intermatic, Inc.
 - 3. Leviton Manufacturing Co., Inc.
 - 4. NSi Industries LLC.
 - 5. TE Connectivity Ltd.
- B. Description: Solid state, with SPST dry contacts rated for 1800 W LED, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A, and compatible with ballasts and LED lamps.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range.
 - 3. Time Delay: Fifteen-second minimum, to prevent false operation.
 - 4. Surge Protection: Metal-oxide varistor.
 - 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.
 - 6. Failure Mode: Luminaire stays ON.

2.2 DAYLIGHT-HARVESTING DIMMING CONTROLS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Industries, Inc.
 - 2. Hubbell Building Automation, Inc.
 - 3. Leviton Manufacturing Co., Inc.
 - 4. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 5. Watt Stopper.
- B. Description: Sensing daylight and electrical lighting levels, the system adjusts the indoor electrical lighting levels. As daylight increases, the lights are dimmed.
 - 1. Lighting control set point is based on two lighting conditions:
 - a. When no daylight is present (target level).
 - b. When significant daylight is present.
 - 2. System programming is done with two hand-held, remote-control tools.
 - a. Initial setup tool.
 - b. Tool for occupants to adjust the target levels by increasing the set point up to 25 percent, or by minimizing the electric lighting level.
- C. Ceiling-Mounted Dimming Controls: Solid-state, light-level sensor unit, with separate power pack, to detect changes in indoor lighting levels that are perceived by the eye.
- D. Electrical Components, Devices, and Accessories:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Sensor Output: 0- to 10-V dc to operate luminaires. Sensor is powered by controller unit.
 - 3. Light-Level Sensor Set-Point Adjustment Range: 20 to 60 fc.
 - 4. LED status lights to indicate load status.
 - 5. Plenum rated.
- E. Power Pack: Digital controller capable of accepting 3 RJ45 inputs with two outputs rated for 20-A incandescent or LED load at 120- and 277-V ac, for 13-A ballast load or LED at 120- and 277-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc Class 2 power source, as defined by NFPA 70.
 - 1. With integral current monitoring
 - a. Compatible with digital addressable lighting interface.
 - 1) Plenum rated.

2.3 INDOOR OCCUPANCYAND VACANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Bryant Electric.
 - 2. Cooper Industries, Inc.
 - 3. Hubbell Building Automation, Inc.
 - 4. Leviton Manufacturing Co., Inc.
 - 5. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 6. Lutron Electronics Co., Inc.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 7. NSi Industries LLC.
- 8. Philips Lighting Controls.
- 9. RAB Lighting.
- 10. Sensor Switch, Inc.
- 11. Square D.
- 12. Watt Stopper.
- B. General Requirements for Sensors:
 - 1. Ceiling-mounted, solid-state indoor occupancy and vacancy sensors.
 - 2. Passive infrared Dual technology.
 - 3. Separate power pack.
 - 4. Hardwired connection to switch.
 - 5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 6. Operation:
 - a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - b. Vacancy Sensor: Unless otherwise indicated, lights are manually turned on and sensor turns lights off when the room is unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - c. Combination Sensor: Unless otherwise indicated, sensor shall be programmed to turn lights on when coverage area is occupied and turn them off when unoccupied, or to turn off lights that have been manually turned on; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 7. Sensor Output: Sensor is powered from the power pack.
 - 8. Power: Line voltage.
 - 9. Power Pack: Dry contacts rated for 20-A ballast or LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 10. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
 - 12. Bypass Switch: Override the "on" function in case of sensor failure.
 - 13. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.
- C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of

average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.

3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling.

2.4 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Bryant Electric.
 - 2. Cooper Industries, Inc.
 - 3. Hubbell Building Automation, Inc.
 - 4. Leviton Manufacturing Co., Inc.
 - 5. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 6. Lutron Electronics Co., Inc.
 - 7. NSi Industries LLC.
 - 8. Philips Lighting Controls.
 - 9. RAB Lighting.
 - 10. Sensor Switch, Inc.
 - 11. Square D.
 - 12. Watt Stopper.
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual onoff switch, suitable for mounting in a single gang switchbox using hardwired connection.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
 - 4. Switch Rating: Not less than 800-VA ballast or LED load at 120 V, 1200-VA ballast or LED load at 277 V, and 800-W incandescent.
- C. Wall-Switch Sensor Tag \$os:
 - 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft..
 - 2. Sensing Technology: Dual technology PIR and ultrasonic.
 - 3. Switch Type: field-selectable automatic "on," or manual "on," automatic "off."
 - 4. Capable of controlling load in three-way application.
 - 5. Voltage: Dual voltage 120 and 277 V.
 - 6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
 - 7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
 - 8. Concealed, "off" time-delay selector at 30 seconds and 5, 10, and 20 minutes.
 - 9. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
 - 10. Color: White.
 - 11. Faceplate: Color matched to switch.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
- B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

- A. Comply with NECA 1.
- B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.
- D. Horizontally separate boxes mounted in opposite sides of walls so they are not in the same vertical channel. Where back-to-back box installations cannot be avoided in same framing cavity, provide junction boxes, in lieu of open cable pulls, and use "putty pads" to seal all boxes located in the same cavity to wall and cover cutouts.

3.3 CONTACTOR INSTALLATION

- A. Comply with NECA 1.
- B. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structureborne vibration unless contactors are installed in an enclosure with factory-installed vibration isolators.
- C. Horizontally separate boxes mounted in opposite sides of walls so they are not in the same vertical channel. Where back-to-back box installations cannot be avoided in same framing cavity, provide junction boxes, in lieu of open cable pulls, and use "putty pads" to seal all boxes located in the same cavity to wall and cover cutouts.

3.4 WIRING INSTALLATION

- A. Comply with NECA 1.
- B. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.

- C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpowerlimited conductors according to conductor manufacturer's written instructions.
- D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
- F. Horizontally separate boxes mounted in opposite sides of walls so they are not in the same vertical channel. Where back-to-back box installations cannot be avoided in same framing cavity, provide junction boxes, in lieu of open cable pulls, and use "putty pads" to seal all boxes located in the same cavity to wall and cover cutouts.

3.5 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate lighting control devices and perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Lighting control devices will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

- 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
- 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
- 3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.8 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 - 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.9 DEMONSTRATION

- A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control systems specified in Section 260943.16 "Addressable-Luminaire Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls."
- B. Train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Power panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.
 - 3. Disconnecting and overcurrent protective devices.

1.2 DEFINITIONS

- A. GFEP: Ground-fault equipment protection.
- B. MCCB: Molded-case circuit breaker.
- C. VPR: Voltage protection rating.

1.3 ACTION SUBMITTALS

A. Product Data:

- 1. Power panelboards.
- 2. Lighting and appliance branch-circuit panelboards.
- 3. Disconnecting and overcurrent protective devices.
- 4. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
- 5. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
 - 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 - 4. Detail bus configuration, current, and voltage ratings.
 - 5. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 6. Include evidence of listing, by qualified electrical testing laboratory recognized by authorities having jurisdiction, for series rating of installed devices.
 - 7. Include evidence of listing, by qualified electrical testing laboratory recognized by authorities having jurisdiction, for SPD as installed in panelboard.
 - 8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 9. Include wiring diagrams for power, signal, and control wiring.
 - 10. Key interlock scheme drawing and sequence of operations.

- 11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include Internet link for electronic access to downloadable PDF of coordination curves.
- C. Field Quality-Control Submittals:
 - 1. Field quality-control reports.

1.4 INFORMATIONAL SUBMITTALS

- A. Panelboard Schedules: For installation in panelboards.
- B. Manufacturers' Published Instructions: Record copy of official installation and testing instructions issued to Installer by manufacturer for the following:
 - 1. Recommended procedures for installing panelboards.
 - 2. Recommended torque settings for bolted connections on panelboards.
 - 3. Recommended temperature range for energizing panelboards.
- C. Sample warranties.

1.5 CLOSEOUT SUBMITTALS

A. Warranty documentation.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Special Tools: Furnish to Owner proprietary equipment, keys, and software required to operate, maintain, repair, adjust, or implement future changes to panelboards, that are packaged with protective covering for storage on-site and identified with labels describing contents.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation in accordance with NEMA PB 1.

1.8 WARRANTY

- A. Warranty: Manufacturer warrants that panelboards perform in accordance with specified requirements and agrees to provide repair or replacement of components or products that fail to perform as specified within extended-warranty period.
 - 1. Warranty Period: One years from date of Substantial Completion; full coverage for labor, materials, and equipment.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- B. Electrical Components, Devices, and Accessories: Listed and labeled in accordance with NFPA 70, by qualified electrical testing agency recognized by authorities having jurisdiction, and marked for intended location and application.
- C. Comply with NEMA PB 1.
- D. Comply with NFPA 70.

1.

- E. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 - Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: UL 50E, Type 1.
 - b. Outdoor Locations: UL 50E, Type 3R.
 - c. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: UL 50E, Type 12.
 - 2. Height: 7 ft maximum.
 - 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims must cover live parts and may have no exposed hardware.
 - 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims must cover live parts and may have no exposed hardware.
 - 5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 - 6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 - 7. Finishes:
 - a. Panels and Trim: galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel.
 - c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
- F. Incoming Mains:
 - 1. Location: Convertible between top and bottom.
 - 2. Main Breaker: Main lug interiors up to 400 A must be field convertible to main breaker.
- G. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - a. Bus must be fully rated for entire length.
 - 2. Interiors must be factory assembled into unit. Replacing switching and protective devices may not disturb adjacent units or require removing main bus connectors.

- 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
- 4. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure.
- 5. Do not mount neutral bus in gutter.
- H. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Terminations must allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Mechanical type, with lug on neutral bar for each pole in panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with lug on bar for each pole in panelboard.
 - 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- I. Quality-Control Label: Panelboards must be labeled, by qualified electrical testing laboratory recognized by authorities having jurisdiction, for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers must have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- J. Future Devices: Panelboards must have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- K. Panelboard Short-Circuit Current Rating:
 - 1. Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed, by qualified electrical testing laboratory recognized by authorities having jurisdiction, for 100 percent interrupting capacity.
 - a. Panelboards and overcurrent protective devices rated 240 V or less must have short-circuit ratings as shown on Drawings, but not less than 10 000 A(rms) symmetrical.
 - b. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V must have short-circuit ratings as shown on Drawings, but not less than 14 000 A(rms) symmetrical.
- L. Surge Suppression: Factory installed as integral part of indicated panelboards, complying with UL 1449 SPD Type 1.

2.2 POWER PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ABB, Electrification Business.
 - 2. ESL Power Systems, Inc.

- 3. Eaton.
- 4. Mersen USA.
- 5. Siemens Industry, Inc., Energy Management Division.
- 6. Square D; Schneider Electric USA.
- B. Listing Criteria: NEMA PB 1, distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.1. For doors more than 36 inch high, provide two latches, keyed alike.
- D. Mains: Circuit breaker or Lugs only.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ABB, Electrification Business.
 - 2. Bender Inc.; Bender GmbH & Co. KG.
 - 3. Eaton.
 - 4. Siemens Industry, Inc., Energy Management Division.
 - 5. Square D; Schneider Electric USA.
- B. Listing Criteria: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only.
- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Door-in-door construction with concealed hinges; secured with flush latch with tumbler lock; keyed alike. Outer door must permit full access to panel interior. Inner door must permit access to breaker operating handles and labeling, but current carrying terminals and bus must remain concealed.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ABB, Electrification Business.
 - 2. Eaton.
 - 3. Siemens Industry, Inc., Energy Management Division.
 - 4. Square D; Schneider Electric USA.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic Trip Circuit Breakers:
 - a. RMS sensing.
 - b. Field-replaceable rating plug or electronic trip.
 - c. Digital display of settings, trip targets, and indicated metering displays.
 - d. Multi-button keypad to access programmable functions and monitored data.
 - e. Ten-event, trip-history log. Each trip event must be recorded with type, phase, and magnitude of fault that caused trip.
 - f. Integral test jack for connection to portable test set or laptop computer.
 - g. Field-Adjustable Settings:
 - 1) Instantaneous trip.
 - 2) Long- and short-time pickup levels.
 - 3) Long and short time adjustments.
 - 4) Ground-fault pickup level, time delay, and I squared T response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - 5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6 mA trip).
 - 6. GFEP Circuit Breakers: Class B ground-fault protection (30 mA trip).
 - 7. Arc-Fault Circuit Interrupter Circuit Breakers: Comply with UL 1699; 120/240 V, single-pole configuration.
 - 8. Subfeed Circuit Breakers: Vertically mounted.
 - 9. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - g. Shunt Trip: 120 V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 - h. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 - i. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards in accordance with NEMA PB 1.1.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with manufacturer's published instructions.
- B. Reference Standards:
 - 1. Panelboards: Unless more stringent requirements are specified in Contract Documents or manufacturers' published instructions, comply with NEMA PB 1.1.
 - 2. Consult Architect for resolution of conflicting requirements.
- C. Special Techniques:
 - 1. Equipment Mounting:
 - a. Attach panelboard to vertical finished or structural surface behind panelboard.
 - 2. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
 - 3. Mount top of trim 7.5 ft above finished floor unless otherwise indicated.
 - 4. Mount panelboard cabinet plumb and rigid without distortion of box.
 - 5. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
 - 6. Install overcurrent protective devices and controllers not already factory installed.
 - a. Set field-adjustable, circuit-breaker trip ranges.
 - b. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver in accordance with manufacturer's published instructions.
 - 7. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
 - 8. Install filler plates in unused spaces.
 - 9. Stub four 1 inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in future. Stub four 1 inch empty conduits into raised floor space or below slab not on grade.

- 10. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- 11. Mount spare fuse cabinet in accessible location.
- D. Interfaces with Other Work:
 - 1. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."
- B. Panelboard Nameplates: Label each panelboard with nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- C. Device Nameplates: Label each branch circuit device in power panelboards with nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.
- E. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles must be located on interior of panelboard door.
- F. Breaker Labels: Faceplate must list current rating, UL and IEC certification standards, and AIC rating.
- G. Circuit Directory:
 - 1. Provide directory card inside panelboard door, mounted in transparent card holder.
 - a. Circuit directory must identify specific purpose with detail sufficient to distinguish it from other circuits.
 - 2. Provide computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 - a. Circuit directory must identify specific purpose with detail sufficient to distinguish it from other circuits.
 - 3. Create directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

3.4 FIELD QUALITY CONTROL

- A. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.

- 2. Test continuity of each circuit.
- B. Field tests and inspections must be witnessed by Architect.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers and low-voltage surge arrestors stated in NETA ATS, Paragraph 7.6 Circuit Breakers and Paragraph 7.19.1 Surge Arrestors, Low-Voltage. Perform optional tests. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
- D. Nonconforming Work:
 - 1. Panelboards will be considered defective if they do not pass tests and inspections.
 - 2. Remove and replace defective units and retest.
- E. Collect, assemble, and submit test and inspection reports, including certified report that identifies panelboards included and that describes scanning results, with comparisons of two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges. Circuit changes made during load balancing may negate color-coding of phases and circuits. If load balancing proves undesirable or is to be performed by others, delete "Load Balancing" Paragraph below.
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
 - 1. Measure loads during period of normal facility operations.
 - 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
 - 4. Tolerance: Maximum difference between phase loads, within panelboard, may not exceed 20 percent.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

3.6 **PROTECTION**

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature in accordance with manufacturer's published instructions.

END OF SECTION 262416

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Standard-grade receptacles, 125 V, 20 A.
 - 2. USB receptacles.
 - 3. GFCI receptacles, 125 V, 20 A.
 - 4. Pendant cord-connector devices.
 - 5. Cord and plug sets.
 - 6. Toggle switches, 120/277 V, 20 A.
 - 7. Occupancy sensors.
 - 8. Wall-box dimmers.
 - 9. Wall plates.
 - 10. Floor service fittings.

1.3 DEFINITIONS

- A. AFCI: Arc-fault circuit interrupter.
- B. BAS: Building automation system.
- C. EMI: Electromagnetic interference.
- D. GFCI: Ground-fault circuit interrupter.
- E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- F. RFI: Radio-frequency interference.
- G. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.5 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- 1.6 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packinglabel warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Eaton (Arrow Hart).
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Leviton Manufacturing Co., Inc.
 - d. Pass & Seymour/Legrand.
 - e. Wattstopper.
- B. Comply with NFPA 70.
- C. RoHS compliant.
- D. Comply with NEMA WD 1.
- E. Devices for Owner-Furnished Equipment:
 - 1. Receptacles: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.
- F. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: White unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Essential Electrical System: Red.
 - 3. SPD Devices: Blue.
- G. Wall Plate Color: For plastic covers, match device color.
- H. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.
- 2.2 STANDARD-GRADE RECEPTACLES, 125 V, 20 A
 - A. Duplex Receptacles, 125 V, 20 A:

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- 1. Description: Two pole, three wire, and self-grounding.
- 2. Configuration: NEMA WD 6, Configuration 5-20R.
- 3. Standards: Comply with UL 498 and FS W-C-596.
- B. Weather-Resistant Duplex Receptacle, 125 V, 20 A:
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" Article.
- 2.3 GFCI RECEPTACLES, 125 V, 20 A
 - A. Duplex GFCI Receptacles, 125 V, 20 A:
 - 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Type: Feed through.
 - 4. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.
- 2.4 TWIST-LOCKING RECEPTACLES
 - A. Twist-Lock, Single Receptacles, 120 V, 20 A:
 - 1. Configuration: NEMA WD 6, Configuration L5-20R.
 - 2. Standards: Comply with UL 498.
 - B. Twist-Lock, Single Receptacles, 250 V, 20 A:
 - 1. Configuration: NEMA WD 6, Configuration L6-20R.
 - 2. Standards: Comply with UL 498.
- 2.5 PENDANT CORD-CONNECTOR DEVICES
 - A. Description: Matching, locking-type plug and receptacle body connector, heavy-duty grade.
 - B. Configuration: NEMA WD 6, Configurations L5-20P and L5-20R.
 - C. Body: Nylon, with screw-open, cable-gripping jaws and provision for attaching external cable grip.
 - D. External Cable Grip: Woven wire-mesh type made of high-strength, galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.
 - E. Standards: Comply with FS W-C-596.

2.6 CORD AND PLUG SETS

- A. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
- B. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with greeninsulated grounding conductor and ampacity of at least 130 percent of the equipment rating.
- C. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.
- 2.7 TOGGLE SWITCHES, 120/277 V, 20 A
 - A. Standards:1. Comply with UL 20 and FS W-S-896.
 - B. Two-Pole Switches, 120/277 V, 20 A:
 1. Comply with UL 20 and FS W-S-896.
 - C. Three-Way Switches, 120/277 V, 20 A:1. Comply with UL 20 and FS W-S-896.
 - D. Four-Way Switches, 120/277 V, 20 A:
 1. Standards: Comply with UL 20 and FS W-S-896.
 - E. Pilot-Light, Single-Pole Switches: 120/277 V, 20 A:
 - 1. Description: Illuminated when switch is off.
 - 2. Standards: Comply with UL 20 and FS W-S-896.
 - F. Key-Operated, Single-Pole Switches, 120/277 V, 20 A:
 - 1. Description: Factory-supplied key in lieu of switch handle.
 - 2. Standards: Comply with UL 20 and FS W-S-896.
 - G. Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches, 120/277 V, 20 A:
 - 1. Description: For use with mechanically held lighting contactors.
 - 2. Standards: Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.8 WALL PLATES

- A. Single Source: Obtain wall plates from same manufacturer of wiring devices.
- B. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: Smooth, high-impact thermoplastic.
 - 3. Material for Unfinished Spaces: Galvanized steel.
 - 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

- C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weatherresistant, die-cast aluminum with lockable cover.
- D. Antimicrobial Cover Plates:
 - 1. Contact surfaces treated with a coating that kills 99.9 percent of certain common bacteria within two hours when regularly and properly cleaned.
 - 2. Tarnish resistant.

2.9 FLOOR SERVICE FITTINGS

- A. Flush-Type Floor Service Fittings:
 - 1. Description: Type: Modular, flush-type, dual-service units suitable for wiring method used, with cover flush with finished floor.
 - 2. Compartments: Barrier separates power from voice and data communication cabling.
 - 3. Service Plate and Cover: Rectangular, solid brass with satin finish.
 - 4. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.
 - 5. Data Communication Outlet: Blank cover with bushed cable opening.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.

- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- 10. Horizontally separate boxes mounted in opposite sides of walls so they are not in the same vertical channel. Where back-to-back box installations cannot be avoided in same framing cavity, provide junction boxes, in lieu of open cable pulls, and use "putty pads" to seal all boxes located in the same cavity to wall and cover cutouts.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.
 - 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Verify that dimmers used for fan-speed control are listed for that application.
 - 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device, listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multi-gang wall plates.
- I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Do not use the feed through feature of GFCI Receptacles. Each receptacle indicated on plans as a GFCI receptacle will be a GFCI type receptacle.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

WIRING DEVICES

- B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.
- C. Essential Electrical System: Mark receptacles supplied from the essential electrical system to allow easy identification using a self-adhesive label.

3.4 FIELD QUALITY CONTROL

- A. Test Instruments: Use instruments that comply with UL 1436.
- B. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- C. Tests for Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- D. Test straight-blade for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz..
- E. Wiring device will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION 262726

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Molded-case circuit breakers (MCCBs).
 - 4. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 - 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.
- B. Shop Drawings: For enclosed switches and circuit breakers.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.7 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.8 FIELD CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.

1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- D. Comply with NFPA 70.
- E. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. ABB Inc.
 - 2. Eaton.
 - 3. General Electric Company.
 - 4. Siemens Industry, Inc.
 - 5. Square D; by Schneider Electric.

2.2 FUSIBLE SWITCHES

- A. Type HD, Heavy Duty:
 - 1. Single throw.
 - 2. Three pole.
 - 3. 240-V ac.
 - 4. 1200 A and smaller.
 - 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses.
 - 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- B. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 4. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 5. Service-Rated Switches: Labeled for use as service equipment.

2.3 NONFUSIBLE SWITCHES

- A. Type GD, General Duty, Three Pole, Single Throw, 240-V ac, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- B. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 4. Service-Rated Switches: Labeled for use as service equipment.

2.4 MOLDED-CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.
- B. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.
- C. MCCBs shall be equipped with a device for locking in the isolated position.
- D. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.
- E. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.

2.5 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
- B. Enclosure Finish: The enclosure shall be gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1).
- C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.
- D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.
- E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.
- F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

- A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Kitchen Areas: NEMA 250, Type 4X.
 - 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.3 INSTALLATION

- A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- C. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in fusible devices.
- E. Comply with NFPA 70 and NECA 1.

3.4 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- B. Tests and Inspections for Switches and Molded Case Circuit Breakers:
 - 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, grounding, and clearances.
 - c. Verify that the unit is clean.
 - d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 - e. Verify that fuse sizes and types match the Specifications and Drawings.
 - f. Verify that each fuse has adequate mechanical support and contact integrity.
 - g. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 - h. Verify correct phase barrier installation.
 - i. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.
- C. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.
 - 1. Test procedures used.
 - 2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
 - 3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816

SECTION 265000 – LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Luminaires.
- 2. Luminaire fittings.
- 3. Lamps.
- 4. Section 260519 "Low-Voltage Electrical Power Conductors and Cables"
- 5. Section 260529 "Hangers and Supports for Electrical Systems" specifies channel and angle supports installed by this Section.
- 6. Section 260553 "Identification for Electrical Systems" specifies electrical equipment labels and warning signs installed by this Section.

1.2 DEFINITIONS

- A. Correlated Color Temperature (CCT): The absolute temperature (in kelvins) of a blackbody whose chromaticity (color quality) most nearly resembles that of the light source.
- B. Color Rendering Index (CRI): The measure of the degree of color shift objects undergo when illuminated by the light source as compared with the color of those same objects when illuminated by a reference light source. The lower the CRI of a light source, the more difficult it is to identify colors and stripes on electronic components and wiring.

1.3 ACTION SUBMITTALS

A. Product Data:

- 1. For luminaires.
 - a. Product Listing: Include copy of unexpired approval letter, on letterhead of qualified electrical testing agency, certifying product's compliance with specified listing criteria.
 - 1) If listed manufacturer differs from selling manufacturer, indicate relationship between entities on submittal. Clearly indicate which entity warrants product performance and fitness for purpose.
 - 2) Listing criteria identified in approval letter must match specified listing criteria. Approval of only equipment's enclosure is not considered approval of equipment for intended application.
 - 3) Product identification in approval letter must match product branding and model numbers in submittal. Approval letters for similar products are not acceptable.
 - 4) Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with current accreditation under National Voluntary Laboratory Accreditation Program (NVLAP) for Energy Efficient Lighting Products.
 - 5) Testing Agency Certified Data: For luminaires indicated on Lighting Fixture Schedule on Drawings, photometric data certified by qualified independent

testing laboratory. Photometric data for remaining luminaires must be certified by manufacturer.

- b. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- c. Include operating characteristics, electrical characteristics, and furnished accessories.
- d. Include schedule of submitted lighting products. Arrange schedule and accompanying product data in order by luminaire and lamp designations indicated on Drawings.
- e. Include battery and charger data for emergency lighting units.
- f. Include life, output (lumens, CCT, and CRI), and energy-efficiency data.
- g. Include photometric data and adjustment factors obtained from qualified laboratory tests.
- h. Include manufacturer's sample warranty language.
- 2. For luminaire fittings.
 - a. Product Listing: Include copy of unexpired approval letter, on letterhead of qualified electrical testing agency, certifying product's compliance with specified listing criteria.
 - 1) If listed manufacturer differs from selling manufacturer, indicate relationship between entities on submittal. Clearly indicate which entity warrants product performance and fitness for purpose.
 - 2) Listing criteria identified in approval letter must match specified listing criteria. Approval of only equipment's enclosure is not considered approval of equipment for intended application.
 - 3) Product identification in approval letter must match product branding and model numbers in submittal. Approval letters for similar products are not acceptable.
 - b. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - c. Include operating characteristics, electrical characteristics, and furnished accessories.
 - d. Include schedule of submitted lighting products. Arrange schedule and accompanying product data in order by luminaire and lamp designations indicated on Drawings.
 - e. Include manufacturer's sample warranty language.
- 3. For lamps.
 - a. Product Listing: Include copy of unexpired approval letter, on letterhead of qualified electrical testing agency, certifying product's compliance with specified listing criteria.
 - 1) If listed manufacturer differs from selling manufacturer, indicate relationship between entities on submittal. Clearly indicate which entity warrants product performance and fitness for purpose.
 - 2) Listing criteria identified in approval letter must match specified listing criteria. Approval of only equipment's enclosure is not considered approval of equipment for intended application.
 - 3) Product identification in approval letter must match product branding and model numbers in submittal. Approval letters for similar products are not acceptable.
 - b. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- c. Include operating characteristics, electrical characteristics, and furnished accessories.
- d. Include schedule of submitted lighting products. Arrange schedule and accompanying product data in order by luminaire and lamp designations indicated on Drawings.
- e. Include life, output (lumens, CCT, and CRI), and energy-efficiency data.
- B. Shop drawings.
- C. Field quality-control reports.

1.4 INFORMATIONAL SUBMITTALS

- A. Manufacturers' published instructions.
- B. Field Reports:1. Manufacturer's field reports for field quality-control support.
- 1.5 CLOSEOUT SUBMITTALS
 - A. Warranty documentation.
- 1.6 MAINTENANCE MATERIAL SUBMITTALS
- 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Protect exposed surface finishes on lighting equipment by applying strippable, temporary protective covering before shipping.
- 1.8 WARRANTY FOR LUMINAIRES
 - A. Warranty: Installer warrants that fabricated and installed luminaires perform in accordance with specified requirements and agrees to repair or replace products that fail to perform as specified within extended-warranty period. Warranty must convey to Owner upon acceptance of the Work.
 - 1. Warranty Period: One year from date of Substantial Completion; full coverage for labor, materials, and equipment.

1.9 WARRANTY FOR BATTERIES

- A. Special Manufacturer Extended Warranty for Batteries: Manufacturer warrants that batteries perform in accordance with specified requirements and agrees to provide repair or replacement of batteries that fail to perform as specified within extended-warranty period.
 - 1. Extended-Warranty Period for Batteries: Five years from date of Substantial Completion; full coverage for materials only, free on-board destination, freight prepaid.

PART 2 - PRODUCTS

2.1 LUMINAIRES

- A. Performance Criteria:
 - 1. Regulatory Requirements:
 - a. Listed and labeled in accordance with NFPA 70, by qualified electrical testing laboratory recognized by authorities having jurisdiction and marked for intended location and application.
 - b. See individual product types below for listing criteria.
 - c. Marked in accordance with UL CCN HYXT, including UL 1598, for compatible power supply, installation location, and environmental conditions.
- B. Source Quality Control:
 - 1. Compile and submit product data.
 - 2. Compile and submit sustainable design product data.
 - 3. Compile and submit samples.
- C. Luminaires:
 - 1. Source Limitations: Obtain products for this luminaire type from single manufacturer. Bin LEDs for this luminaire type within three-step MacAdam Ellipse to ensure consistent chromaticity for all luminaires of this type.
 - a. Nominal Operating Voltage: as indicated on drawings.
 - b. Nominal Luminaire Operating Power Rating: As indicated on Drawings.
 - c. CRI: 90+.
 - d. Ballast or Driver Location: Internal.
 - e. Materials:
 - Enclosure: ASTM B209/B209M extruded-aluminum or ASTM A653/ A653M galvanized-steel housing and heat sink; free of sharp edges and burrs.
 - 2) Enclosure Ingress Protection Rating: As indicated on Drawings.
 - 3) Lenses, Diffusers, and Globes: As indicated on Drawings.
 - f. LED Luminaires (UL CCN IFAM):
 - 1) Output Intensity: Not less than 1000 lm.
 - 2) Efficacy: Not less than 85 lm/W.
 - 3) Rated Life: 50 000 hours to L70.
 - 4) CCT: 4000 K.
 - 2. Required Product Options:
 - a. Mounting Hardware: As indicated on Drawings.
 - b. Mounting Height: As indicated on Drawings.
 - c. Finishes: As indicated on drawings.
 - d. Photoelectric Switch: Factory-mounted integral to luminaire; listed and labeled in accordance with UL CCN WJFX, including UL 773, or in accordance with UL CCN WJCT, including UL 773A.
 - Contact Relays: Factory mounted, single throw, designed to fail in on position, and factory set to turn light unit on at 1.5 to 3 fc and off at 4.5 to 10 fc with 15 s minimum time delay. Relay must have directional lens in front of photocell to prevent artificial light sources from causing false turn-off.

- a) Relay with locking-type receptacle must comply with NEMA C136.10.
- b) Adjustable window slide for adjusting on-off set points.
- Lamp Rating: Lamp marked for outdoor use and in enclosed locations.
- 3. Installation Markings:

e.

- a. Relamping Labels: Include recommended lamp type, diameter, shape, size, wattage, and coating on factory-applied label that is visible when luminaire is open for relampling.
- b. All Luminaires (UL CCN HYXT):
- D. UL FTBR or FTBV Emergency Lighting and Power Equipment:
 - 1. <u>Manufacturers:</u> As indicated on the Drawings
 - 2. Source Limitations: Obtain products from single manufacturer.
 - 3. Product Listing Criteria: UL CCN FTBR or UL CCN FTBV; including UL 924, NFPA 101, and ICC IBC.
 - 4. Product Characteristics:
 - a. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
 - b. Status and Test Indication: Visible and accessible without opening luminaire or entering ceiling space.
 - 1) Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 2) Test Push-Button: Push-to-test button in unit housing simulates loss of normal power and demonstrates unit operability.
 - 5. Required Product Options:
 - 1) Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.
 - 6. Installation Markings:
 - a. Emergency Lighting and Power Equipment (UL CCN FTBR):
- E. UL FWBO Exit Fixture
 - 1. <u>Manufacturers:</u> As indicated on Drawings.
 - 2. Source Limitations: Obtain products from single manufacturer.
 - 3. Product Listing Criteria: UL CCN FWBO; including UL 924, NFPA 101, and ICC IBC.
 - 4. Installation Markings:
 - a. All Luminaires (UL CCN HYXT):

2.2 LUMINAIRE FITTINGS

- A. Performance Criteria:
 - 1. Regulatory Requirements:
 - a. Listed and labeled in accordance with NFPA 70, by qualified electrical testing laboratory recognized by authorities having jurisdiction, and marked for intended location and application.
 - b. See individual product types below for listing criteria.

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- B. Source Quality Control:
 - 1. Compile and submit product data.
 - 2. Compile and submit sustainable design product data.
 - 3. Compile and submit samples.
- C. Luminaire Support Accessories:
 - 1. Product Characteristics:
 - a. Sized and rated for luminaire weight.
 - b. Capable of maintaining luminaire position after cleaning and relamping.
 - c. Capable of supporting luminaire without causing deflection of ceiling or wall.
 - d. Capable of supporting horizontal force equal to 100 percent of luminaire weight and vertical force equal to 400 percent of luminaire weight.
 - 2. Required Product Options:
 - a. Hook Hangers: Integrated assembly matched to luminaire, supply voltage, and equipment with threaded attachment, cord, and locking-type plug.
 - b. Wires: ASTM A641/A641M, Class 3, soft temper, zinc-coated steel, 12 gage wire supports 10 ft in length.
 - c. Aircraft Cables: 5/32 inch diameter aircraft cable supports adjustable to in length.
 - d. Single-Stem Hangers: 1/2 inch nominal diameter steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
 - e. Rod Hangers: 3/16 inch nominal diameter, cadmium-plated, threaded steel rod.

2.3 LAMPS

- A. Performance Criteria:
 - 1. Regulatory Requirements:
 - a. Listed and labeled in accordance with NFPA 70, by qualified electrical testing laboratory recognized by authorities having jurisdiction, and marked for intended location and application.
- B. Source Quality Control:
 - 1. Compile and submit product data.
 - 2. Compile and submit sustainable design product data.
 - 3. Compile and submit samples.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Shop Drawings: Prepare and submit the following:
 - 1. Drawings, Diagrams, and Supporting Documents for Custom Luminaires:
 - a. Include plans, elevations, sections, and mounting and attachment details.
 - b. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - c. Include diagrams for power, signal, and control wiring.
- B. Temporary Lighting: If approved by Architect, specified luminaires for Project may be installed for temporary lighting. Install and energize minimum quantity of luminaires necessary to meet needs of construction activities. When construction is sufficiently complete, remove, disassemble, clean, and relamp luminaires used for temporary lighting before reinstalling for Project delivery.

3.3 INSTALLATION OF LIGHTING

- A. Comply with manufacturer's published instructions.
- B. Reference Standards for Installation: Unless more stringent installation requirements are specified in Contract Documents or manufacturers' published instructions, comply with the following:
 - 1. Installation of Indoor Lighting Systems: NECA NEIS 500.
 - 2. Installation of Exterior Lighting Systems: NECA NEIS 501.
 - 3. Installation of Luminaires, Lampholders, and Lamps: Article 410 of NFPA 70.
 - 4. Installation of Emergency Lighting and Exit Signs: ICC IBC, NFPA 101, and Parts IV and V in Article 700 of NFPA 70.
 - 5. Consult Architect for resolution of conflicting requirements.
- C. Special Installation Techniques:
 - 1. Install luminaires level, plumb, and square with finished floor or grade unless otherwise indicated.
 - 2. Install luminaires at height and aiming angle as indicated on Drawings.
 - 3. Coordinate layout and installation of luminaires with other construction.
 - 4. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.
 - 5. Exterior Bollard Luminaires:
 - a. Align units for optimum directional alignment of light distribution.
 - b. Install on concrete base with top 4 inches above finished grade or surface at luminaire location. Cast conduit into base, and shape base to match shape of bollard base. Finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."
 - 6. Exterior In-Ground Luminaires:
 - a. Install on concrete base with top 4 inches above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing

smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."

- 7. Exterior Corrosion Prevention:
 - a. Do not use aluminum in contact with earth or concrete. When in direct contact with dissimilar metals, protect aluminum with insulating fittings or treatment.
 - b. When embedding steel conduits in concrete, wrap conduit with 10 mil thick, pipewrapping plastic tape applied with a 50 percent overlap.
- 8. Flush-Mounted Luminaire Support:
 - a. Secured to outlet box.
 - b. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 - c. Trim ring flush with finished surface.
- 9. Wall-Mounted Luminaire Support:
 - a. Attached to structural members in walls or blocking between wall structural members.
 - b. Do not attach luminaires directly to gypsum board.
- 10. Suspended Luminaire Support:
 - a. Ceiling Mount:
 - 1) Hook hangers.
 - 2) Two wires.
 - 3) Two aircraft cables.
 - b. Pendants and Rods: Where longer than 48 inch, brace to limit swinging.
 - c. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
 - d. Continuous Rows of Luminaires: Provide tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 - e. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- 11. Ceiling-Grid-Mounted Luminaire Support:
 - a. Install ceiling support system rods or wires, independent of the ceiling suspension devices, for each luminaire. Locate not more than 6 inch from luminaire corners.
 - b. Support Clips: Fasten to luminaires and to ceiling grid members at or near each luminaire corner with clips that are UL listed for application.
 - c. Luminaires of Sizes Smaller Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support luminaires independently with no fewer than two 3/4 inch metal channels spanning and secured to ceiling tees.
- 12. Remote Mounting of Ballasts: Do not exceed distance between ballast and luminaire recommended by ballast manufacturer.
- 13. Emergency Power Units: Secure with approved fasteners in four or more locations, spaced near corners of unit.
- 14. Install wiring connections for luminaires.
- 15. Identification: Provide labels for luminaires and associated electrical equipment.
 - a. Identify field-installed conductors, interconnecting wiring, and components.
 - b. Provide warning signs.
 - c. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL OF LIGHTING

- A. Tests and Inspections:
 - 1. Perform manufacturer's recommended tests and inspections.
 - 2. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 3. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
 - 4. Verify operation of photoelectric controls.
- B. Nonconforming Work:
 - 1. Luminaire will be considered defective if it does not pass tests and inspections.
 - 2. Remove and replace defective units and retest.
- C. Field Quality-Control Reports: Collect, assemble, and submit test and inspection reports.

3.5 SYSTEM STARTUP

- A. Perform startup service.
 - 1. Complete installation and startup checks in accordance with manufacturer's published instructions.
 - 2. Burn-in lamps that require specific aging period to operate properly, prior to occupancy by Owner.
 - 3. Charge emergency power units and batteries minimum of one hour and depress switch to conduct short-duration test.
 - 4. Charge emergency power units and batteries minimum of 24 hours and conduct one-hour discharge test.

3.6 CLOSEOUT ACTIVITIES

A. Maintenance Material Submittals: Provide manufacturer's instructions and maintenance data and parts lists as part of required closeout documentation.

3.7 **PROTECTION**

A. After installation, protect lighting equipment from construction activities. Remove and replace items that are contaminated, defaced, damaged, or otherwise caused to be unfit for use prior to acceptance by Owner.

END OF SECTION 265000

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 270526 - GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Selection and installation of communications busbars.
 - 2. Selection and installation of communications bonding conductors.

1.2 DEFINITIONS

- A. BBC: Backbone bonding conductor, for connecting multiple TBBs serving the same floor.
- B. PBB: Primary bonding busbar, located in main distribution frame room, ideally near electrical service entrance.
- C. RBB: Rack bonding busbar, located in equipment cabinets and racks.
- D. SBB: Secondary bonding busbar, located in intermediate distribution frame rooms.
- E. TBB: Telecommunications bonding backbone, for connecting SBBs to PBB.
- F. TBC: Telecommunications bonding conductor, for connecting PBB to intersystem bonding termination device or busbar at electrical service entrance.
- G. TEBC: Telecommunications equipment bonding conductor, for connecting RBBs to SBBs or PBB.
- H. UBC: Unit bonding conductor, for connecting individual communications equipment to RBBs or SBBs.

1.3 ACTION SUBMITTALS

- A. Shop Drawings:
 1. Include plans, elevations, sections, details, and attachments to other work.
- B. Field Quality-Control Submittals:1. Field quality-control reports.

1.4 INFORMATIONAL SUBMITTALS

- A. Manufacturers' Published Instructions: Record copy of official installation instructions issued to Installer by manufacturer for the following:
 - 1. Installing wire connector on conductor.
 - 2. Recommended torque values.

1.5 CLOSEOUT SUBMITTALS

- A. Record Documentation: Project record documents in accordance with Section 017839 "Project Record Documents" must include locations of PBB and SBBs, and routing of TBC, TBBs, and BBCs.
- PART 2 PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine facility's grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of electrical system.
- B. Inspect test results of grounding system measured at point of TBC connection.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- D. Proceed with connection of TBC only after unsatisfactory conditions have been corrected.

3.2 SELECTION OF COMMUNICATIONS BUSBARS

A. Unless otherwise indicated in this Section or on Drawings, provide products specified in Section 260526 "Grounding and Bonding for Electrical Systems."

B. PBB:

- 1. Dimensions: 1/4 inch thick by 4 inch high.
- 2. Stand-Off Distance: 2 inch.
- C. SBB:
 - 1. Dimensions: 1/4 inch thick by 4 inch high.
 - 2. Stand-Off Distance: 2 inch.

3.3 SELECTION OF COMMUNICATIONS BONDING CONDUCTORS

- A. Unless otherwise indicated in this Section or on Drawings, provide products specified in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Communications Busbar Connections:
 - 1. TBC: Not smaller than 1/0 AWG and no smaller than largest TBB.
 - 2. TBB: Not smaller than 2 kcmil per linear ft of conductor length, but not larger than 750 kcmil, unless otherwise indicated on Drawings.
 - 3. BBC: Not smaller than largest TBB to which it is connected unless otherwise indicated on Drawings.

- 4. TEBC: Not smaller than 2 AWG unless otherwise indicated on Drawings. Provide bolted connectors.
- 5. UBC: Not smaller than 6 AWG unless otherwise indicated on Drawings. Provide bolted connectors.
- 6. Bonding Conductors to Structural Steel: Not smaller than 6 AWG unless otherwise indicated on Drawings. Provide bolted clamp connectors.
- C. Underground Connections: Not smaller than 2 AWG. Provide welded connectors, except bolted connectors may be used in handholes or manholes and as otherwise indicated on Drawings.

3.4 INSTALLATION OF BONDING FOR COMMUNICATIONS

- A. Comply with manufacturer's published instructions.
- B. Reference Standards:
 - 1. Bonding of Communications: Unless more stringent requirements are specified in Contract Documents or manufacturers' published instructions, comply with BICSI N3.
 - 2. Consult Architect for resolution of conflicting requirements.
- C. Special Techniques:
 - 1. Busbars:
 - a. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 12 inch above finished floor unless otherwise indicated.
 - b. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.
 - 2. Conductors:
 - a. Stacking of conductors under a single bolt is not permitted when connecting to busbars.
 - b. Assemble wire connector to conductor, complying with manufacturer's published instructions and as follows:
 - 1) Use crimping tool and die specific to connector.
 - 2) Pretwist conductor.
 - 3) Apply antioxidant compound to bolted and compression connections.
 - c. Install in straightest and shortest route between origination and termination point, and no longer than required. Bend radius must not be smaller than 10 times diameter of conductor. No single bend may exceed 90 degrees.
 - d. Install without splices.
 - e. Support conductors at not more than 36 inch intervals.
 - f. Outside telecommunications rooms, install conductors in metric designator 21 (trade size 3/4) PVC-80 conduit until conduit enters telecommunications room. Install bonding conductors in EMT-A or EMT-SS when routed through plenum. Do not install bonding conductors in EMT-S unless otherwise indicated on Drawings.
 - 1) If bonding conductor must be installed in EMT-S or other ferrous metallic raceway, bond conductor to raceway using grounding bushing that complies with Section 270528 "Pathways for Communications Systems," and bond both ends of raceway to SBB.

- 3. Provide TBC and terminate ends to PBB and intersystem bonding busbar at electrical service entrance in accordance with Section 250.94, "Bonding for Communication Systems," of NFPA 70.
- 4. Busbar Interconnections: Bond SBBs to PBB with TBBs. If more than one TBB is installed, bond TBBs together BBCs where required by TIA-607.
- 5. Structural Steel: Where structural steel of steel frame building is readily accessible within room or space, bond each SBB and PBB to vertical steel of building frame.
- 6. Communications Enclosures: Bond metallic enclosures of telecommunications equipment with UBCs to nearest SBB or PBB.
- 7. Equipment Racks: Bond metallic components of enclosures to RBB using UBCs. Provide top-mounted RBB if not provided by enclosure or rack manufacturer. Bond RBB to SBB with TEBC. Power connection must comply with NFPA 70; equipment grounding conductor in power cord of cord- and plug-connected equipment must be considered supplemental to bonding requirements in this Section.
- 8. Shielded Cable: Bond shield of shielded cable to SBB in communications rooms and spaces. Comply with TIA-568.1 and TIA-568.2 when grounding shielded balanced twisted-pair cables.
- 9. Primary Protector: Bond to PBB with insulated bonding conductor.
- 10. Electrical Power Panelboards: Where electrical panelboards for communications equipment are located in same room or space, bond each ground bar of panelboard to SBB.
- 11. Cable Trays: Provide continuous electrical path by installing bonding clips and jumpers. Bond each end to nearest SBB.
- 12. Ladder Racks: Provide continuous electrical path by installing bonding clips and jumpers. Bond each end to nearest SBB.
- 13. Access Floors: Bond metal parts of access floors to SBB.

3.5 IDENTIFICATION

- A. Comply with Section 270553 "Identification for Communications Systems."
- B. Labels must be preprinted or computer-printed type.
 - 1. Label PBB(s) with "ts-PBB," where "ts" is telecommunications space identifier for location of PBB.
 - 2. Label SBB(s) with "ts-SBB," where "ts" is telecommunications space identifier for location of SBB.
 - 3. Label TBC, TBBs, and BBCs at attachment points with legend: "WARNING! COMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

3.6 FIELD QUALITY CONTROL

- A. Testing Preparation:
- B. Field tests and inspections must be witnessed by Owner.
- C. Tests and Inspections:

- 1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with calibrated torque wrench according to manufacturer's published instructions.
- 2. Test bonding connections of system using AC earth ground-resistance tester, taking twopoint bonding measurements in each telecommunications equipment room containing PBB or SBB, using process recommended by BICSI N1. Conduct tests with facility in operation.
 - a. Measure resistance between PBB and electrical service intersystem termination point. Maximum acceptable value is $100 \text{ m}\Omega$.
 - 1) If measured resistance from electrical service equipment to ground exceeds 5Ω , notify Architect and include recommendations to reduce resistance to ground.
 - b. Measure resistance between SBBs and PBB. Maximum acceptable value is $100 \text{ m}\Omega$.
- 3. Test for ground loop currents using digital clamp-on ammeter, with full scale not more than 10 A, displaying current in increments of 0.01 A at accuracy of plus or minus 2.0 percent.
 - a. With grounding infrastructure completed and communications system electronics operating, measure current in bonding conductors connected to PBB. Maximum acceptable AC current level is 1 A.
- D. Nonconforming Work:
 - 1. Communications bonding will be considered defective if it does not pass tests and inspections.
 - 2. Remove and replace defective units and retest.
- E. Collect, assemble, and submit test and inspection reports.

3.7 **PROTECTION**

A. After installation, protect busbars and conductors from construction activities. Remove and replace items that are contaminated, defaced, damaged, or otherwise caused to be unfit for use prior to acceptance by Owner.

END OF SECTION 270526

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 270528 – PATHWAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Type OFR and Type CR communications raceways and fittings.
 - 2. Cable supports and positioning devices.
 - 3. Section 078413 "Penetration Firestopping" specifies firestopping for communications pathways installed by this Section.
 - 4. Section 260526 "Grounding and Bonding for Electrical Systems" specifies grounding and bonding conductors and connectors for communications pathways installed by this Section.
 - 5. Section 260529 "Hangers and Supports for Electrical Systems" specifies hangers and supports for communications pathways installed by this Section.
 - 6. Section 260533 "Raceways and Boxes for Electrical Systems" specifies the following installed by this Section:
 - a. Type EMT-A and Type EMT-SS duct raceways and elbows.
 - b. Type EMT-S duct raceways and elbows.
 - c. Type ENT duct raceways and fittings.
 - d. Type HDPE and Type EPEC duct raceways and fittings.
 - e. Type ERMC-A and Type ERMC-SS duct raceways, elbows, couplings, and nipples.
 - f. Type ERMC-S duct raceways, elbows, couplings, and nipples.
 - g. Type FMC-S and Type FMC-A duct raceways.
 - h. Type FMT duct raceways.
 - i. Type IMC duct raceways.
 - j. Type LFMC duct raceways.
 - k. Type LFNC duct raceways.
 - 1. Type PVC duct raceways and fittings.
 - m. Type RTRC-AG duct raceways and fittings.
 - n. Type RTRC-BG duct raceways and fittings.
 - o. Fittings for conduit, tubing, and cable.
 - p. Electrically conductive corrosion-resistant compounds for threaded conduit.
 - q. Solvent cements.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. For each type of product.
 - . Product Listing: Include copy of unexpired approval letter, on letterhead of qualified electrical testing agency, certifying product's compliance with specified listing criteria.
 - 1) If listed manufacturer differs from selling manufacture, indicate relationship between entities on submittal. Clearly indicate which entity warrants product performance and fitness for purpose.

- 2) Listing criteria identified in approval letter must match specified listing criteria. Approval of only equipment's enclosure is not considered approval of equipment for intended application.
- 3) Product identification in approval letter must match product branding and model numbers in submittal. Approval letters for similar products are not acceptable.

PART 2 - PRODUCTS

2.1 TYPE OFR AND TYPE CR COMMUNICATIONS RACEWAYS AND FITTINGS

- A. Description: This product group covers raceways and fittings for installation of conductive and nonconductive optical-fiber cable, communications cable, power-limited fire-alarm cable, signaling cable, and coaxial cable in accordance with NFPA 70.
- B. Performance Criteria:
 - 1. Regulatory Requirements: Listed and labeled in accordance with NFPA 70, by qualified electrical testing laboratory recognized by authorities having jurisdiction, and marked for intended location and application.
 - 2. Listing Criteria:
 - a. Optical-Fiber Cable Raceway: UL CCN QAZM; including UL 2024.
 - b. Communications Cable Raceway: UL CCN QBAA; including UL 2024.
- C. UL QAZM Type OFR-GP General-Purpose Optical-Fiber Raceway:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. 3M.
 - b. ADI.
 - c. Champion Fiberglass, Inc.
 - d. Corning Optical Communications; Corning Incorporated.
 - e. Dura-Line.
 - f. Eastern Wire & Conduit; Atkore.
 - g. Endot Industries Inc.
 - h. Ipex Electrical Inc.
 - i. Panduit Corp.
 - j. Petroflex North America.
 - k. Premier Conduit Inc.
 - l. Tii Technologies Inc.
 - 2. Source Limitations: Obtain products from single manufacturer.
 - 3. Product Characteristics:
 - a. Texture: Ribbed.
 - b. Splicing: Glue.
 - 4. Required Product Options:
 - a. Colors:
 - 1) Orange.
- D. UL QBAA Type CR-P Plenum Communications Cable Raceway.

2.2 CABLE SUPPORTS AND POSITIONING DEVICES

- A. Description: This category covers straps, hooks, and similar types of hardware for installation and use in communications cabling systems in accordance with NFPA 70 and manufacturer's installation instructions
- B. Performance Criteria:
 - 1. Regulatory Requirements: Listed and labeled in accordance with NFPA 70, by qualified electrical testing laboratory recognized by authorities having jurisdiction and marked for intended location and application.
- C. UL DWMU J-Hook or G-Hook Cable Support:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ABB, Electrification Business.
 - b. ADI.
 - c. Cablofil; Legrand North America, LLC.
 - d. Elite Components Inc.; subsidiary of SIGMA Piping Products (SPP) LLC.
 - e. Panduit Corp.
 - f. Southwire Company, LLC.
 - 2. Source Limitations: Obtain products from single manufacturer.
 - 3. Product Listing Criteria: UL CCN DWMU; including UL 2239 or UL 1565.
 - 4. Product Characteristics:
 - a. Material: Galvanized steel.
- D. UL DWMU Conduit or Cable Support Strap:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ABB, Electrification Business.
 - b. CADDY; brand of nVent Electrical plc.
 - c. Cooper B-line; brand of Eaton, Electrical Sector.
 - d. Hilti, Inc.
 - e. Raco Taymac Bell; brand of Hubbell Electrical Solutions; Hubbell Incorporated.
 - f. Southwire Company, LLC.
 - 2. Source Limitations: Obtain products from single manufacturer.
 - 3. Product Listing Criteria: UL CCN DWMU; including UL 2239 or UL 1565.
 - 4. Product Characteristics:
 - a. Mounting Orientation: Vertical.
 - b. Conduit, Cable, or Tubing Bundle Capacity:
 - 5. Required Product Options:
 - a. Suitable for use in air handling space.
- E. UL ZODZ Cable Tie or Management System:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. 3M Company, Electrical Markets Div (EMD).
 - b. ABB, Electrification Business.
 - c. Ace Hardware Corp.
 - d. Burndy; brand of Hubbell Electrical Solutions; Hubbell Incorporated.
 - e. Cambridge Resources.

- f. Fastenal Co.
- g. HellermannTyton.
- h. Hilti, Inc.
- i. Ideal Industries, Inc.
- j. Mag Daddy.
- k. NSi Industries LLC.
- l. Panduit Corp.
- m. Southwire Company, LLC.
- n. TE Connectivity Ltd.
- o. Velcro USA Inc.
- 2. Source Limitations: Obtain products from single manufacturer.
- 3. Product Listing Criteria: UL CCN ZODZ; including UL 62275.
- 4. Product Characteristics:
 - a. Classification: Type 2 or 21.
 - b. Bundle Capacity: As needed.
 - c. Mechanical Strength: 200 N.
 - d. UL 746B Maximum Temperature Rating: 60 deg C.
 - e. Minimum Installation Temperature: 0 deg C
 - f. Fixing Device: Integral assembly.
- 5. Required Product Options:
 - a. UL 2043 Air-Handling Spaces Rating: AH-2 nonmetallic or composite components.

PART 3 - EXECUTION

3.1 SELECTION OF PATHWAYS FOR COMMUNICATIONS SYSTEMS

- A. Unless more stringent requirements are specified in Contract Documents or manufacturers' published instructions, comply with NFPA 70 for selection of duct raceways. Consult Architect for resolution of conflicting requirements.
- B. Type OFR and Type CR Communications Raceways: Comply with Table 800.154(b) of NFPA 70.
- C. Minimum Pathway Size:
 - 1. For Copper and Aluminum Cables: Metric designator 21 (trade size 3/4).
 - 2. For Optical-Fiber Cables: Metric designator 25 (trade size 1).
- D. Maximum Pathway Length Between Cable Access Points: 75 ft.
- E. Temperature Limitations:
 - 1. Type PVC, Type HDPE, Type EPEC, Type OFR, and Type CR: Do not install where ambient temperature exceeds 122 deg F. Conductor ratings must be limited to 75 deg C except where installed in a trench outside buildings with concrete encasement, where 90 deg C conductors are permitted.
 - 2. Type RTRC: Do not install where ambient temperature exceeds 230 deg F.
- F. Outdoor Pathways:
 - 1. Exposed and Subject to Severe Physical Damage: IMC.

ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

- 2. Exposed and Subject to Physical Damage: IMC.
 - a. Locations less than 2.5 m (8 ft) above finished floor.
- 3. Exposed and Not Subject to Physical Damage: Corrosion-resistant PVC-80.
- 4. Concealed Aboveground: PVC-80.
- 5. Direct Buried: PVC-40.
- 6. Innerducts inside Other Raceway: ENT.
- G. Indoor Pathways:

1.

- Exposed and Subject to Severe Physical Damage: IMC. Locations include the following:
 - a. Loading docks.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
- 2. Exposed and Subject to Physical Damage: IMC. Locations include the following:
 - a. Locations less than 2.5 m (8 ft) above finished floor.
 - b. Stub-ups to above suspended ceilings.
- 3. Exposed and Not Subject to Physical Damage: EMT.
- 4. Concealed above Suspended Ceilings: Hooks.
- 5. Concealed in Ceilings and Interior Walls and Partitions: EMT.
- 6. Damp or Wet Locations: Corrosion-resistant EMT.
- 7. Innerducts inside Metal Raceway: ENT.
- 8. Exposed to Environmental Air: CR-P.
- 9. In Vertical RunsCR-R.
- H. Duct Fittings: Select fittings in accordance with NEMA FB 2.10 guidelines.
 - 1. ERMC and IMC: Provide threaded-type fittings unless otherwise indicated.
- I. Cable Supports and Positioning Devices:
 - 1. Size hooks to allow minimum of 25 percent future capacity without exceeding design capacity limits.
 - 2. Support hooks directly from building structure. Do not use ceiling grid support rods or wires.
 - 3. Hook spacing must allow no more than 6 inch of slack. Lowest point of cables must be no closer than 6 inch to ceiling tiles, mechanical ductwork and fittings, luminaires, power conduits, power and telecommunications outlets, and other electrical and communications equipment.
 - 4. Space hooks no more than 5 ft on center.
 - 5. Provide hook at each change in direction.
- J. Boxes and Enclosures:
 - 1. Outdoors, Aboveground: UL 50E Type 3R.
 - 2. Indoors: UL 50E Type 1, except use Type 4 nonmetallic units in institutional and commercial kitchens and damp or wet locations.
- K. Identification of Underground Pathways, Handholes, and Structures:
 - 1. Use "COMMUNICATIONS" for legend on warning planks, underground warning tape, and covers.

3.2 SELECTION OF GROUNDING AND BONDING PRODUCTS

- A. Grounding and Bonding Conductors:
 - 1. Communications Busbar Connections:
 - a. TBC: Not smaller than 1/0 AWG and no smaller than largest TBB.
 - b. TBB: Not smaller than 2 kcmil per linear ft of conductor length, but not larger than 750 kcmil, unless otherwise indicated on Drawings.
 - c. BBC: Not smaller than largest TBB to which it is connected unless otherwise indicated on Drawings.
 - d. TEBC: Not smaller than 2 AWG unless otherwise indicated on Drawings. Provide bolted connectors.
 - e. UBC: Not smaller than 6 AWG unless otherwise indicated on Drawings. Provide bolted connectors.
 - f. Bonding Conductors to Structural Steel: Not smaller than 6 AWG unless otherwise indicated on Drawings. Provide bolted clamp connectors.
 - 2. Underground Connections: Not smaller than 2 AWG. Provide welded connectors, except bolted connectors may be used in handholes or manholes and as otherwise indicated on Drawings.

3.3 SELECTION OF COLORS AND IDENTIFICATION MARKINGS

- A. Comply with 29 CFR 1910.144 for color identification of hazards, and the following:
- B. Pipe and Conduit Labeling: Comply with ASME A13.1.
- C. Color Coding Scheme for Communications Cable and Terminations: Comply with BICSI N1 and TIA-598.
- D. Accessible Fittings for Raceways: Identify cover of junction and pull box of the following systems with wiring system legend and system voltage. System legends must be as follows:
 - 1. "COMMUNICATIONS."
 - 2. "FIRE ALARM."
 - 3. "SECURITY."
- E. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
- F. Locations of Underground Lines: Underground-line warning tape for communication, control wiring, and optical-fiber cable.
- G. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with conductor or cable designation, origin, and destination.
- H. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with conductor designation.
- I. Equipment and Cabling Identification for Administrative Records and Labeling: Comply with TIA-606 requirements for Class 1 network administration.

- J. Equipment Identification Labels:
 - 1. Black letters on white field.
 - 2. Indoor Equipment: Self-adhesive label.
 - 3. Outdoor Equipment: Laminated acrylic or melamine sign.
 - 4. Equipment To Be Labeled:
 - a. Racks, Frames, and Enclosures: Identify front and rear of each enclosure with selfadhesive labels containing equipment designation.
 - b. Patch Panels: Label individual rows in each rack, starting at top and working down, with self-adhesive labels.
 - c. Communications cabinets.
 - d. Access doors and panels for concealed communications items.
 - e. Emergency system boxes and enclosures.
 - f. Contactors.
 - g. Remote-controlled switches, dimmer modules, and control devices.
 - h. Monitoring and control equipment.
 - i. Fire-alarm equipment.
 - j. Security equipment.
 - k. Life-safety communications equipment.
- K. Backbone Cables: Label each cable with a self-adhesive wraparound label indicating the location of the far or other end of the backbone cable. Patch panel or punch down block where cable is terminated should be labeled identically.
- L. Horizontal Cables: Label each cable with a self-adhesive wraparound label.
- M. Cover Plates: Label individual cover plates with self-adhesive labels. Place label at top of cover plate. Identify cover plate in accordance with TIA-606.
- N. Cable Ties: General purpose, for attaching tags, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.

3.4 SELECTION OF SIGNS AND HAZARD MARKINGS

- A. Comply with 29 CFR 1910.145 for danger, caution, warning, and safety instruction signs.
- B. Signs, labels, and tags required for personnel safety must comply with the following standards:
 - 1. Safety Colors: NEMA Z535.1.
 - 2. Facility Safety Signs: NEMA Z535.2.
 - 3. Safety Symbols: NEMA Z535.3.
 - 4. Product Safety Signs and Labels: NEMA Z535.4.
 - 5. Safety Tags and Barricade Tapes for Temporary Hazards: NEMA Z535.5.

3.5 INSTALLATION OF PATHWAYS FOR COMMUNICATIONS SYSTEMS

- A. Comply with manufacturers' published instructions, including limitations on distance, bends, and bend radius.
- B. Special Installation Techniques:

- 1. Complete communications raceway installation before starting conductor installation.
- 2. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.
- 3. Provide hangers and supports for pathways, boxes, and enclosures.
- 4. Firestop pathway penetrations of fire-rated assemblies.
- 5. Identification:
 - a. Provide colors and labels for pathways, boxes, enclosures, and associated communications equipment.
 - b. Provide safety warning signs.
- C. Interfaces with Other Work:
 - 1. Coordinate installation of new communications pathways with existing conditions.

3.6 **PROTECTION**

- A. Protect coatings and finishes of pathways, boxes, and enclosures from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 270528

SECTION 270529 - HANGERS AND SUPPORTS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Steel slotted support systems for communication raceways.
- 2. Aluminum slotted support systems for communication raceways.
- 3. Nonmetallic slotted support systems for communication raceways.
- 4. Conduit and cable support devices.
- 5. Support for conductors in vertical conduit.
- 6. Structural steel for fabricated supports and restraints.
- 7. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
- 8. Fabricated metal equipment support assemblies.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Slotted support systems, hardware, and accessories.
 - b. Clamps.
 - c. Hangers.
 - d. Sockets.
 - e. Eye nuts.
 - f. Fasteners.
 - g. Anchors.
 - h. Saddles.
 - i. Brackets.
 - 2. Include rated capacities and furnished specialties and accessories.
- B. Shop Drawings: For fabrication and installation details for communications hangers and support systems.
 - 1. Trapeze hangers. Include product data for components.
 - 2. Steel slotted-channel systems.
 - 3. Aluminum slotted-channel systems.
 - 4. Nonmetallic slotted-channel systems.
 - 5. Equipment supports.
 - 6. Include design calculations for seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Ductwork, piping, fittings, and supports.
 - 3. Structural members to which hangers and supports will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling, including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Access panels.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M.
 - 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.
- B. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame Rating: Class 1.
 - 2. Self-extinguishing according to ASTM D635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inchdiameter holes at a maximum of 8 inches o.c. in at least one surface.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ABB, Electrification Business.
 - b. Allied Tube & Conduit; Atkore International.
 - c. CADDY; brand of nVent Electrical plc.
 - d. Cooper B-line; brand of Eaton, Electrical Sector.
 - e. Flex-Strut Inc.
 - f. G-Strut.
 - g. Gripple Inc.
 - h. Haydon Corporation.

- i. MIRO Industries.
- j. Metal Ties Innovation.
- k. Rocket Rack; Robroy Industries.
- l. Unistrut; Atkore International.
- m. Wesanco, Inc.
- 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
- 3. Material for Channel, Fittings, and Accessories: Galvanized steel.
- 4. Channel Width: 1-5/8 inches.
- 5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
- 6. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
- 7. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
- 8. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- 9. Channel Dimensions: Selected for applicable load criteria.
- B. Conduit and Cable Support Devices: Steel clamps, hangers, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored communications conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Hilti, Inc.
 - 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Cooper B-line; brand of Eaton, Electrical Sector.
 - 2) Empire Industries, Inc.
 - 3) Hilti, Inc.
 - 4) ITW Ramset/Red Head; Illinois Tool Works, Inc.

- 5) MKT Fastening, LLC.
- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F3125/F3125M,Grade A325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA/BICSI 568.
 - 3. TIA-569-D.
 - 4. NECA 101.
 - 5. NECA 102.
 - 6. NECA 105.
 - 7. NECA 111.
- B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- C. Comply with requirements for pathways specified in Section 270528 "Pathways for Communications Systems."
- D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with single-bolt conduit clamps.
- F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Raceway Support Methods: In addition to methods described in NECA 1, EMT may be supported by openings through structure members, according to NFPA 70.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten communications items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Use approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Use expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated-driven threaded studs, provided with lock washers and nuts, may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Spring-tension clamps.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor communications materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION 270529

SECTION 270553 - IDENTIFICATION FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Signs.
 - 2. Bands and tubes.
 - 3. Cable ties.
 - 4. Miscellaneous identification products.
 - 5. Labels.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for communications identification products.
- B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
- C. Identification Schedule:
 - 1. Outlets: Scaled drawings indicating location and proposed designation.
 - 2. Backbone Cabling: Riser diagram showing each communications room, backbone cable, and proposed backbone cable designation.
 - 3. Racks: Scaled drawings indicating location and proposed designation.
 - 4. Patch Panels: Enlarged scaled drawings showing rack row, number, and proposed designations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with NFPA 70 and TIA 606-B.
- B. Comply with ANSI Z535.4 for safety signs and labels.
- C. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Equipment Identification Labels:1. Black letters on a white field.

2.3 LABELS

- A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Brady Corporation.
 - c. Champion America.
 - d. Grafoplast Wire Markers.
 - e. HellermannTyton.
 - f. LEM Products Inc.
 - g. Marking Services Inc.
 - h. Panduit Corp.
 - i. Seton Identification Products; a Brady Corporation company.
 - j. emedco.
- B. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceway or cable they identify, that stay in place by gripping action.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Brady Corporation.
 - c. HellermannTyton.
 - d. Marking Services Inc.
 - e. Panduit Corp.
 - f. Seton Identification Products; a Brady Corporation company.
- C. Self-Adhesive Wraparound Labels: Preprinted, 3-mil- thick, vinyl flexible labels with acrylic pressure-sensitive adhesive.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. A'n D Cable Products.
 - b. Brady Corporation.
 - c. Brady Corporation.
 - d. Brother International Corporation.
 - e. Grafoplast Wire Markers.
 - f. Ideal Industries, Inc.

- g. LEM Products Inc.
- h. Marking Services Inc.
- i. Panduit Corp.
- j. Seton Identification Products; a Brady Corporation company.
- k. emedco.
- 2. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating protective shields over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
- 3. Marker for Labels:
 - a. Permanent, waterproof black ink marker recommended by tag manufacturer.
 - b. Machine-printed, permanent, waterproof black ink recommended by printer manufacturer.

2.4 CABLE TIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. HellermannTyton.
 - 2. Ideal Industries, Inc.
 - 3. Marking Services Inc.
 - 4. Panduit Corp.
- B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black.
- D. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F according to ASTM D638: 7000 psi.
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F.
 - 5. Color: Black.

2.5 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying communications identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of communications systems and connected items.
- G. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- H. Vinyl Wraparound Labels:
 - 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 - 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
 - 3. Provide label 6 inches from cable end.
- I. Snap-Around Labels:
 - 1. Secure tight to surface at a location with high visibility and accessibility.
 - 2. Provide label 6 inches from cable end.
- J. Self-Adhesive Wraparound Labels:
 - 1. Secure tight to surface at a location with high visibility and accessibility.
 - 2. Provide label 6 inches from cable end.
- K. Self-Adhesive Labels:

- 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
- 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on 1-1/2-inch- high label; where two lines of text are required, use labels 2 inches high.
- L. Snap-Around, Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations with high visibility. Identify by system and circuit designation.
- C. Accessible Fittings for Raceways and Cables within Buildings: Identify covers of each junction and pull box with self-adhesive labels containing wiring system legend.
 - 1. System legends shall be as follows:
 - a. Telecommunications.
- D. Faceplates: Label individual faceplates with self-adhesive labels. Place label at top of faceplate. Each faceplate shall be labeled with its individual, sequential designation, numbered clockwise when entering room from primary egress, composed of the following, in the order listed:
 - 1. Wiring closet designation.
 - 2. Colon.
 - 3. Faceplate number.
- E. Equipment Room Labeling:
 - 1. Racks, Frames, and Enclosures: Identify front and rear of each with self-adhesive labels.
 - 2. Patch Panels: Label individual rows in each rack, starting at top and working down, with self-adhesive labels.
 - 3. Data Outlets: Label each outlet with a self-adhesive label indicating the following, in the order listed:
 - a. Room number being served.
 - b. Colon.
 - c. Faceplate number.
- F. Backbone Cables: Label each cable with a self-adhesive wraparound label indicating the location of the far or other end of the backbone cable. Patch panel or punch down block where cable is terminated should be labeled identically.
- G. Horizontal Cables: Label each cable with a self-adhesive wraparound label indicating the following, in the order listed:
 - 1. Room number.
 - 2. Colon.
 - 3. Faceplate number.

- H. Locations of Underground Lines: Underground-line warning tape for copper, coaxial, hybrid copper/fiber, and optical-fiber cable.
- I. Instructional Signs: Self-adhesive labels.
- J. Warning Labels for Indoor Cabinets, Boxes, and Enclosures: Self-adhesive labels.
 1. Apply to exterior of door, cover, or other access.
- K. Equipment Identification Labels:
 - 1. Indoor Equipment: Self-adhesive label.
 - 2. Outdoor Equipment: Laminated-acrylic or melamine-plastic sign.
 - 3. Equipment to Be Labeled:
 - a. Communications cabinets.
 - b. Uninterruptible power supplies.

END OF SECTION 270553

SECTION 271116 - COMMUNICATIONS RACKS, FRAMES, AND ENCLOSURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. 19-inch equipment racks.
 - 2. 19-inch freestanding equipment cabinets.
 - 3. Open Rack equipment racks.
 - 4. Power strips.
 - 5. Grounding.
 - 6. Labeling.

B. Related Requirements:

- 1. Section 271110 "Communications Equipment Room Fittings" for backboards and accessories.
- 2. Section 270526 "Grounding and Bonding for Telecommunications Equipment" for TMGBs and TGBs.
- 3. Section 270536 "Cable Trays for Communications Systems" for cable trays and cable tray accessories.
- 4. Section 271313 "Communications Copper Backbone Cabling" for copper data cabling associated with system panels and devices.
- 5. Section 271513 "Communications Copper Horizontal Cabling" for copper data cabling associated with system panels and devices.

1.3 DEFINITIONS

- A. Access Provider: An operator that provides a circuit path or facility between the service provider and user. An access provider can also be a service provider.
- B. BICSI: Building Industry Consulting Service International.
- C. LAN: Local area network.
- D. RCDD: Registered communications distribution designer.
- E. Service Provider: The operator of a telecommunications transmission service delivered through access provider facilities.
- F. TGB: Telecommunications grounding bus bar.

G. TMGB: Telecommunications main grounding bus bar.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, certifications, standards compliance, and furnished specialties and accessories.
- B. Shop Drawings: For communications racks, frames, and enclosures. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
 - 3. Grounding: Indicate location of TGB and its mounting detail showing standoff insulators and wall-mounting brackets.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings shall be under direct supervision of Technician.
 - 2. Installation Supervision: Installation shall be under direct supervision of Technician Installer 2, Copper or Fiber, who shall be present at all times when Work of this Section is performed at Project site.
 - 3. Field Inspector: Currently registered by BICSI as RCDD to perform on-site inspection.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. UL listed.
- B. RoHS compliant.
- C. Compliant with requirements of the Payment Card Industry Data Security Standard.
2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels specified in Section 061000 "Rough Carpentry."

2.3 19-INCH EQUIPMENT RACKS

- A. Description: four- post racks with threaded rails designed for mounting telecommunications equipment. Width is compatible with EIA/ECIA 310-E, 19-inch equipment mounting with an opening of 17.72-inches between rails.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Belden Inc.
 - 2. Black Box Corporation.
 - 3. Bud Industries, Inc.
 - 4. CommScope, Inc.
 - 5. Cooper B-line; brand of Eaton, Electrical Sector.
 - 6. Dell Technologies Inc.
 - 7. Hammond Mfg. Co. Inc.
 - 8. Hubbell Premise Wiring; brand of Hubbell Electrical Solutions; Hubbell Incorporated.
 - 9. Kendall Howard.
 - 10. Leviton Manufacturing Co., Inc.
 - 11. Liebert; Vertiv Holdings Co.
 - 12. Middle Atlantic Products; Legrand North America, LLC.
 - 13. Ortronics, Inc.
 - 14. Panduit Corp.
 - 15. Siemon Co. (The).
 - 16. Tripp-Lite.
- C. General Requirements:
 - 1. Frames: Modular units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.
 - 2. Material: Extruded aluminum.
 - 3. Finish: Manufacturer's standard, baked-polyester powder coat.
 - 4. Color: Black.
- D. Floor-Mounted Racks:
 - 1. Overall Height: 72 inches.
 - 2. Overall Depth: 23 inches.
 - 3. Upright Depth: 3 inches
 - 4. Four-Post Load Rating: 1000 lb.
 - 5. Number of Rack Units per Rack: 52.
 - a. Numbering: Every rack units, on interior of rack.
 - 6. Threads: 10-32 Universal square.
 - 7. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug, and a power strip.
 - 8. Base shall have a minimum of four mounting holes for permanent attachment to floor.
 - 9. Top shall have provisions for attaching to cable tray or ceiling.

- 10. Self-leveling.
- E. Cable Management:
 - 1. Metal, with integral wire retaining fingers.
 - 2. Baked-polyester powder coat finish.
 - 3. Vertical cable management panels shall have front and rear channels, with covers.
 - 4. Provide horizontal crossover cable manager at the top of each relay rack, with a minimum height of two rack units each.

2.4 POWER STRIPS

- A. Power Strips: Comply with UL 1363.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Rack mounting.
 - 3. Six 15-A, 120-V ac, NEMA WD 6, Configuration 5-15R receptacles.
 - 4. LED indicator lights for power and protection status.
 - 5. LED indicator lights for reverse polarity and open outlet ground.
 - 6. Circuit Breaker and Thermal Fusing: When protection is lost, circuit opens and cannot be reset.
 - 7. Circuit Breaker and Thermal Fusing: Unit continues to supply power if protection is lost.
 - 8. Rocker-type on-off switch, illuminated when in on position.
 - 9. Peak Single-Impulse Surge Current Rating: 13 kA per phase.
 - 10. Protection modes shall be line to neutral, line to ground, and neutral to ground. UL 1449 clamping voltage for all three modes shall be not more than 330 V.

2.5 GROUNDING

- A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Chatsworth Products, Inc.
 - 2. Harger Lightning & Grounding; business of Harger, Inc.
 - 3. Panduit Corp.
- C. Rack and Cabinet TGBs: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with TIA-606-B. Predrilling shall be with holes for use with lugs specified in this Section.
 - 1. Cabinet-Mounted TGB: Terminal block, with stainless-steel or copper-plated hardware for attachment to cabinet.
 - 2. Rack-Mounted Horizontal TGB: Designed for mounting in 19- or 23-inch equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.
 - 3. Rack-Mounted Vertical TGB: 72 or 36 inches long, with stainless-steel or copper-plated hardware for attachment to rack.

2.6 LABELING

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1.
- B. Comply with BICSI TDMM for layout of communications equipment spaces.
- C. Comply with BICSI ITSIMM for installation of communications equipment spaces.
- D. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- E. Coordinate layout and installation of communications equipment in racks and room. Coordinate service entrance configuration with service provider.
 - 1. Meet jointly with system providers, equipment suppliers, and Owner to exchange information and agree on details of equipment configurations and installation interfaces.
 - 2. Record agreements reached in meetings and distribute them to other participants.
 - 3. Adjust configurations and locations of distribution frames, cross-connects, and patch panels in equipment spaces to accommodate and optimize configuration and space requirements of telecommunications equipment.
 - 4. Adjust configurations and locations of equipment with distribution frames, crossconnects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in equipment room.
- F. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

3.2 GROUNDING

- A. Comply with NECA/BICSI 607.
- B. Install grounding according to BICSI ITSIMM, "Bonding, Grounding (Earthing) and Electrical Protection" Ch.
- C. Locate TGB to minimize length of bonding conductors. Fasten to wall, allowing at least 2 inches of clearance behind TGB. Connect TGB with a minimum No. 4 AWG grounding electrode conductor from TGB to suitable electrical building ground. Connect rack TGB to near TGB or the TMGB.
 - 1. Bond the shield of shielded cable to patch panel, and bond patch panel to TGB or TMGB.

3.3 IDENTIFICATION

- A. Coordinate system components, wiring, and cabling complying with TIA-606-B. Comply with requirements in Section 270553 "Identification for Electrical Systems."
- B. Comply with requirements in Section 099123 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
- C. Paint and label colors for equipment identification shall comply with TIA-606-B for Class 2 level of administration, including optional identification requirements of this standard.
- D. Labels shall be machine printed. Type shall be 1/8 inch in height.

END OF SECTION 271116

SECTION 271513 - COMMUNICATIONS COPPER HORIZONTAL CABLING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Category 6a twisted pair cable.
- 2. Twisted pair cable hardware.
- 3. Cable management system.
- 4. Identification products.

1.2 DEFINITIONS

- A. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Jack: Also commonly called an "outlet," it is the fixed, female connector.
- E. LAN: Local area network.
- F. Plug: Also commonly called a "connector," it is the removable, male telecommunications connector.
- G. RCDD: Registered Communications Distribution Designer.
- H. UTP: Unscreened (unshielded) twisted pair.

1.3 COPPER HORIZONTAL CABLING DESCRIPTION

- A. Horizontal cable cabling system shall provide interconnections between Distributor A, Distributor B, or Distributor C, and the equipment outlet, otherwise known as "Cabling Subsystem 1," in the telecommunications cabling system structure. Cabling system consists of horizontal cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for horizontal-to-horizontal cross-connection.
 - 1. TIA-568-C.1 requires that a minimum of two equipment outlets be installed for each work area.
 - 2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications equipment outlet.
 - 3. Bridged taps and splices shall not be installed in the horizontal cabling.
- B. A work area is approximately 100 sq. ft., and includes the components that extend from the equipment outlets to the station equipment.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS ISSUED FOR BID MARCH 25, 2024 HZ PROJECT R315639.02

C. The maximum allowable horizontal cable length is 295 feet. This maximum allowable length does not include an allowance for the length of 16 feet to the workstation equipment or in the horizontal cross-connect.

1.4 ACTION SUBMITTALS

- A. Product Data:
 - 1. Category 6a twisted pair cable.
 - 2. Twisted pair cable hardware.
 - 3. Cable management system.
 - 4. Identification products.
 - 5. System Labeling Schedules:
 - a. Electronic copy of labeling schedules that are part of cabling and asset identification system of software.
 - 6. Cabling administration Drawings and printouts.
 - 7. Wiring diagrams and installation details of telecommunications equipment, to show location and layout of telecommunications equipment, including the following:
 - a. Telecommunications rooms plans and elevations.
 - b. Telecommunications pathways.
 - c. Telecommunications system access points.
 - d. Telecommunications grounding system.
 - e. Telecommunications conductor drop locations.
 - f. Typical telecommunications details.
 - g. Mechanical, electrical, and plumbing systems.
- B. Twisted pair cable testing plan.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, installation supervisor, and field inspector.
- B. Product Certificates: For each type of product.
- C. Source quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings, cabling administration Drawings, and field testing program development by an RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Technician Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.

3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.1. Test each pair of twisted pair cable for open and short circuits.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.10 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard.
- B. Telecommunications Pathways and Spaces: Comply with TIA-569-D.
- C. Grounding: Comply with TIA-607-B.

2.2 GENERAL CABLE CHARACTERISTICS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with the applicable standard and NFPA 70 for the following types:
 - 1. Communications, Plenum Rated:
 - a. Type CMP complying with UL 1685 or Type CMP in listed plenum communications raceway.
 - b. Type CM, Type CMG, Type CMP, Type CMR, or Type CMX in metallic conduit installed according to NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
 - 2. Communications, Non-Plenum Rated:
 - a. Type CMR complying with UL 1666.
- B. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 2. Smoke-Developed Index: 50 or less.
- C. RoHS compliant.

2.3 CATEGORY 6a TWISTED PAIR CABLE

- A. Category 6a Twisted Pair Cable: Four-pair, balanced twisted pair cable, certified to meet transmission characteristics of Category 6a cable at frequencies up to 500 MHz.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. 3M.
 - 2. AMP NETCONNECT; a TE Connectivity Ltd. company.
 - 3. Belden Inc.
 - 4. Berk-Tek, a Leviton Company.
 - 5. CommScope, Inc.
 - 6. General Cable; Prysmian Group North America.
 - 7. Genesis Cable Products; Honeywell International, Inc.
 - 8. Hitachi Cable America Inc.
 - 9. Mohawk; a division of Belden Networking, Inc.
 - 10. Prysmian Cables and Systems; Prysmian Group North America.
 - 11. Superior Essex Inc.; subsidiary of LS Corp.
- C. Standard: Comply with TIA-568-C.2 for Category 6a cables.
- D. Conductors: 100-ohm, 23 AWG solid copper.
- E. Shielding/Screening: Unshielded twisted pairs (UTP).
- F. Cable Rating: Plenum.
- G. Jacket: Blue thermoplastic.

2.4 TWISTED PAIR CABLE HARDWARE

- A. Twisted Pair Cable Hardware: Hardware designed to connect, splice, and terminate twisted pair copper communications cable.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. 3M.
 - 2. AMP NETCONNECT; a TE Connectivity Ltd. company.
 - 3. American Technology Systems Industries, Inc.
 - 4. Belden Inc.
 - 5. Berk-Tek, a Leviton Company.
 - 6. CommScope, Inc.
 - 7. Dynacom Corporation.
 - 8. General Cable; Prysmian Group North America.
 - 9. Genesis Cable Products; Honeywell International, Inc.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 10. Hubbell Premise Wiring; brand of Hubbell Electrical Solutions; Hubbell Incorporated.
- 11. Leviton Manufacturing Co., Inc.
- 12. Mohawk; a division of Belden Networking, Inc.
- 13. Molex Premise Networks.
- 14. Panduit Corp.
- 15. Prysmian Cables and Systems; Prysmian Group North America.
- 16. Siemon Co. (The).
- 17. Superior Essex Inc.; subsidiary of LS Corp.
- C. General Requirements for Twisted Pair Cable Hardware:
 - 1. Comply with the performance requirements of Category 6a.
 - 2. Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools.
 - 3. Cables shall be terminated with connecting hardware of same category or higher.
- D. Source Limitations: Obtain twisted pair cable hardware from same manufacturer as twisted pair cable, from single source.
- E. Patch Panel: Modular panels housing numbered jack units with IDC-type connectors at each jack location for permanent termination of pair groups of installed cables.
 - 1. Features:
 - a. Universal T568A and T568B wiring labels.
 - b. Labeling areas adjacent to conductors.
 - c. Replaceable connectors.
 - d. 24 or 48 ports.
 - 2. Construction: 16-gauge steel and mountable on 19-inch equipment racks.
 - 3. Number of Jacks per Field: One for each four-pair cable indicated.
- F. Patch Cords: Factory-made, four-pair cables in 36-inch lengths; terminated with an eightposition modular plug at each end.
 - 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure performance. Patch cords shall have latch guards to protect against snagging.
- G. Plugs and Plug Assemblies:
 - 1. Male; eight position; color-coded modular telecommunications connector designed for termination of a single four-pair, 100-ohm, unshielded or shielded twisted pair cable.
 - 2. Standard: Comply with TIA-568-C.2.
- H. Jacks and Jack Assemblies:
 - 1. Female; eight position; modular; fixed telecommunications connector designed for termination of a single four-pair, 100-ohm, unshielded or shielded twisted pair cable.
 - 2. Designed to snap-in to a patch panel or cover plate.
 - 3. Standard: Comply with TIA-568-C.2.
- I. Cover Plate:
 - 1. Four port, vertical single gang cover plates designed to mount to single gang wall boxes.
 - 2. Plastic Cover Plate: High-impact plastic. Coordinate color with Section 260533.16 "Boxes and Covers for Electrical Systems."
 - a. Flush mounting jacks, positioning the cord at a 45-degree angle.

- J. Legend:
 - 1. Machine printed, in the field, using adhesive-tape label.
 - 2. Snap-in, clear-label covers and machine-printed paper inserts.

2.5 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.6 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test cables on reels according to TIA-568-C.1.
- C. Factory test twisted pair cables according to TIA-568-C.2.
- D. Cable will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 WIRING METHODS

- A. Routing:
 - 1. Install cables in raceways and cable trays, except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, attics, and gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables, except in unfinished spaces.
 - a. Install plenum cable in environmental air spaces, including plenum ceilings.
 - b. Comply with requirements for raceways and boxes specified in Section 270528 "Pathways for Communications Systems."
 - 2. Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- B. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools. Install conductors parallel with or at right angles to sides and back of enclosure.

3.2 INSTALLATION OF PATHWAYS

- A. Comply with requirements for demarcation point, cabinets, and racks specified in Section 271100 "Communications Equipment Room Fittings."
- B. Comply with Section 270528 "Pathways for Communications Systems."
- C. Comply with Section 260529 "Hangers and Supports for Electrical Systems."

- D. Comply with Section 260536 "Cable Trays for Electrical Systems."
- E. Drawings indicate general arrangement of pathways and fittings.

3.3 INSTALLATION OF TWISTED PAIR HORIZONTAL CABLES

- A. Comply with NECA 1 and NECA/BICSI 568.
- B. General Requirements for Cabling:
 - 1. Comply with TIA-568-C.0, TIA-568-C.1, and TIA-568-C.2.
 - 2. Comply with BICSI's "Information Transport Systems Installation Methods Manual (ITSIMM), Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section.
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. Do not untwist twisted pair cables more than 1/2 inch from the point of termination to maintain cable geometry.
 - 5. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 - 6. MUTOA shall not be used as a cross-connect point.
 - 7. Consolidation points may be used only for making a direct connection to equipment outlets:
 - a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
 - b. Locate consolidation points for twisted pair cables at least 49 feet from communications equipment room.
 - 8. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 9. Install lacing bars to restrain cables, prevent straining connections, and prevent bending cables to smaller radii than minimums recommended by manufacturer.
 - 10. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI Information Transport Systems Installation Methods Manual, Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section. Use lacing bars and distribution spools.
 - 11. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation, and replace it with new cable.
 - 12. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 - 13. In the communications equipment room, install a 10-foot- long service loop on each end of cable.
 - 14. Pulling Cable: Comply with BICSI Information Transport Systems Installation Methods Manual, Ch. 5, "Copper Structured Cabling Systems," "Pulling and Installing Cable" Section. Monitor cable pull tensions.
- C. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.

- 2. Suspend twisted pair cabling, not in a wireway or pathway, a minimum of 8 inches above ceilings by cable supports not more than 60 inches apart.
- 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- D. Group connecting hardware for cables into separate logical fields.
- E. Separation from EMI Sources:
 - 1. Comply with recommendations from BICSI's "Telecommunications Distribution Methods Manual" and TIA-569-D for separating unshielded copper communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches.
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches.
 - 4. Separation between communications cables in grounded metallic raceways, power lines, and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches.
 - 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
 - 6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA-569-D, Annex A, "Firestopping."
- C. Comply with "Firestopping Systems" Article in BISCI's "Telecommunications Distribution Methods Manual."

3.5 GROUNDING

- A. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems" for grounding conductors and connectors.
- B. Install grounding according to the "Grounding, Bonding, and Electrical Protection" chapter in BICSI's "Telecommunications Distribution Methods Manual."

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- C. Comply with TIA-607-B and NECA/BICSI-607.
- D. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall, allowing at least a 2-inch clearance behind the grounding bus bar. Connect grounding bus bar to suitable electrical building ground, using a minimum No. 4 AWG grounding electrode conductor.
- E. Bond metallic equipment to the grounding bus bar, using not smaller than a No. 6 AWG equipment grounding conductor.

3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Administration Class: Class 1.
 - 2. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.
- B. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
- C. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.
- D. Cable and Wire Identification:
 - 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 - 2. Each wire connected to building-mounted devices is not required to be numbered at the device if wire color is consistent with associated wire connected and numbered within panel or cabinet.
 - 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
 - 4. Label each terminal strip, and screw terminal in each cabinet, rack, or panel.
 - a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group, extended from a panel or cabinet to a buildingmounted device, with the name and number of a particular device.
 - b. Label each unit and field within distribution racks and frames.
 - 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and -connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
- E. Labels shall be preprinted or computer-printed type, with a printing area and font color that contrast with cable jacket color but still comply with TIA-606-B requirements for the following:
 - 1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.7 FIELD QUALITY CONTROL

- A. Field tests and inspections must be witnessed by Owner.
- B. Tests and Inspections:
 - 1. Visually inspect jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments and inspect cabling connections for compliance with TIA-568-C.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment, and patch cords, and labeling of all components.
 - 3. Test twisted pair cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similarly to Table 10.1 in BICSI's "Telecommunications Distribution Methods Manual," or shall be transferred from the instrument to the computer, saved as text files, printed, and submitted.
- D. Nonconforming Work:
 - 1. End-to-end cabling will be considered defective if it does not pass tests and inspections.
 - 2. Remove and replace cabling where test results indicate that they do not comply with specified requirements.
- E. Collect, assemble, and submit test and inspection reports.

END OF SECTION 271513

SECTION 284621.11 - ADDRESSABLE FIRE-ALARM SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Existing fire-alarm system to be modified.
 - 2. Addressable fire-alarm system.
 - 3. Fire-alarm control unit (FACU).
 - 4. Manual fire-alarm boxes.
 - 5. System smoke detectors.
 - 6. Duct smoke detectors.
 - 7. Heat detectors.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. FACU: Fire-alarm control unit.
- C. High-Performance Building: A building that integrates and optimizes on a life-cycle basis all major high-performance attributes, including energy conservation, environment, safety, security, durability, accessibility, cost-benefit, productivity, sustainability, functionality, and operational considerations.
- D. Mode: The terms "Active Mode," "Off Mode," and "Standby Mode" are used as defined in the 2007 Energy Independence and Security Act (EISA).
- E. NICET: National Institute for Certification in Engineering Technologies.
- F. PC: Personal computer.
- G. Voltage Class: For specified circuits and equipment, voltage classes are defined as follows:
 - 1. Control Voltage: Listed and labeled for use in remote-control, signaling, and powerlimited circuits supplied by a Class 2 or Class 3 power supply having rated output not greater than 150 V and 5 A, allowing use of alternate wiring methods complying with NFPA 70, Article 725.
 - 2. Low Voltage: Listed and labeled for use in circuits supplied by a Class 1 or other power supply having rated output not greater than 1000 V, requiring use of wiring methods complying with NFPA 70, Article 300, Part I.

1.4 SEQUENCING AND SCHEDULING

- A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. When new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service, and label existing fire-alarm equipment "NOT IN SERVICE" until removed from building.
- B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

1.5 ACTION SUBMITTALS

- A. Approved Permit Submittal: Submittals must be approved by authorities having jurisdiction prior to submitting them to Architect.
- B. Product Data: For each type of product, including furnished options and accessories.
 - 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 - 2. Include rated capacities, operating characteristics, and electrical characteristics.
- C. Shop Drawings: For fire-alarm system.
 - 1. Comply with recommendations and requirements in "Documentation" section of "Fundamentals" chapter in NFPA 72.
 - 2. Include plans, elevations, sections, and details, including details of attachments to other Work.
 - 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 - 4. Annunciator panel details as required by authorities having jurisdiction.
 - 5. Detail assembly and support requirements.
 - 6. Include voltage drop calculations for notification-appliance circuits.
 - 7. Include battery-size calculations.
 - 8. Include input/output matrix.
 - 9. Include written statement from manufacturer that equipment and components have been tested as a system and comply with requirements in this Section and in NFPA 72.
 - 10. Include performance parameters and installation details for each detector.
 - 11. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
 - 12. Provide program report showing that air-sampling detector pipe layout balances pneumatically within airflow range of air-sampling detector.
 - 13. Provide control wiring diagrams for fire-alarm interface to HVAC; coordinate location of duct smoke detectors and access to them.
 - a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 - b. Show field wiring and equipment required for HVAC unit shutdown on alarm.
 - c. Locate detectors in accordance with manufacturer's written instructions.
 - d. Show air-sampling detector pipe routing.
 - 14. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.

- 15. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.
- D. Delegated Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by qualified professional engineer responsible for their preparation.
 - 1. Drawings showing location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of device.
 - 2. Design Calculations: Calculate requirements for selecting spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
 - 3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Comply with "Records" section of "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - b. Provide "Fire-Alarm and Emergency Communications System Record of Completion Documents" in accordance with "Completion Documents" Article in "Documentation" section of "Fundamentals" chapter in NFPA 72.
 - c. Complete wiring diagrams showing connections between devices and equipment. Each conductor must be numbered at every junction point with indication of origination and termination points.
 - d. Riser diagram.
 - e. Device addresses.
 - f. Air-sampling system sample port locations and modeling program report showing layout meets performance criteria.
 - g. Record copy of site-specific software.
 - h. Provide "Inspection and Testing Form" in accordance with "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 - 1) Equipment tested.
 - 2) Frequency of testing of installed components.
 - 3) Frequency of inspection of installed components.
 - 4) Requirements and recommendations related to results of maintenance.
 - 5) Manufacturer's user training manuals.
 - i. Manufacturer's required maintenance related to system warranty requirements.
 - j. Abbreviated operating instructions for mounting at FACU and each annunciator unit.
- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On USB media.
 - 3. Device address list.

4. Printout of software application and graphic screens.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Personnel must be trained and certified by manufacturer for installation of units required for this Project.
 - 2. Installation must be by personnel certified by NICET as fire-alarm Level II technician.
 - 3. Obtain certification by NRTL in accordance with NFPA 72.
 - 4. Licensed or certified by authorities having jurisdiction.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail because of defects in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 EXISTING FIRE-ALARM SYSTEM TO BE MODIFIED

- A. Basis for Pricing: Field verify existing fire alarm system.
- B. Description: Field verify the existing fire alarm system and internal components.
- C. Source Limitations for Fire-Alarm System and Components: Components must be compatible with, and operate as extension of, existing system. Provide system manufacturer's certification that components provided have been tested as, and will operate as, a system.

2.2 ADDRESSABLE FIRE-ALARM SYSTEM

- A. Description:
 - 1. Noncoded, UL-certified addressable system, with multiplexed signal transmission and voice/horn-and-strobe notification for evacuation.

B. Performance Criteria:

- 1. Regulatory Requirements:
 - a. Fire-Alarm Components, Devices, and Accessories: Listed and labeled by a NRTL in accordance with NFPA 70 for use with selected fire-alarm system and marked for intended location and application.
- 2. General Characteristics:
 - a. Automatic sensitivity control of certain smoke detectors.
 - b. Fire-alarm signal initiation must be by one or more of the following devices and systems:
 - 1) Manual stations.
 - 2) Heat detectors.
 - 3) Smoke detectors.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 4) Duct smoke detectors.
- 5) Fire standpipe system.
- c. Fire-alarm signal must initiate the following actions:
 - 1) Continuously operate alarm notification appliances, including voice evacuation notices.
 - 2) Identify alarm and specific initiating device at FACU, and remote annunciators.
 - 3) Transmit alarm signal to remote alarm receiving station.
 - 4) Unlock electric door locks in designated egress paths.
 - 5) Release fire and smoke doors held open by magnetic door holders.
 - 6) Activate voice/alarm communication system.
 - 7) Switch HVAC equipment controls to fire-alarm mode.
 - 8) Close smoke dampers in air ducts of designated air-conditioning duct systems.
 - 9) Record events in system memory.
 - 10) Record events by system printer.
- d. Supervisory signal initiation must be by one or more of the following devices and actions:
 - 1) Valve supervisory switch.
 - 2) Zones or individual devices have been disabled.
 - 3) FACU has lost communication with network.
- e. System trouble signal initiation must be by one or more of the following devices and actions:
 - 1) Open circuits, shorts, and grounds in designated circuits.
 - 2) Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
 - 3) Loss of communication with addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
 - 4) Loss of primary power at FACU.
 - 5) Ground or single break in internal circuits of FACU.
 - 6) Abnormal ac voltage at FACU.
 - 7) Break in standby battery circuitry.
 - 8) Failure of battery charging.
 - 9) Abnormal position of switch at FACU or annunciator.
- f. System Supervisory Signal Actions:
 - 1) Initiate notification appliances.
 - 2) Identify specific device initiating event at FACU.
 - 3) Record event on system printer.
 - 4) After time delay of 200 seconds, transmit trouble or supervisory signal to remote alarm receiving station.
 - 5) Transmit system status to building management system.
 - 6) Display system status on graphic annunciator.
- g. Network Communications:
 - 1) Provide network communications for fire-alarm system in accordance with fire-alarm manufacturer's written instructions.
 - 2) Provide network communications pathway per manufacturer's written instructions and requirements in NFPA 72 and NFPA 70.
- h. System Printer:
 - 1) Printer must be listed and labeled as integral part of fire-alarm system.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

2.3 FIRE-ALARM CONTROL UNIT (FACU)

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Autocall; brand of Johnson Controls International plc, Building Solutions North America.
 - 2. Bosch Security Systems, Inc.
 - 3. Edwards; Carrier Global Corporation.
 - 4. Fike Corporation.
 - 5. Fire-Lite Alarms; Honeywell International, Inc.
 - 6. Gamewell-FCI; Honeywell International, Inc.
 - 7. Gamewell-FCI; Honeywell International, Inc.
 - 8. Mircom Technologies, Ltd.
 - 9. Notifier; Honeywell International, Inc.
 - 10. Potter Electric Signal Company, LLC.
 - 11. Siemens Industry, Inc., Building Technologies Division.
 - 12. Silent Knight; Honeywell International, Inc.
 - 13. Simplex; brand of Johnson Controls International plc, Building Solutions North America.
 - 14. Valcom, Inc. (Keltron Corporation).
- B. Description: Field-programmable, microprocessor-based, modular, power-limited design with electronic modules.
- C. Performance Criteria:
 - 1. Regulatory Requirements: Comply with NFPA 72 and UL 864.
 - 2. General Characteristics:
 - a. System software and programs must be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining information through failure of primary and secondary power supplies.
 - b. Include real-time clock for time annotation of events on event recorder and printer.
 - c. Provide communication between FACU and remote circuit interface panels, annunciators, and displays.
 - d. FACU must be listed for connection to central-station signaling system service.
 - e. Provide nonvolatile memory for system database, logic, and operating system and event history. System must require no manual input to initialize in the event of complete power down condition. FACU must provide minimum 500-event history log.
 - f. Addressable Initiation Device Circuits: FACU must indicate which communication zones have been silenced and must provide selective silencing of alarm notification appliance by building communication zone.
 - 1) Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: FACU must be listed for releasing service.
 - g. Fire-Alarm Annunciator: Arranged for interface between human operator at FACU and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and programming and control menu.
 - 1) Annunciator and Display: LCD, 80 characters, minimum.
 - 2) Keypad: Arranged to permit entry and execution of programming, display, and control commands.
 - h. Alphanumeric Display and System Controls: Arranged for interface between human operator at FACU and addressable system components including

annunciation and supervision. Display alarm, supervisory, and component status messages and programming and control menu.

- 1) Annunciator and Display: LCD, two line(s) of 40 characters, minimum.
- 2) Keypad: Arranged to permit entry and execution of programming, display, and control commands.
- i. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
 - 1) Pathway Class Designations: NFPA 72, Class A.
 - 2) Pathway Survivability:Level 1.
 - 3) Install no more than 256 addressable devices on each signaling-line circuit.
 - 4) Install fault circuit isolators to comply with circuit performance requirements of NFPA 72 or with manufacturer's written instructions, whichever is more conservative.
- j. Serial Interfaces:
 - 1) One dedicated RS 485 port for central-station operation using point ID DACT.
 - 2) One RS 485 port for remote annunciators, Ethernet module, or multiinterface module (printer port).
 - 3) OneUSB port for PC configuration.
 - 4) One RS 232 port for air-aspirating smoke detector connection.
 - 5) One RS 232 port for voice evacuation interface.
- k. Smoke-Alarm Verification:
 - 1) Initiate audible and visible indication of "alarm-verification" signal at FACU.
 - 2) Activate approved "alarm-verification" sequence at FACU and detector.
 - 3) Record events by system printer.
 - 4) Sound general alarm if alarm is verified.
 - 5) Cancel FACU indication and system reset if alarm is not verified.
- l. Notification-Appliance Circuit:
 - 1) Audible appliances must sound in three-pulse temporal pattern, as defined in NFPA 72.
 - 2) Where notification appliances provide signals to sleeping areas, alarm signal must be 520 Hz square wave with intensity 15 dB above average ambient sound level or 5 dB above maximum sound level, or at least 75 dB(A-weighted), whichever is greater, measured at pillow.
 - 3) Visual alarm appliances must flash in synchronization where multiple appliances are in same field of view, as defined in NFPA 72.
- m. Door Controls: Door hold-open devices that are controlled by smoke detectors at doors in smoke-barrier walls must be connected to fire-alarm system.
- n. Indicate number of alarm channels for automatic, simultaneous transmission of different announcements to different zones or for manual transmission of announcements by use of central-control microphone. Amplifiers must comply with UL 1711.
 - 1) Allow application of, and evacuation signal to, indicated number of zones and simultaneously allow voice paging to other zones selectively or in combination.
 - 2) Programmable tone and message sequence selection.
 - 3) Standard digitally recorded messages for "Evacuation" and "All Clear."
 - 4) Generate tones to be sequenced with audio messages of type recommended by NFPA 72 and that are compatible with tone patterns of notificationappliance circuits of FACU.

- o. Status Annunciator: Indicate status of various voice/alarm speaker zones and status of firefighters' two-way telephone communication zones.
- p. Preamplifiers, amplifiers, and tone generators must automatically transfer to backup units, on primary equipment failure.
- q. Printout of Events: On receipt of signal, print alarm, supervisory, and trouble events. Identify zone, device, and function. Include type of signal (alarm, supervisory, or trouble) and date and time of occurrence. Differentiate alarm signals from other printed indications. Also, print system reset event, including same information for device, location, date, and time. Commands initiate printing of list of existing alarm, supervisory, and trouble conditions in system and historical log of events.
- r. Primary Power: 24 V(dc) obtained from 120 V(ac) service and power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, must be powered by 24 V(dc) source.
- s. Alarm current draw of entire fire-alarm system must not exceed 80 percent of power-supply module rating.
- t. Secondary Power: 24 V(dc) supply system with batteries, automatic battery charger, and automatic transfer switch.
- u. Batteries: Sealed, valve-regulated, recombinant lead acid.
- D. Accessories:
 - 1. Instructions: Computer printout or typewritten instruction card mounted behind plastic or glass cover in stainless steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe functional operation of system under normal, alarm, and trouble conditions.

2.4 MANUAL FIRE-ALARM BOXES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Autocall; brand of Johnson Controls International plc, Building Solutions North America.
 - 2. Bosch Security Systems, Inc.
 - 3. Edwards; Carrier Global Corporation.
 - 4. Federal Signal Corporation.
 - 5. Fike Corporation.
 - 6. Fire-Lite Alarms; Honeywell International, Inc.
 - 7. Gamewell-FCI; Honeywell International, Inc.
 - 8. Gamewell-FCI; Honeywell International, Inc.
 - 9. Notifier; Honeywell International, Inc.
 - 10. Potter Electric Signal Company, LLC.
 - 11. Siemens Industry, Inc., Building Technologies Division.
 - 12. Silent Knight; Honeywell International, Inc.
 - 13. Simplex; brand of Johnson Controls International plc, Building Solutions North America.
 - 14. Valcom, Inc. (Keltron Corporation).
 - 15. Wheelock, Life Safety and Mass Notification; Eaton, Electrical Sector.
- B. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes must be finished in red with molded, raised-letter operating instructions in contrasting color; must show

visible indication of operation; and must be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

- 1. Double-action mechanism requiring two actions to initiate alarm, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to FACU.
- 2. Station Reset: Key- or wrench-operated switch.
- 3. Indoor Protective Shield: Factory-fabricated, clear plastic enclosure hinged at top to permit lifting for access to initiate alarm. Lifting cover actuates integral battery-powered audible horn intended to discourage false-alarm operation.
- 4. Weatherproof Protective Shield: Factory-fabricated, clear plastic enclosure hinged at top to permit lifting for access to initiate alarm.
- 5. Material: Manual stations made of Lexan polycarbonate.
- 6. Able to be used in indoor and outdoor areas.

2.5 SYSTEM SMOKE DETECTORS

- A. Photoelectric Smoke Detectors:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Autocall; brand of Johnson Controls International plc, Building Solutions North America.
 - b. Bosch Security Systems, Inc.
 - c. Edwards; Carrier Global Corporation.
 - d. Fire-Lite Alarms; Honeywell International, Inc.
 - e. Gamewell-FCI; Honeywell International, Inc.
 - f. Gamewell-FCI; Honeywell International, Inc.
 - g. Gentex Corporation.
 - h. Harrington Signal, Inc.
 - i. Notifier; Honeywell International, Inc.
 - j. Potter Electric Signal Company, LLC.
 - k. Siemens Industry, Inc., Building Technologies Division.
 - 1. Silent Knight; Honeywell International, Inc.
 - m. Simplex; brand of Johnson Controls International plc, Building Solutions North America.
 - 2. Performance Criteria:
 - a. Regulatory Requirements:
 - 1) NFPA 72.
 - 2) UL 268.
 - b. General Characteristics:
 - 1) Detectors must be four-wire type.
 - 2) Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to FACU.
 - 3) Base Mounting: Detector and associated electronic components must be mounted in twist-lock module that connects to fixed base. Provide terminals in fixed base for connection to building wiring.
 - 4) Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.

- 5) Integral Visual-Indicating Light: LED type, indicating detector has operated status.
- 6) Detector address must be accessible from FACU and must be able to identify detector's location within system and its sensitivity setting.
- 7) Operator at FACU, having designated access level, must be able to manually access the following for each detector:
 - a) Primary status.
 - b) Device type.
 - c) Present average value.
 - d) Present sensitivity selected.
 - e) Sensor range (normal, dirty, etc.).
- 8) Color: White color
- 9) Remote Control: Unless otherwise indicated, detectors must be digitaladdressable type, individually monitored at FACU for calibration, sensitivity, and alarm condition.
- 10) Rate-of-rise temperature characteristic of combination smoke- and heatdetection units must be selectable at FACU for 15 or 20 deg F per minute.
- 11) Fixed-temperature sensing characteristic of combination smoke- and heatdetection units must be independent of rate-of-rise sensing and must be settable at FACU to operate at 135 or 155 deg F.
- 12) Multiple levels of detection sensitivity for each sensor.
- 13) Sensitivity levels based on time of day.

2.6 DUCT SMOKE DETECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Autocall; brand of Johnson Controls International plc, Building Solutions North America.
 - 2. Bosch Security Systems, Inc.
 - 3. Edwards; Carrier Global Corporation.
 - 4. Fire-Lite Alarms; Honeywell International, Inc.
 - 5. Gamewell-FCI; Honeywell International, Inc.
 - 6. Gamewell-FCI; Honeywell International, Inc.
 - 7. Gentex Corporation.
 - 8. Harrington Signal, Inc.
 - 9. Notifier; Honeywell International, Inc.
 - 10. Potter Electric Signal Company, LLC.
 - 11. Siemens Industry, Inc., Building Technologies Division.
 - 12. Silent Knight; Honeywell International, Inc.
 - 13. Simplex; brand of Johnson Controls International plc, Building Solutions North America.
- B. Description: Photoelectric-type, duct-mounted smoke detector.
- C. Performance Criteria:
 - 1. Regulatory Requirements:
 - a. NFPA 72.
 - b. UL 268A.
 - 2. General Characteristics:
 - a. Detectors must be four-wire type.

- b. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to FACU.
- c. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
- d. Integral Visual-Indicating Light: LED type, indicating detector has operated status.
- e. Detector address must be accessible from FACU and must be able to identify detector's location within system and its sensitivity setting.
- f. Operator at FACU, having designated access level, must be able to manually access the following for each detector:
 - 1) Primary status.
 - 2) Device type.
 - 3) Present average value.
 - 4) Present sensitivity selected.
 - 5) Sensor range (normal, dirty, etc.).
- g. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with supplied detector for smoke detection in HVAC system ducts.
- h. Each sensor must have multiple levels of detection sensitivity.
- i. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
- j. Relay Fan Shutdown: Fully programmable relay rated to interrupt fan motorcontrol circuit.

2.7 HEAT DETECTORS

- A. Combination-Type Heat Detectors:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Autocall; brand of Johnson Controls International plc, Building Solutions North America.
 - b. Bosch Security Systems, Inc.
 - c. Edwards; Carrier Global Corporation.
 - d. Fire-Lite Alarms; Honeywell International, Inc.
 - e. Gamewell-FCI; Honeywell International, Inc.
 - f. Gamewell-FCI; Honeywell International, Inc.
 - g. Gentex Corporation.
 - h. Harrington Signal, Inc.
 - i. Notifier; Honeywell International, Inc.
 - j. Potter Electric Signal Company, LLC.
 - k. Siemens Industry, Inc., Building Technologies Division.
 - l. Silent Knight; Honeywell International, Inc.
 - m. Simplex; brand of Johnson Controls International plc, Building Solutions North America.
 - n. Valcom, Inc. (Keltron Corporation).
 - 2. Performance Criteria:
 - a. Regulatory Requirements:
 - 1) NFPA 72.
 - 2) UL 521.
 - b. General Characteristics:

- 1) Temperature sensors must test for and communicate sensitivity range of device.
- c. Actuated by fixed temperature of 135 deg F or rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
- d. Mounting: Adapter plate for outlet box mounting.
- e. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to FACU.
- f. Color: White.

2.8 FIRE-ALARM NOTIFICATION APPLIANCES

- A. Fire-Alarm Audible Notification Appliances:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Autocall; brand of Johnson Controls International plc, Building Solutions North America.
 - b. Edwards; Carrier Global Corporation.
 - c. Federal Signal Corporation.
 - d. Gamewell-FCI; Honeywell International, Inc.
 - e. Gentex Corporation.
 - f. Harrington Signal, Inc.
 - g. Notifier; Honeywell International, Inc.
 - h. Potter Electric Signal Company, LLC.
 - i. Siemens Industry, Inc., Building Technologies Division.
 - j. Simplex; brand of Johnson Controls International plc, Building Solutions North America.
 - k. Valcom, Inc. (Keltron Corporation).
 - 1. Wheelock, Life Safety and Mass Notification; Eaton, Electrical Sector.
 - 2. Description: Horns, bells, or other notification devices that cannot output voice messages.
 - 3. Performance Criteria:
 - a. Regulatory Requirements:
 - 1) NFPA 72.
 - b. General Characteristics:
 - 1) Individually addressed, connected to signaling-line circuit, equipped for mounting as indicated, and with screw terminals for system connections.
 - 2) Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 - 3) Horns: Electric-vibrating-polarized type, 24 V(dc); with provision for housing operating mechanism behind grille. Comply with UL 464. Horns must produce sound-pressure level of 90 dB(A-weighted), measured 10 ft. from horn, using coded signal prescribed in UL 464 test protocol.
 - 4) Combination Devices: Factory-integrated audible and visible devices in single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.
- B. Fire-Alarm Visible Notification Appliances:

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Autocall; brand of Johnson Controls International plc, Building Solutions North America.
 - b. Edwards; Carrier Global Corporation.
 - c. Federal Signal Corporation.
 - d. Gamewell-FCI; Honeywell International, Inc.
 - e. Gentex Corporation.
 - f. Harrington Signal, Inc.
 - g. Notifier; Honeywell International, Inc.
 - h. Potter Electric Signal Company, LLC.
 - i. Siemens Industry, Inc., Building Technologies Division.
 - j. Simplex; brand of Johnson Controls International plc, Building Solutions North America.
 - k. Valcom, Inc. (Keltron Corporation).
 - 1. Wheelock, Life Safety and Mass Notification; Eaton, Electrical Sector.
- 2. Performance Criteria:
 - a. Regulatory Requirements:
 - 1) NFPA 72.
 - 2) UL 1971.
 - b. General Characteristics:
 - 1) Rated Light Output:
 - a) 15/30/75/110 cd, selectable in field.
 - 2) Clear or nominal white polycarbonate lens mounted on aluminum faceplate.
 - 3) Mounting: Wall mounted unless otherwise indicated.
 - 4) For units with guards to prevent physical damage, light output ratings must be determined with guards in place.
 - 5) Flashing must be in temporal pattern, synchronized with other units.
 - 6) Strobe Leads: Factory connected to screw terminals.
 - 7) Mounting Faceplate: Factory finished, white.

2.9 FIRE-ALARM REMOTE ANNUNCIATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Bosch Security Systems, Inc.
 - 2. Gamewell-FCI; Honeywell International, Inc.
- B. Performance Criteria:

1.

- Regulatory Requirements:
 - a. NFPA 72.
- 2. General Characteristics:
 - a. Annunciator functions must match those of FACU for alarm, supervisory, and trouble indications. Manual switching functions must match those of FACU, including acknowledging, silencing, resetting, and testing.
 - 1) Mounting: Flush cabinet, NEMA 250, Type 1.
 - b. Display Type and Functional Performance: Alphanumeric display and LED indicating lights must match those of FACU. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 - 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.
- B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Preinstallation Testing: Perform verification of functionality of installed components of existing system prior to starting work. Document equipment or components not functioning as designed.
- B. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service in accordance with requirements indicated:
 - 1. Notify Owner no fewer than seven days in advance of proposed interruption of fire-alarm service.
 - 2. Do not proceed with interruption of fire-alarm service without Owner's written permission.
- C. Protection of In-Place Conditions: Protect devices during construction unless devices are placed in service to protect facility during construction.

3.3 INSTALLATION OF EQUIPMENT

- A. Comply with NECA 305, NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 - 1. Devices placed in service before other trades have completed cleanup must be replaced.
 - 2. Devices installed, but not yet placed, in service must be protected from construction dust, debris, dirt, moisture, and damage in accordance with manufacturer's written storage instructions.
- B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
 - 1. Connect new equipment to existing control panel in existing part of building.
 - 2. Connect new equipment to existing monitoring equipment at supervising station.
 - 3. Expand, modify, and supplement existing equipment as necessary to extend existing control and monitoring functions to new points. New components must be capable of merging with existing configuration without degrading performance of either system.

- C. Install wall-mounted equipment, with tops of cabinets not more than 78 inch above finished floor.
- D. Manual Fire-Alarm Boxes:
 - 1. Install manual fire-alarm box in normal path of egress within 60 inch of exit doorway.
 - 2. Mount manual fire-alarm box on background of contrasting color.
 - 3. Operable part of manual fire-alarm box must be between 42 and 48 inch above floor level. Devices must be mounted at same height unless otherwise indicated.
- E. Smoke- and Heat-Detector Spacing:
 - 1. Comply with "Smoke-Sensing Fire Detectors" section in "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
 - 2. Comply with "Heat-Sensing Fire Detectors" section in "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
 - 3. Smooth ceiling spacing must not exceed 30 ft.
 - 4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas must be determined in accordance with Annex A in NFPA 72.
 - 5. HVAC: Locate detectors not closer than 36 inch from air-supply diffuser or return-air opening.
 - 6. Lighting Fixtures: Locate detectors not closer than 12 inch from lighting fixture and not directly above pendant mounted or indirect lighting.
- F. Install cover on each smoke detector that is not placed in service during construction. Cover must remain in place except during system testing. Remove cover prior to system turnover.
- G. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend full width of duct. Tubes more than 36 inch long must be supported at both ends.
 - 1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.
- H. Air-Sampling Smoke Detectors: If using multiple pipe runs, runs must be pneumatically balanced.
- I. Audible Alarm-Indicating Devices: Install not less than 6 inch below ceiling. Install bells and horns on flush-mounted back boxes with device-operating mechanism concealed behind grille. Install devices at same height unless otherwise indicated.
- J. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inch below ceiling. Install devices at same height unless otherwise indicated.

3.4 ELECTRICAL CONNECTIONS

- A. Ground equipment in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.
- C. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.

1. Nameplate must be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."

3.5 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring in accordance with Section 260523 "Control-Voltage Electrical Power Cables."
- C. Install nameplate for each control connection, indicating field control panel designation and I/O control designation feeding connection.

3.6 PATHWAYS

- A. Pathways above recessed ceilings and in inaccessible locations may be routed exposed.
 1. Exposed pathways located less than 96 inch above floor must be installed in EMT.
- B. Pathways must be installed in EMT.

3.7 CONNECTIONS

- A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.
 - 1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.
- B. Make addressable connections with supervised interface device to the following devices and systems. Install interface device less than 36 inch from device controlled. Make addressable confirmation connection when such feedback is available at device or system being controlled.
 - 1. Smoke dampers in air ducts of designated HVAC duct systems.
 - 2. Supervisory connections at valve supervisory switches.

3.8 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 270553 "Identification for Communications Systems."

3.9 GROUNDING

- A. Ground FACU and associated circuits in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Ground shielded cables at control panel location only. Insulate shield at device location.

3.10 FIELD QUALITY CONTROL

- A. Field tests must be witnessed.
- B. Administrant for Tests and Inspections:
 - 1. Administer and perform tests and inspections.
- C. Tests and Inspections:

1.

- Visual Inspection: Conduct visual inspection prior to testing.
 - a. Inspection must be based on completed record Drawings and system documentation that is required by "Completion Documents, Preparation" table in "Documentation" section of "Fundamentals" chapter in NFPA 72.
 - b. Comply with "Visual Inspection Frequencies" table in "Inspection" section of "Inspection, Testing and Maintenance" chapter in NFPA 72; retain "Initial/Reacceptance" column and list only installed components.
- 2. System Testing: Comply with "Test Methods" table in "Testing" section of "Inspection, Testing and Maintenance" chapter in NFPA 72.
- 3. Test audible appliances for public operating mode in accordance with manufacturer's written instructions. Perform test using portable sound-level meter complying with Type 2 requirements in ASA S1.4 Part 1/IEC 61672-1.
- 4. Test audible appliances for private operating mode in accordance with manufacturer's written instructions.
- 5. Test visible appliances for public operating mode in accordance with manufacturer's written instructions.
- 6. Factory-authorized service representative must prepare "Fire Alarm System Record of Completion" in "Documentation" section of "Fundamentals" chapter in NFPA 72 and "Inspection and Testing Form" in "Records" section of "Inspection, Testing and Maintenance" chapter in NFPA 72.
- D. Reacceptance Testing: Perform reacceptance testing to verify proper operation of added or replaced devices and appliances.
- E. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.11 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system. Allow Owner to record training.

END OF SECTION 284621.11

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 316329 - DRILLED CONCRETE PIERS AND SHAFTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
1. Dry-installed or slurry displacement-installed drilled piers at Contractor's choice.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Design Mixtures: For each concrete mixture. Submit alternative design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
- C. Shop Drawings: For concrete reinforcement, detailing fabricating, bending, supporting, and placing.

1.3 INFORMATIONAL SUBMITTALS

- A. Material Certificates: From manufacturer, for the following:
 - 1. Cementitious materials.
 - 2. Admixtures.
 - 3. Steel reinforcement and accessories.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer that has specialized in drilled-pier work.

1.5 FIELD CONDITIONS

- A. Existing Utilities: Locate existing underground utilities before excavating drilled piers. If utilities are to remain in place, provide protection from damage during drilled-pier operations.
 - 1. Should uncharted or incorrectly charted piping or other utilities be encountered during excavation, adapt drilling procedure if necessary to prevent damage to utilities. Cooperate with Owner and utility companies in keeping services and facilities in operation without interruption. Repair damaged utilities to satisfaction of utility owner.
- B. Interruption of Existing Utilities: Do not interrupt any utility to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility according to requirements indicated:
 - 1. Notify Architect no fewer than two days in advance of proposed interruption of utility.
 - 2. Do not proceed with interruption of utility without Architect's written permission.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Drilled-Pier Standard: Comply with ACI 336.1 except as modified in this Section.
- 2.2 STEEL REINFORCEMENT
 - A. Reinforcing Bars: ASTM A615, Grade 60, deformed.

2.3 CONCRETE MATERIALS

A. See "Cast-in-place" concrete specs for information on acceptable concrete materials used for concrete pier construction.

2.4 CONCRETE MIXTURES

A. See "Cast-in-place" concrete specs for information on acceptable concrete mixtures used for concrete pier construction..

2.5 REINFORCEMENT FABRICATION

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.6 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C94/C94M, and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, vibration, and other hazards created by drilled-pier operations.

3.2 EXCAVATION

- A. Excavate in accordance with recommendations provided by geotechnical engineer as specified in soil report.
- B. Bells: Excavate bells for drilled piers to shape, base thickness, and slope angle indicated. Excavate bottom of bells to level plane and remove loose material before placing concrete.

3.3 STEEL REINFORCEMENT INSTALLATION

- A. Comply with recommendations in CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
- B. Clean reinforcement of loose rust and mill scale, earth, and other materials that reduce or destroy bond with concrete.
- C. Fabricate and install reinforcing cages symmetrically about axis of shafts in a single unit.
- D. Accurately position, support, and secure reinforcement against displacement during concreting. Maintain minimum cover over reinforcement.
- E. Use templates to set anchor bolts, leveling plates, and other accessories furnished in work of other Sections. Provide blocking and holding devices to maintain required position during final concrete placement.
- F. Protect exposed ends of extended reinforcement, dowels, or anchor bolts from mechanical damage and exposure to weather.

3.4 CONCRETE PLACEMENT

- A. Place concrete in continuous operation and without segregation immediately after inspection and approval of shaft by a qualified Special Inspector.
- B. Dry Method: Place concrete to fall vertically down the center of drilled pier without striking sides of shaft or steel reinforcement.
 - 1. Where concrete cannot be directed down shaft without striking reinforcement, place concrete with chutes, tremies, or pumps.
- C. Slurry Displacement Method: Place concrete in slurry-filled shafts by tremie methods or pumping. Control placement operations to ensure that tremie or pump pipe is embedded no less than 60 inches into concrete and that flow of concrete is continuous from bottom to top of drilled pier.
- D. Screed concrete at cutoff elevation level and apply scoured, rough finish. Where cutoff elevation is above the ground elevation, form top section above grade and extend shaft to required elevation.
- E. Protect concrete work, according to ACI 301, from frost, freezing, or low temperatures that could cause physical damage or reduced strength.
 - 1. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 - 2. Do not use calcium chloride, salt, or other mineral-containing antifreeze agents or chemical accelerators.
- F. If hot-weather conditions exist that would seriously impair quality and strength of concrete, place concrete according to ACI 301to maintain delivered temperature of concrete at no more than 90 deg F.

3.5 FIELD QUALITY CONTROL

- A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 - 1. Drilled piers.
 - 2. Excavation.
 - 3. Concrete.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Concrete Tests and Inspections: ASTM C172 except modified for slump to comply with ASTM C94.
 - 1. Slump: ASTM C143; one test at point of placement for each compressive-strength test but no fewer than one test for each concrete load.
 - 2. Concrete Temperature: ASTM C1064; one test hourly when air temperature is 40 deg F and below and 80 deg F and above, and one test for each set of compressive-strength specimens.
 - 3. Compression Test Specimens: ASTM C31; one set of four standard cylinders for each compressive-strength test unless otherwise indicated. Mold and store cylinders for laboratory-cured test specimens unless field-cured test specimens are required.
 - 4. Compressive-Strength Tests: ASTM C39; one set for each drilled pier but not more than one set for each truck load. Test one specimen at seven days, test two specimens at 28 days, and retain one specimen in reserve for later testing if required.
 - 5. If frequency of testing provides fewer than five strength tests for a given class of concrete, conduct tests from at least five randomly selected batches or from each batch if fewer than five are used.
 - 6. If strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor is to evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
 - 7. Strength of each concrete mixture is satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
 - 8. Report test results in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. List Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests in reports of compressive-strength tests.
 - 9. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but not be used as sole basis for approval or rejection of concrete.
 - 10. Additional Tests: Testing and inspecting agency to make additional tests of concrete if test results indicate that slump, compressive strengths, or other requirements have not been met, as directed by Architect.
 - 11. Perform additional testing and inspecting, at Contractor's expense, to determine compliance of replaced or additional work with specified requirements.
 - 12. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.
TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- D. An excavation, concrete, or a drilled pier will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports for each drilled pier as follows:
 - 1. Actual top and bottom elevations.
 - 2. Actual drilled-pier diameter at top, bottom, and bell.
 - 3.
 - 4. Description, location, and dimensions of obstructions.
 - 5. Final top centerline location and deviations from requirements.
 - 6. Variation of shaft from plumb.
 - 7. Bell dimensions and variations from original design.
 - 8. Date and time of starting and completing excavation.
 - 9. Inspection report.
 - 10. Condition of reinforcing steel and splices.
 - 11. Position of reinforcing steel.
 - 12. Concrete placing method, including elevation of consolidation and delays.
 - 13. Concrete testing results.
 - 14. Remarks, unusual conditions encountered, and deviations from requirements.

3.6 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Owner's property.

END OF SECTION 316329

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 323113 - CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Chain-link fences.
 - 2. Swing gates.
 - 3. Horizontal-slide, motor-operated gates.
- B. Related Requirements:
 - 1. Section 033000 "Cast-in-Place Concrete" for cast-in-place concrete equipment bases/pads for gate operators and controls and post footings.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Fence and gate posts, rails, and fittings.
 - b. Chain-link fabric, reinforcements, and attachments.
 - c. Gates and hardware.
 - d. Gate operators, including operating instructions and motor characteristics.
- B. Shop Drawings: For each type of fence and gate assembly.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Include accessories, hardware, gate operation, and operational clearances.
 - 3. Gate Operator: Show locations and details for installing operator components, switches, and controls. Indicate motor size, electrical characteristics, drive arrangement, mounting, and grounding provisions.
 - 4. Wiring Diagrams: For power, signal, and control wiring.
- C. Delegated-Design Submittal: For structural performance of chain-link fence and gate frameworks, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.

- B. Product Certificates: For each type of chain-link fence, operator, and gate.
- C. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For gate operators to include in emergency, operation, and maintenance manuals.

1.6 FIELD CONDITIONS

A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

1.7 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Failure to comply with performance requirements.
 - b. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - c. Faulty operation of gate operators and controls.
 - 2. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design chain-link fence and gate frameworks.
- B. Structural Performance: Chain-link fence and gate frameworks shall withstand the design wind loads and stresses for fence height(s) and under exposure conditions indicated according to ASCE/SEI 7.
 - 1. Design Wind Load: As indicated on Drawings.
 - a. Minimum Post Size and Maximum Spacing: Determine according to CLFMI WLG 2445, based on mesh size and pattern specified.
- C. Lightning Protection System: Maximum resistance-to-ground value of 25 ohms at each grounding location along fence under normal dry conditions.

2.2 CHAIN-LINK FENCE FABRIC

- A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist according to "CLFMI Product Manual" and requirements indicated below:
 - 1. Fabric Height: As indicated on Drawings.
 - 2. Steel Wire for Fabric: Wire diameter of 0.192 inch.
 - a. Mesh Size: 2 inches.
 - b. Zinc-Coated Fabric: ASTM A392, Type II, Class 1, 1.2 oz./sq. ft. with zinc coating applied before weaving.
 - c. Coat selvage ends of metallic-coated fabric before the weaving process with manufacturer's standard clear protective coating.
 - 3. Selvage: Twisted top and knuckled bottom.

2.3 FENCE FRAMEWORK

- A. Posts and Rails: ASTM F1043 for framework, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F1043 based on the following:
 - 1. Fence Height: 96 inches.
 - 2. Light-Industrial-Strength Material: Group IC-L, round steel pipe, electric-resistance-welded pipe.
 - a. Line Post: 2.875 inches in diameter.
 - b. End, Corner, and Pull Posts: 2.875 inches.
 - 3. Horizontal Framework Members: Intermediate, top and bottom rails according to ASTM F1043.
 - 4. Brace Rails: ASTM F1043.
 - 5. Metallic Coating for Steel Framework:
 - a. Type B: Zinc with organic overcoat, consisting of a minimum of 0.9 oz./sq. ft. of zinc after welding, a chromate conversion coating, and a clear, verifiable polymer film.

2.4 TENSION WIRE

- A. Metallic-Coated Steel Wire: 0.177-inch- diameter, marcelled tension wire according to ASTM A817 or ASTM A824, with the following metallic coating:
 - 1. Type II: Zinc coated (galvanized) by hot-dip process, with the following minimum coating weight:
 - a. Matching chain-link fabric coating weight.

2.5 SWING GATES

- A. General: ASTM F900 for gate posts and single and double swing gate types.
 - 1. Gate Leaf Width: As indicated on Drawings.
 - 2. Framework Member Sizes and Strength: Based on gate fabric height as indicated on Drawings.
- B. Pipe and Tubing:

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- 1. Zinc-Coated Steel: ASTM F1043 and ASTM F1083; manufacturer's standard protective coating and finish.
- 2. Gate Posts: Rectangular tubular steel.
- 3. Gate Frames and Bracing: Rectangular tubular aluminum.
- C. Frame Corner Construction: Welded or assembled with corner fittings.
- D. Hardware:
 - 1. Hinges: 180-degree outward swing.

2.6 HORIZONTAL-SLIDE GATES

- A. General: ASTM F1184 for gate posts and single sliding gate types. Provide automated vehicular gates according to ASTM F2200.
 - 1. Classification: Type II Cantilever Slide, Class 2 with internal roller assemblies.
 - a. Gate Frame Width and Height: As indicated on Drawings.
- B. Pipe and Tubing:
 - 1. Zinc-Coated Steel: Manufacturer's standard protective coating and finish.
 - 2. Gate Posts: ASTM F1184. Provide rectangular tubular steel posts.
 - 3. Gate Frames and Bracing: Rectangular tubular aluminum.
- C. Frame Corner Construction: assembled with corner fittings.
- D. Hardware:
 - 1. Hangers, Roller Assemblies, and Stops: Fabricated from galvanized steel.
 - 2. Manufacture standard gate kit.

2.7 FITTINGS

- A. Provide fittings according to ASTM F626.
- B. Post Caps: Provide for each post.1. Provide line post caps with loop to receive tension wire or top rail.
- C. Rail and Brace Ends: For each gate, corner, pull, and end post.
- D. Rail Fittings: Provide the following:
 - 1. Top Rail Sleeves: Pressed-steel or round-steel tubing not less than 6 inches long.
 - 2. Rail Clamps: Line and corner boulevard clamps for connecting bottom rails to posts.
- E. Tension and Brace Bands: Pressed steel.
- F. Tension Bars: Steel, length not less than 2 inches shorter than full height of chain-link fabric. Provide one bar for each gate and end post, and two for each corner and pull post, unless fabric is integrally woven into post.
- G. Truss Rod Assemblies: Steel, hot-dip galvanized after threading or Mill-finished aluminum rod and turnbuckle or other means of adjustment.

- H. Tie Wires, Clips, and Fasteners: According to ASTM F626.
 - 1. Standard Round Wire Ties: For attaching chain-link fabric to posts, rails, and frames, according to the following:
 - a. Hot-Dip Galvanized Steel: 0.148-inch- diameter wire; galvanized coating thickness matching coating thickness of chain-link fence fabric.
- I. Finish:
 - 1. Metallic Coating for Pressed Steel or Cast Iron: Not less than 1.2 oz./sq. ft. of zinc.
 - a. Polymer coating over metallic coating.

2.8 GATE OPERATORS

- A. Operators: Factory-assembled, automatic, gate-operating system designed for gate size, type, weight, and frequency of use. Control system shall have characteristics suitable for Project conditions, with control stations, safety devices, and weatherproof enclosures.
 - 1. Operator design shall allow for removal of cover or motor without disturbing limit-switch adjustment and without affecting auxiliary emergency operation.
 - 2. Electronic components shall have built-in troubleshooting diagnostic feature.
 - 3. Unit shall be designed and wired for both right-hand/left-hand opening, permitting universal installation.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. UL Standard: Manufacture and label gate operators according to UL 325.
- D. Motors: Comply with NEMA MG 1.
 - 1. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
 - 2. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
 - 3. Service Factor: 1.15.
 - 4. Electrical Characteristics:
 - a. Horsepower: 2.
 - b. Voltage: 208 V ac, single phase, 60 hertz.
- E. Gate Operators: Equipment base/pad mounted and as follows:
 - 1. Hydraulic Slide Gate Operators:
 - a. Duty: Light duty, commercial/industrial.
 - b. Gate Speed: Minimum 45 feet per minute.
 - c. Maximum Gate Weight: 300 lb.
 - d. Frequency of Use: 25 cycles per hour.
 - e. Operating Type: Wheel and rail drive,.
 - f. Hydraulic Fluid: Of viscosity required for gate operation at ambient temperature range for Project.
 - g. Locking: Hydraulic in both directions.
 - h. Heater: Manufacturer's standard track and roller heater with thermostatic control.
 - 2. Mechanical Slide Gate Operators:

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

- a. Duty: Light duty, commercial/industrial.
- b. Gate Speed: Minimum 45 feet per minute.
- c. Maximum Gate Weight: 600 lb.
- d. Frequency of Use: 25 cycles per hour.
- e. Operating Type: Wheel and rail drive,.
- F. Control Devices:
 - 1. Control Station: Keyed, two-position switch, located remotely from gate. Provide two keys per station.
 - a. Function: Open, stop, and close.
 - 2. Control Station: Momentary contact, single-button operated; located remotely from gate. Key switch to lock out open and close buttons.
 - a. Function: Open, stop, and close.
 - 3. Card Reader: Functions only when authorized card is presented. Programmable, magnetic multiple-code system, permitting four different access time periods; face-lighted unit fully visible at night.
 - a. Reader Type: Proximity.
 - b. Features: Limited-time usage.
 - 4. Vehicle Presence Detector: System that includes automatic closing timer with adjustable time delay before closing, timer cut-off switch, and presence detector designed to open and close gate hold gate open until traffic clears.
 - a. Provide retroreflective detector with adjustable detection zone pattern and sensitivity, designed to detect the presence or transit of a vehicle in gate pathway when infrared beam in zone pattern is interrupted, and to emit a signal activating the gate operator.
- G. Obstruction Detection Devices: Provide each motorized gate with automatic safety sensor(s). Activation of sensor(s) causes operator to immediately function as follows:
 - 1. Action: Stop gate in opening cycle and reverse gate in closing cycle and hold until clear of obstruction.
 - 2. Internal Sensor: Built-in torque or current monitor senses gate is obstructed.
 - 3. Sensor Edge: Contact-pressure-sensitive safety edge, profile, and sensitivity designed for type of gate and component indicated, in locations as follows. Connect to control circuit using gate edge transmitter and operator receiver system.
 - a. Along entire gate leaf trailing edge.
 - b. Across entire gate leaf bottom edge.
 - c. Along entire length of gate guide posts.
 - 4. Photoelectric/Infrared Sensor: Designed to detect an obstruction in gate's path when infrared beam in the zone pattern is interrupted.
- H. Limit Switches: Adjustable switches, interlocked with motor controls and set to automatically stop gate at fully open and fully closed positions.
- I. Emergency Release Mechanism: Quick-disconnect release of operator drive system, permitting manual operation if operator fails. Control circuit power is disconnected during manual operation.
 - 1. Type: Integral fail-safe release, allowing gate to be pushed open without mechanical devices, keys, cranks, or special knowledge.
- J. Operating Features:

- 1. Digital Microprocessor Control: Electronic programmable means for setting, changing, and adjusting control features with capability for monitoring and auditing gate activity. Provide unit that is isolated from voltage spikes and surges.
- 2. System Integration: With controlling circuit board capable of accepting any type of input from external devices.
- 3. Master/Slave Capability: Control stations designed and wired for gate pair operation.
- 4. Automatic Closing Timer: With adjustable time delay before closing and timer cut-off switch.
- 5. Open Override Circuit: Designed to override closing commands.
- 6. Reversal Time Delay: Designed to protect gate system from shock load on reversal in both directions.
- 7. Maximum Run Timer: Designed to prevent damage to gate system by shutting down system if normal time to open gate is exceeded.
- 8. Clock Timer: Seven day, programmable for regular events.
- K. Accessories:
 - 1. Warning Module: Audio,-light alarm sounding three to five seconds in advance of gate operation and continuing until gate stops moving.
 - 2. Battery Backup System: Battery-powered drive and access-control system, independent of primary drive system.
 - a. Fail Safe: Gate opens and remains open until power is restored.
 - b. Fail Secure: Gate cycles on battery power, then fail safe when battery is discharged.
 - 3. External electric-powered magnetic lock with delay timer allowing time for lock to release before gate operates.
 - 4. Fire box.
 - 5. Fire siren alarm.
 - 6. Instructional, Safety, and Warning Labels and Signs: According to UL 325.
 - 7. Equipment Bases/Pads: Cast-in-place or precast concrete, depth not less than 12 inches, dimensioned and reinforced according to gate-operator component manufacturer's written instructions and as indicated on Drawings.

2.9 GROUT AND ANCHORING CEMENT

- A. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C1107/C1107M. Provide grout, recommended in writing by manufacturer, for exterior applications.
- B. Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating, and that is recommended in writing by manufacturer for exterior applications.

2.10 GROUNDING MATERIALS

- A. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Connectors and Grounding Rods: Listed and labeled for complying with UL 467.

- 1. Connectors for Below-Grade Use: Exothermic welded type.
- 2. Grounding Rods: Copper-clad steel, 5/8 by 96 inches.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for a certified survey of property lines and legal boundaries, site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.
 - 1. Do not begin installation before final grading is completed unless otherwise permitted by Architect.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

3.3 CHAIN-LINK FENCE INSTALLATION

- A. Install chain-link fencing according to ASTM F567 and more stringent requirements specified.
 1. Install fencing on established boundary lines inside property line.
- B. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.
- C. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.
 - 1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
 - 2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 - a. Exposed Concrete: Extend 2 inches above grade; shape and smooth to shed water.
- D. Terminal Posts: Install terminal end, corner, and gate posts according to ASTM F567 and terminal pull posts at changes in horizontal or vertical alignment of 15 degrees or more. For runs exceeding 500 feet, space pull posts an equal distance between corner or end posts.
- E. Line Posts: Space line posts uniformly at 10 feet o.c.
- F. Post Bracing and Intermediate Rails: Install according to ASTM F567, maintaining plumb position and alignment of fence posts. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.

- 1. Locate horizontal braces at midheight of fabric 72 inches or higher, on fences with top rail, and at two-third fabric height on fences without top rail. Install so posts are plumb when diagonal rod is under proper tension.
- G. Tension Wire: Install according to ASTM F567, maintaining plumb position and alignment of fence posts. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch- diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches o.c. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:
 - 1. Extended along top and bottom of fence fabric. Install top tension wire through post cap loops. Install bottom tension wire within 6 inches of bottom of fabric and tie to each post with not less than same diameter and type of wire.
- H. Top Rail: Install according to ASTM F567, maintaining plumb position and alignment of fence posts. Run rail continuously through line post caps, bending to radius for curved runs and terminating into rail end attached to posts or post caps fabricated to receive rail at terminal posts. Provide expansion couplings as recommended in writing by fencing manufacturer.
- I. Intermediate and Bottom Rails: Secure to posts with fittings.
- J. Chain-Link Fabric: Apply fabric to inside of enclosing framework. Leave 2-inch bottom clearance between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.
- K. Tension or Stretcher Bars: Thread through fabric and secure to end, corner, pull, and gate posts, with tension bands spaced not more than 15 inches o.c.
- L. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric according to ASTM F626. Bend ends of wire to minimize hazard to individuals and clothing.
 - 1. Maximum Spacing: Tie fabric to line posts at 12 inches o.c. and to braces at 24 inches o.c.
- M. Fasteners: Install nuts for tension bands and carriage bolts on the side of fence opposite the fabric side. Peen ends of bolts or score threads to prevent removal of nuts.

3.4 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation.

3.5 GATE-OPERATOR INSTALLATION

A. Install gate operators according to manufacturer's written instructions, aligned and true to fence line and grade.

- B. Excavation: Hand-excavate holes for posts, pedestals, and equipment bases/pads, in firm, undisturbed soil to dimensions and depths and at locations according to gate-operator component manufacturer's written instructions and as indicated.
- C. Ground electric-powered motors, controls, and other devices according to NFPA 70 and manufacturer's written instructions.

3.6 GROUNDING AND BONDING

- A. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Fence and Gate Grounding:
 - 1. Ground for fence and fence posts shall be a separate system from ground for gate and gate posts.
 - 2. Install ground rods and connections at maximum intervals of 1500 feet.
 - 3. Fences within 100 Feet of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet.
 - 4. Ground fence on each side of gates and other fence openings.
 - a. Bond metal gates to gate posts.
 - b. Bond across openings, with and without gates, except openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.
- C. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a ground rod located a maximum distance of 150 feet on each side of crossing.
- D. Fences Enclosing Electrical Power Distribution Equipment: Ground according to IEEE C2 unless otherwise indicated.
- E. Connections:
 - 1. Make connections with clean, bare metal at points of contact.
 - 2. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 3. Make aluminum-to-galvanized-steel connections with tin-plated copper jumpers and mechanical clamps.
 - 4. Make above-grade ground connections with mechanical fasteners.
 - 5. Make below-grade ground connections with exothermic welds.
 - 6. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.7 ADJUSTING

- A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.
- B. Automatic Gate Operator: Energize circuits to electrical equipment and devices, start units, and verify proper motor rotation and unit operation.

- 1. Hydraulic Operator: Purge operating system, adjust pressure and fluid levels, and check for leaks.
- 2. Test and adjust operators, controls, alarms, and safety devices. Replace damaged and malfunctioning controls and equipment.
- 3. Lubricate operator and related components.
- C. Lubricate hardware and other moving parts.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain chain-link fences and gates.

END OF SECTION 323113

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 323300 - SITE FURNISHINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Seating.
 - 2. Tables.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For site furnishings to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 SEATING

- A. Frame: Cast aluminum.
- B. Seat:
 - 1. Material:
 - a. Extruded Steel: Evenly spaced, parallel flat straps or bars.
 - 2. Seat Height: 18 inches.
 - 3. Seat Surface Shape: Flat.
 - 4. Overall Width: 72 inches minimum.
 - 5. Overall Depth: $16\frac{1}{2}$ inches minimum.
 - 6. Arms: None.
 - 7. Seating Configuration: Multiple units.
 - a. Straight shape.
- C. Aluminum Finish: Color coated.
 - 1. Color: As selected by Architect from manufacturer's full range.

2.2 TABLES

- A. Frame: Cast aluminum.
- B. Table Top:
 - 1. Material:
 - a. Extruded Steel: Evenly spaced, parallel flat straps or bars.
 - 2. Surface Shape: Rectangle.
- C. Aluminum Finish: Color coated.1. Color: As selected by Architect from manufacturer's full range.

2.3 MATERIALS

- A. Aluminum: Alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated; free of surface blemishes and complying with the following:
 - 1. Rolled or Cold-Finished Bars, Rods, and Wire: ASTM B211.
 - 2. Extruded Bars, Rods, Wire, Profiles, and Tubes: ASTM B221.
 - 3. Structural Pipe and Tube: ASTM B429/B429M.
 - 4. Sheet and Plate: ASTM B209.
 - 5. Castings: ASTM B26/B26M.
- B. Anchors, Fasteners, Fittings, and Hardware: Stainless steel; commercial quality.
- C. Erosion-Resistant Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydrauliccontrolled expansion cement formulation for mixing with potable water at Project site to create pourable anchoring, patching, and grouting compound; resistant to erosion from water exposure without needing protection by a sealer or waterproof coating; recommended in writing by manufacturer, for exterior applications.
- D. Galvanizing: Where indicated for steel and iron components, provide the following protective zinc coating applied to components after fabrication:
 - 1. Zinc-Coated Tubing: External, zinc with organic overcoat, consisting of a minimum of 0.9 oz./sq. ft. of zinc after welding, a chromate conversion coating, and a clear, polymer film. Internal, same as external or consisting of 81 percent zinc pigmented coating, not less than 0.3 mil thick.
 - 2. Hot-Dip Galvanizing: According to ASTM A123/A123M, ASTM A153/A153M, or ASTM A924/A924M.

2.4 FABRICATION

- A. Metal Components: Form to required shapes and sizes with true, consistent curves, lines, and angles. Separate metals from dissimilar materials to prevent electrolytic action.
- B. Pipes and Tubes: Form simple and compound curves by bending members in jigs to produce uniform curvature for each repetitive configuration required; maintain cylindrical cross section of member throughout entire bend without buckling, twisting, cracking, or otherwise deforming exposed surfaces of handrail and railing components.

- C. Exposed Surfaces: Polished, sanded, or otherwise finished; all surfaces smooth, free of burrs, barbs, splinters, and sharpness; all edges and ends rolled, rounded, or capped.
- D. Factory Assembly: Factory assemble components to greatest extent possible to minimize field assembly. Clearly mark units for assembly in the field.

2.5 GENERAL FINISH REQUIREMENTS

A. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 ALUMINUM FINISHES

A. Powder-Coat Finish: Manufacturer's standard polyester powder-coat finish complying with finish manufacturer's written instructions for surface preparation, including pretreatment, application, baking, and minimum dry film thickness.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for correct and level finished grade, mounting surfaces, installation tolerances, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with manufacturer's written installation instructions unless more stringent requirements are indicated. Complete field assembly of site furnishings where required.
- B. Unless otherwise indicated, install site furnishings after landscaping and paving have been completed.
- C. Install site furnishings level, plumb, true, and positioned at locations indicated on Drawings.

END OF SECTION 323300

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 328000- IRRIGATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS: The Drawings, Division 0 and Division 1 apply to the work under this Section.

1.2 SCOPE:

- A. Work Included:
 - 1. Furnishing and installing a complete irrigation system.
 - 2. Trenching and backfill.
 - 3. Furnishing and installing backflow prevention devices.
 - 4. Furnishing and installing sleeves for irrigation piping and remote control valves where indicated.
 - 5. Installation of water meters and taps.
 - 6. Inspections and tests.
- B. Related Work in Other Sections:
 - 1.EarthworkSection 31 00 00
 - 2. Sodding Section 32 92 23
- 1.3 INTENT OF THE DRAWINGS: All piping shown on the drawings are essentially diagrammatic for installation purposes. Locations of all, valves, piping, wiring, etc., shall be established by the Contractor at the time of construction. Spacing of the sprinkler heads and quick coupling valves are shown on the drawings and shall not be exceeded.

1.4 QUALITY ASSURANCE:

- A. Requirements of Regulatory Agencies:
 - 1. All work and materials shall be in full accordance with latest rules and regulations of safety orders of Division of Industrial Safety; the Uniform Plumbing Code and other applicable laws or regulations, including the City of Sherman Plumbing Code and Section 34 of the TNRCC Texas Water Code.
 - 2. Nothing in these Drawings or Specifications is to be construed to permit work not conforming to these codes. Should the Contract Documents be at variance with the aforementioned rules and regulations, notify Landscape Architect and get his instructions before proceeding with the work affected.
- B. Testing:
 - 1. Preliminary review of completed installation will be made by Landscape Architect prior to backfilling of trenches and during hydrostatic testing.
 - 2. Final review shall be made in conjunction with the final review of lawn, shrub and tree planting.

1.5 SUBMITTALS:

- A. Furnish required copies of manufacturer's literature, certifications, and operating instructions for the complete list of materials, for the following items:
 - 1. Irrigation Controller
 - 2. Controller Grounding Plate
 - 3. Pressure Vacuum Breaker
 - 4. Ball Valves
 - 5. Pipe and Fittings
 - 6. Remote Control Valves
 - 7. Valve Boxes
 - 8. Rain, Freeze, and Flow Sensors
 - 9. Spray Body & Nozzles
 - 10. Drip Tubing / Drip Headers / Flush Valve / Air Relief Valve
 - 11. Control Wires
- B. Substitutions:
 - 1. Specific reference to manufacturers' names and products specified in this Section are used as standards, but this implies no right to substitute other material or methods without written approval of the Landscape Architect.
 - 2. Installation of any approved substitution is Contractor's responsibility. Any changes required for installation of any approved substitution must be made to the satisfaction of Landscape Architect and without additional cost to the owner.
 - 3. Approval by Landscape Architect of substituted equipment and/or dimensional drawings does not waive these requirements.
- C. Record Irrigation Drawings: Contractor shall furnish Record Drawings of the complete irrigation system in accordance with the General and Special Conditions. Procure from the Landscape Architect full-sized sepias of Contract Drawings. Construction drawings shall be on the construction site at all times while the irrigation system is being installed. Contractor shall make a daily record of all work installed during each day. Actual location of valves and quick couplers and all irrigation and drainage piping shall be shown on the prints by dimensions from easily identified permanent features, such as buildings, curbs, fences, walks or property lines. Drawings shall show approved substitutions, if any, of material including manufacturer's name, and catalogue number. The drawings shall be to scale and all indications shall be neat. All information noted on the print shall be transferred to the sepia by Contractor and all indications shall be recorded in a neat, orderly way. The record sepia shall be turned over to the Landscape Architect at or before the Final Acceptance of the project.

1.6 JOB CONDITIONS:

A. Contractor shall acquaint himself with all site conditions. Should utilities or other work not shown on the plans be found during excavations, Contractor shall promptly notify Landscape Architect for instructions as to further action. Failure to do so will make Contractor liable for any and all damage thereto arising from his operations subsequent to discovery of such utilities not shown on plans.

- B. Contractor shall take necessary precautions to protect site conditions. Should damage be incurred, this Contractor shall repair damage to its original condition or furnish and install equal replacement at his expense.
- 1.7 FINAL ACCEPTANCE: Work under this Section will be accepted by Landscape Architect upon satisfactory completion of all work. Upon Final Acceptance, owner will assume responsibility for maintenance of the work. Said assumption does not relieve Contractor of obligations under Warranty.

1.8 WARRANTY:

- A. In addition to manufacturer's warranty's or warranties, Contractor shall warrant all work for one year from the date of Final Acceptance against defects in material, equipment and workmanship. Warranty shall also cover repair of damage to any part of the premises resulting from leaks or other defects in materials, equipment and workmanship to the satisfaction of the owner.
- B. Contractor shall not be held responsible for failures due to neglect by the city, vandalism, etc., during Warranty Period. Report such conditions to Landscape Architect in writing.
- 1.9 CLEAN UP: Keep all areas of work clean, neat, and orderly at all times. Keep all paved areas clean during installation operations.

PART 2 - MATERIALS

2.1 MATERIALS:

A. Materials throughout the new system shall be as specified and/or noted on the Drawings, new and in perfect condition.

2.2 WATER METER:

- A. Shall be provided and installed by the local water district in accordance with their requirements.
- 2.3 PRESSURE VACUUM BREAKER (PVB) BACKFLOW PREVENTER:
 - A. Assembly to be Febco 765 and shall be provided and installed by the contractor to meet the City of Sherman requirements in accordance with TCEQ regulations.
 - B. To be as shown on Drawings and per standards of the City of Sherman.
- 2.4 PIPE:
 - A. Piping on pressure side of irrigation control valves:
 - 1. Two and one-half (2 1/2") inch and smaller To be polyvinyl chloride (PVC) 1120-1220, PVC Schedule 40 IPS Plastic Pipe, and shall conform to ASTM D-2241-73.

- B. Piping on non-pressure side of irrigation control valves:
 - 1. Polyvinyl chloride (PVC) 1120-1220, SDR 21.0, Class 200, and shall conform to ASTM D-2241-73.
- C. Identification: All piping shall be continuously and permanently marked with the following:
 - 1. Manufacturer's name or trademark, size, schedule, and type of pipe, working pressure at 73 degrees F. and National Sanitation Foundation (N.S.F.) approval.
- 2.5 FITTINGS:
 - A. Fittings for Solvent-Welded Pipe:
 - 1. 1. Schedule 40, polyvinyl chloride, standard weight, as manufactured by "Sloane", "Lasco", or approved equal, to meet ASTM D-2466-73 and D-2467-73.
 - 2. Threaded PVC nipples Schedule 80 PVC.
- 2.6 SLEEVE FOR CONTROL WIRE AND WATER LINE: PVC 1126-1220, Schedule 40 PVC pipe.
- 2.7 REMOTE CONTROL VALVES:
 - A. Valve to be of size and manufacturer shown on drawings, slow acting valves.
 - B. Thread schedule 80 PVC nipples to intake and discharge sides of valve.
 - C. Rain Bird PEB 1" For Rotors / Tree Bubblers.
 - D. Rain Bird XCZ-100-PRB-COM 1" For Drip.
- 2.8 AUTOMATIC CONTROLLER
 - A. Rain Bird LXME2 Pro Controller. Traditionally wired, plastic wall mount with 18 station capacity.
- 2.9 CONTROL WIRE:
 - A. Wire: Solid copper wire, U.L. approved for direct underground burial: 14 AWG UF.
 - B. Splicing Materials: Use only 3M DBR/Y splice kits for all electrical wiring connections.
- 2.10 FLOW SENSOR
 - A. 1" ultrasonic flow sensor: Rain Bird UFS 100.
 - B. Use underground communication cable (shielded & armored) Paige P7162D-A. Install to connect flow sensor to controller.

2.11 VALVE BOXES:

- A. To be injection-moulded of Polyesters and fibrous inorganic temperature resistant components. Box shall provide adequate clearance to operate and service valve. Box and lid to be black, as manufactured by "Ametek", "Christy", "Carson", or equal.
- B. For Remote Control Valve: Shall be circular, approximately ten (10") inches inside diameter by ten (10") inches deep.
- C. For Ball and Quick Coupler Valves: Shall be round, approximately ten (10") inches inside diameter by ten (10") inches deep.

2.12 SAND BACKFILL:

- A. Sand for backfill shall be clean masonry sand free of stones or debris.
- 2.13 DRIP SYSTEM:
 - A. Valve Rain Bird XCZ-100-PRB-COM.
 - B. Drip Tubing For turf install Rain Bird XFS-CV-06-12. For shrub beds install Rain Bird XFS-CV-06-18.
- 2.14 ROTOR POP-UP SPRINKLER
 - A. Rain Bird 3504-SAM (with check valve).
 1. Nozzle sizes: 0.75, 1, 1.5, 2, 3 & 4.
- 2.15 POP UP SPRAY HEAD
 - A. Rain Bird 1806-SAM-PRS (Pressure regulating heads with check valve).
 1. Nozzle sizes: 8, 10, 12 & 15 in Quarter, Half, Full & VAN variations.

2.16 TREE BUBBLERS

- A. Rain Bird 1400 Flood Pressure Compensating Bubbler (1 GPM).
- 2.17 AUTOMATIC DRAIN
 - A. King Drain or approved equal.
- 2.18 AUTOMATIC RAIN/FREEZE SHUT OFF DEVICE
 - A. Rain Bird wireless rain and freeze sensor: WR2-RFC.

PART 3 - EXECUTION

3.1 LAYOUT:

- A. No consideration will be given to any design changes until after the awarding of the contract. Should any changes be deemed necessary after award of contract, for proper installation and operation of the new and existing system, such changes shall be negotiated by the Landscape Architect (and based upon the Unit Price Schedule where applicable).
- B. Layout work as accurately as possible to drawings. Drawings are diagrammatic to the extent that swing joints, wiring, flex pipe, drip indicator heads, junction box, grounding rods, and all fittings are not shown.
- C. Full and complete coverage is required. Contractor shall make any necessary minor adjustments to layout required to achieve full coverage of irrigated areas at no additional cost to the owner.
- D. Where connections to existing stubouts are required, make necessary adjustments should stubs be located differently in the Drawings. Adjust layout as necessary to install around existing work.
- E. Where piping is shown to be under paved areas but running parallel and adjacent to planted area, the intent is to install piping in planted areas. Do not install directly over another line in same trench.
- F. The Contractor will stake out the location of each run of pipe and all sprinkler heads of sprinkler valve locations prior to trenching. Before installation is started in a given area, the Landscape Architect shall check all locations and give his approval.

3.2 EXCAVATING AND TRENCHING:

- A. Perform all excavations as required for installation of work included under this Section, including shoring of earth banks, if necessary. Restore all surfaces, existing underground installations, etc., damaged or cut as a result of the excavations, to their original condition.
- B. Should utilities not shown on the plans be found during excavations, Contractor shall promptly notify Landscape Architect for instructions as to further action. Failure to do so will make Contractor liable for any and all damage thereto arising from his operations subsequent to discovery of such utilities. Indicate such utility crossings on the Record (As-Built) Drawings promptly.
- C. Dig trenches wide enough to allow a minimum of four (4") inches between parallel pipe lines. Trenches shall be of sufficient depth to provide minimum cover from finish grade as follows:
 - 1. Over pipe on pressure side of irrigation control valve, control wires and quick coupling valves: (18) inches.
 - 2. Over pipe on non-pressure side of irrigation control valve: (12) inches.
 - 3. Where system is installed over structure, lay pipe on top of soil separator. Protect soil separator with two (2") inch layer of specified planting soil mix or sand.

- 4. All PVC sleeves under paving shall be bedded with minimum of four (4") inches of sand backfill on all sides and have twenty four (24") inch cover.
- 5. All main lines shall have drain valves where applicable.
- 6. Backfill all pressurized mains and marker boxes with a minimum of four (4") inches of sand backfill on all sides to protect lines and boxes from expansion and contraction.

3.3 BORING UNDER EXISTING PAVEMENTS:

- A. The boring shall proceed from a pit provided for the boring equipment and workmen. Excavation for pits and installation shall be as described under "Excavating and Trenching". The location of the pit shall not interfere with existing plant materials or structures designated to remain.
- B. Holes shall be bored mechanically. Where holes required are larger than two (2") inches, the bore shall be completed using a pilot hole. The two (2") inch hole shall be bored the entire length of the crossing and shall be checked on the opposite end for line and grade. If acceptable, this hole shall serve as the centerline for the larger hole to be bored. Lateral and vertical tolerance is limited to one (1") inch in ten (10') feet, provided that the variation be regular and occur only in one direction.
- C. The use of water or other fluids in connection with the boring operation will be permitted only to lubricate cutting. Jetting or missiling shall not be permitted. (In unconsolidated soil formations, a gel-forming colloidal drilling fluid consisting of at least ten (10%) percent of high-grade processed bentonite may be used to consolidate cuttings, seal the hole walls and furnish lubrication for subsequent removal of cuttings and installation of the pipe.)
- D. Excavated material will be placed near the top of the working pit and disposed of as required.
- E. Refer to other authorities for jurisdiction over other installations.
- 3.4 WATER METER(S): Install as per the requirements of the local water district and local codes.
- 3.5 BACKFLOW PREVENTION DEVICE: Install according to local codes and manufacturer's latest printed instructions.

3.6 CONDUITS AND SLEEVES:

- A. Furnish and install conduit where control wires pass under or through walls. Conduits to be of adequate size to accommodate retrieval for repair of wiring and shall extend twelve (12") inches beyond edge of walls.
- B. Install sleeves for all pipes passing through or under walls, walks and paving as shown on Drawings. Sleeving to be of adequate size to accommodate retrieval for repair of wiring or piping and shall extend twelve (12") inches beyond edge of paving or other construction.
- C. Coordinate conduit and sleeve installation with other trades as required.

3.7 PIPE LINE ASSEMBLY:

A. General:

- 1. Install pipes and fittings in accordance with manufacturer's latest printed instructions.
- 2. Clean all pipes and fittings of dirt, scales and moisture before assembly.
- 3. All pipe, fittings and valves, etc., shall be carefully placed in the trenches. Interior of pipes shall be kept free from dirt and debris and when pipe laying is not in progress, open ends of pipe shall be closed by approved means.
- 4. All lateral connections to the mainline as well as all other connections shall be made to the side of the mainline pipe. No connections to the top of the line shall be allowed.
- B. Solvent-Welded Joints for PVC Pipes:
 - 1. Use solvents and methods by pipe manufacturer.
 - 2. Cure joint a minimum of one hour before applying any external stress on the piping and at least twenty four (24) hours before placing the joint under water pressure.
- C. . . Threaded Joints for Plastic Pipes:
 - 1. Use Teflon tape on the threaded PVC fittings except where Marlex fittings are used.
 - 2. Use strap-type friction wrench only. Do not use metal-jawed wrench.
 - 3. When connection is plastic to metal, male adaptors shall be used. The male adaptor shall be hand tightened, plus one turn with a strap wrench. Joint compound shall be Teflon tape or equal upon approval.
- D. Threaded Joints for Galvanized Steel Pipes:
 - 1. Factory-made nipples shall be used wherever possible. Field-cut threads in pipes will be permitted only where absolutely necessary; when field threading, cut threads accurately on axis with sharp dies.
 - 2. Use pipe joint compound to make threads only.
- E. Joints for Polyethylene Pipes:
 - 1. Double-clamp all connections one and one-quarter (1 1/4") inch diameter and greater.
 - 2. Make all connections between polyethylene pipes and metal valves or pipes with threaded fittings using male adapters.
 - 3. Polyethylene connectors shall be compression fittings.
- F. Laying of Pipe:
 - 1. Pipes shall be bedded in at least two (2") inches of finely divided material with no rocks or clods over one (1") inch diameter to provide a uniform bearing.
 - 2. Pipe shall be snaked from side to side of trench bottom to allow for expansion and contraction. One additional foot per 100 feet of pipe is the minimum allowance for snaking.
 - 3. Do not lay PVC pipe when there is water in the trench.
 - 4. Plastic pipe shall be installed in a manner so as to provide for expansion and contraction as recommended by the manufacturer.
 - 5. Plastic pipe shall be cut with PVC pipe cutters or hacksaw, or in a manner so as to ensure a square cut. Burrs at cut ends shall be removed prior to installation so that a smooth unobstructed flow will be obtained.
 - 6. All plastic to plastic joints shall be solvent-weld joints or slip seal joints. Only the solvent recommended by the pipe manufacturer shall be used. All plastic pipe and fittings shall be installed as outlined and instructed by the pipe manufacturer and it shall

be the Contractor's responsibility to make arrangements with the pipe manufacturer for any field assistance that may be necessary. The Contractor shall assume full responsibility for the correct installation.

- 7. Unless waived by the Landscape Architect, the Contractor shall install bell type or approved slip joint fitting at a minimum of twenty (20') feet OC for all pressurized mains. All polyethylene pipes shall be laid on surface with 2" mulch layer.
- 3.8 IRRIGATION CONTROL VALVES: Install control valves in valve boxes where shown and group together where practical. Place no closer than twelve (12") inches to walk edges, buildings and walls. Valve boxes shall be flush with finish grade.

3.9 AUTOMATIC CONTROLLER:

- A. Install per local code and manufacturer's latest printed instructions.
- B. Connect remote control valves to controller in clockwise sequence to correspond with station setting beginning with Stations 1, 2, 3, etc.
- 3.10 CONTROL WIRING: see section 2.09
- 3.11 CLOSING OF PIPE AND FLUSHING OF LINES:
 - A. Cap or plug all openings as soon as lines have been installed to prevent entrance of materials that would obstruct the pipe. Leave in place until removal is necessary for completion of installation.
 - B. Thoroughly flush out all water lines before installing heads, valves and other hydrants.
 - C. Test as specified.
 - D. Upon completion of testing, complete assembly and adjust sprinkler heads for proper distribution.
- 3.12 BACKFILL AND COMPACTING:
 - A. After system is operating and required tests and inspections have been made, backfill excavations and trenches with clean soil, free of debris.
 - B. Backfill for all trenches, regardless of the type of pipe covered, shall be compacted to minimum ninety five (95%) percent density under pavements, eighty five (85%) percent under planted areas.
 - C. Compact trenches in areas to be planted by thoroughly flooding the backfill. Jetting process may be used in those areas.
 - D. Dress off all areas to finish grades.

3.13 WARRANTY:

- A. The Contractor shall warrant all materials and workmanship for (one (1) year from Final Acceptance)
- 3.14 CLEAN UP:
 - A. Clean up and remove all debris from the entire work area prior to Final Acceptance to satisfaction of Owner.

END OF SECTION 328000

SECTION 329000 - PLANTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Work Includes:
 - 1. Plant materials, installation, staking, edging, mulching, soil treatments, and maintenance operations through the one-year warranty period of all trees, shrubs, ornamental grasses, ground covers, annuals and perennials as indicated on drawings and specified herein.
- B. Related work in other sections:
 - 1. Section 31 00 00 Earthwork
 - 2. Section 32 80 00 Irrigation
 - 3. Section 32 92 23 Sodding

1.2 SUBMITTALS

- A. Samples and Product Information: Representative samples or product information of the following materials shall be provided to the Landscape Architect from the supply source being used:
 - 1. Plant material: Prior to digging and shipment by the nursery, plant materials shall be tagged by the contractor and approved by the Landscape Architect. Plant materials may be photographed and submitted to the Landscape Architect for approval. Photographs shall contain a human scale factor for size and height reference. Acceptance of material through photographs does not preclude rejection of unsatisfactory material upon delivery. Submit original receipts or invoices and all delivery tickets for all materials to the Owner and Landscape Architect.
 - 2. Mulch: product information.
 - 3. Organic matter: product information and original delivery tickets or receipts.
 - 4. Fertilizer: Product information and analysis.
- B. Test Reports: Submit to the Owner and Landscape Architect, two copies each of certified test reports for:
 - 1. Organic Matter: product information.
- C. Certification
 - 1. Phyto-sanitary certification: All plant material inspection certificates required by federal, state, or other governing authorities will accompany each shipment and be turned over to the Owner and Landscape Architect upon delivery.
 - 2. Invoice: Original vendor's or grower's invoice for each shipment of plants, soil amendments, and mulch shall show sizes, quantities, and root treatment of plants, i.e., containerized, balled and burlapped, or bare root.
- D. Construction Schedule: Upon authorization to proceed with the work, submit two copies of the Construction Schedule indicating dates for the items of work.

- E. Maintenance Instructions: Submit two copies of typewritten instructions recommending procedures to be established by the Owner for the maintenance of landscape work for an entire year. Submit prior to Notice of Substantial Completion.
- F. Chemicals: Submit products, rates of application, and anticipated uses of pesticides, herbicides, and fumigants.

1.3 QUALITY ASSURANCE

- A. Qualifications
 - 1. The Contractor shall be a company specializing in landscape installation.
 - 2. The Contractor shall have successfully completed at least 5 installations of this type, size, and complexity in the last three years.
- B. All materials and work shall comply with applicable sections of the following references:
 - 1. American Association of Nurserymen, Inc., (AAN) Standard: American Standard for Nursery Stock (ANSI Z60.1-2004).
 - 2. Hortus Third, Cornell University, 1976.
 - 3. Fertilizers; Mixed Commercial. Federal Specification: 0-F-241D.
- C. Source Quality Control
 - 1. Certification: All landscape materials shall be from stock inspected and certified by authorized governmental agencies. The stock shall comply with governmental regulations prevailing at the supply source and the job site.
 - 2. Analysis and standards: Products packaged in sealed containers shall be labeled with manufacturer's certified analysis. The composition of bulk materials shall be tested by an approved laboratory in accordance with procedures established by the Association of Official Agricultural Chemists, wherever applicable, or as specified by product specifications referenced herein.
 - 3. Plant material selection (containerized and B&B): Prior to digging and shipment by the nursery, the contractor shall select and pre-tag approved trees before delivery to the site. Plant materials may be photographed and submitted to the Landscape Architect for approval. Photographs shall contain a human scale factor for size and height reference. Acceptance of material through photographs does not preclude rejection of unsatisfactory material upon delivery. The contractor shall cover all expenses for the selection and pre-tag of trees and other plant materials. Notify the Landscape Architect of tagged material locations or provide photographed and tagged materials at least four weeks prior to digging.
- D. Substitutions
 - 1. If specified landscape material is not obtainable, notify the Landscape Architect, who will identify alternate sources or substitutes. Adjustments will be made at no additional cost to the Owner. If replacements are downsized, credits to the Owner will be based on comparable cost differential customary for materials and sizes involved.
 - 2. Plants shall be supplied at the sizes specified. Plants of larger size may be used if acceptable to Landscape Architect and if sizes of roots or balls are increased proportionately.
 - 3. Container plants may be substituted for those designed "B&B" if approved by the Landscape Architect. However, B&B substitutions will not be considered after April 15th.

TAPS ADMIN & OPERATIONS BUILDING TEXOMA AREA PARATRANSIT SYSTEM SHERMAN, TEXAS

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Digging Plant Material
 - 1. Plants shall not be dug at the nursery or approved source until the Landscape Architect has received (See Section 1.3, C, 3) and approved the plant material and the Contractor is ready to transport them from their original locations to the site of the work or acceptable storage location.
- B. Transportation of Plant Material
 - 1. Plants transported to the project in open vehicles shall be covered with tarpaulins or other suitable covers securely fastened to the body of the vehicle to prevent overheating of the plants.
 - 2. Plants shall be kept moist, fresh, and protected at all times. Such protection shall encompass the entire period during which the plants are in transit, being handled, or are in temporary storage.
 - 3. The roots of barefoot stock shall be protected from drying out with wet straw or other suitable material while in transit.
 - 4. Unless otherwise authorized by the Owner or Landscape Architect, notify the Landscape Architect at least five working days in advance of the anticipated delivery date of any plant material. The original bill of loading, showing the quantities, kinds, and sizes of materials included for each shipment shall be furnished to the Owner and Landscape Architect.
- C. Storage
 - 1. Unless specific authorization is obtained from the Landscape Architect, plants shall not remain on the site of work longer than three days prior to being planted.
 - 2. Plants that are not planted immediately shall be protected as follows:
 - a. Root balls shall be kept moist and their solidity carefully preserved.
 - b. Plants shall not be allowed to dry out or freeze.
 - 3. Both the duration and method of storage of plant materials shall be subject to the approval of the Landscape Architect.
- D. Handling of Plant Materials
 - 1. Exercise care in handling plant materials to avoid damage or stress.

1.5 REJECTION OF MATERIALS

- A. Evidence of inadequate protection following digging, carelessness while in transit, or improper handling or storage, shall be cause for rejection.
- B. Upon arrival at the temporary storage location or site of the work, plants shall be inspected for proper shipping procedures. Should the roots be dried out, large branches be broken, balls of earth broken or loosened, or areas of bark be torn or damaged the Landscape Architect will reject the injured plant.
- C. When a plant has been rejected, remove it from the area of the work and replace it with one of the required size and quality.

1.6 SUBSTANTIAL COMPLETION ACCEPTANCE

- A. The Owner and Landscape Architect will inspect all work for Substantial Completion upon written notice of completion. The request shall be received at least ten calendar days before the anticipated date of inspection.
- B. Acceptance of plant material by the Owner and Landscape Architect will be for general conformance to specified size, character, and quality, and shall not diminish responsibility for full conformance to the Contract Documents. Plants shall be healthy, free of pests and disease, and in flourishing condition before Substantial Completion acceptance shall be given. Plants shall be free of dead and dying branches and branch tips, and shall bear foliage of normal density, size, and color.
- C. Upon completion and re-inspection of all repairs or renewals necessary in the judgment of the Owner and Landscape Architect, the Landscape Architect will recommend to the Owner that acceptance of the work of this Section be given.
- D. Acceptance in Part
 - 1. The work may be accepted in parts when it is determined to be in the Owner's best interest to do so, and when permission is given to the Contractor in writing to complete the work in parts.
 - 2. Acceptance and use of such areas by the Owner shall not waive any other provisions of the Contract.

1.7 MAINTENANCE

A. Maintain plant material until the completion of the warranty period and Final Acceptance of work, as described in Part 3 of this section.

1.8 WARRANTY

- A. Plants shall be warranted for a period of one year after the date of written approval of Substantial Completion by the Owner.
 - 1. When the work is accepted in parts, the warranty periods shall extend from each of the partial acceptances to the terminal date of the last warranty period. Thus, all warranty periods terminate at one time.
- B. Plants shall be healthy, free of pests and disease, and in flourishing condition at the end of the warranty period. Plants shall be free of dead and dying branches and branch tips, and shall bear foliage of normal density, size, and color.
- C. Replace dead plants and all plants not in a vigorous, thriving condition, as determined by the Owner and/or Landscape Architect during and at the end of the warranty period, without cost to the Owner, as soon as weather conditions permit and within the specified planting period.
 - 1. Replacements shall closely match adjacent specimens of the same species. Replacements shall be subject to all requirements stated in this Specification.
 - 2. Make all necessary repairs due to plant replacements. Such repairs shall be done at no extra cost to the Owner.

- 3. The warranty of all replacement plants shall extend for an additional one-year period from the date of their acceptance after replacement. In the event that a replacement plant is not acceptable during or at the end of the said extended warranty period, the Owner may elect one more replacement or credit for each item.
- D. At the end of the warranty period, and no less than five days prior to Final Inspection, staking, guying materials and tree ties shall be removed from the site or as directed by the Landscape Architect.

1.9 FINAL INSPECTION AND FINAL ACCEPTANCE

- A. At the end of the one year warranty period, the Owner and Landscape Architect will, upon written notice of end of warranty period, inspect the work for Final Acceptance. Request shall be received at least ten calendar days before the anticipated date for Final Inspection.
- B. Upon completion and re-inspection of full repairs or replacements necessary in the judgment of the Owner and Landscape Architect at that time, the Landscape Architect will recommend to the Owner that Final Acceptance of the Work of the Section be given.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Plant Materials
 - 1. Name and Variety: Provide plant materials true to name and variety described in "Hortus Third," Cornell University, 1976, or by cultivars generally accepted in the trade.
 - 2. All plant material shall be No. 1 grade nursery stock grown in accordance with good horticultural practices. Plants shall be free of disease, insects, eggs, larvae, and defects such as knots, sunscald, injuries, abrasions, or disfigurement. They shall be sound, healthy, and vigorous, of uniform growth, typical of the species and variety, well formed, free from irregularities, with the minimum quality conforming to American Standard for Nursery Stock.
 - 3. Plants indicated, as specimen shall be exceptionally heavy, symmetrical, and tightly knit, cultured, to be unquestionably superior in form, branching, compactness, and symmetry.
 - 4. The minimum acceptable sizes of all plants shall be measured before pruning and with branches in normal position. Unless otherwise designated on the plant list, all plant dimensions shall conform to those listed in ANSI Z60.1, American Standard for Nursery Stock.
 - 5. Branching point is the distance above ground where balanced branching occurs or where a dimension in trunk appears to form the head of the tree.
 - 6. Root Treatment: Root treatments on all plants shall conform to the requirements of ANSI Z60.1. Plants shall be dug and prepared for shipment in a manner that will not cause damage to branches, shape, and future development after planting. B&B Trees shall not be accepted between months of May 1st to October 1st. due to Texas drought and heat conditions.
 - a. Balled and burlapped ("B&B") plants shall have a firm, natural ball of earth of sufficient diameter and depth to encompass the fibrous and feeding root systems necessary for full recovery of the plant. Balls shall be securely wrapped with

burlap and bound with cord or a wire basket. Ball sizes shall meet the requirements of the ANSI Z60.1, or as indicated on the Drawings.

- b. Plants furnished in containers shall have the roots well established in the soil mass and shall have growth in the container for at least one growing season. Containers shall be large enough to provide earth-root mass of adequate size to support the plant tops being grown. For container-grown trees, container size shall provide a minimum of 9 inches of root mass per caliper inch of trunk. Plants, other than ground covers, over-established in the container, as evidenced by pot-bound root ends, will not be accepted.
- 7. Plant materials shall be subject to final approval by the Landscape Architect at the job site.
- B. Soil Amendments (Delivery tickets shall be provided by contractor for measuring of quantities.)
 - 1. Organic matter shall be "fully decomposed," supplied by Living Earth Technology 713-581-3290.
 - 2. Sand shall be clean, coarse, ungraded, meeting the requirements of ASTM C33 for fine aggregates.
 - 3. Superphosphate shall be composed of finely ground phosphate rock, as commonly used for agricultural purposes, containing not less than 15 percent available phosphoric acid.
 - 4. Fertilizer shall be granular fertilizer containing natural ingredients such as, but not limited to, composted manures, leather tankage and/or various meals, with a minimum percentage by weight of 3-1-2 nitrogen, available phosphoric acid, and potash. The following products are approved:
 - a. GreenSense by Ideal Technologies, Inc., Irving, Texas.
 - b. SUSTANE by Sustane Corporation, Chaska, Minnesota.
 - c. Texas Tee by Maestro-Gro.
 - 5. Elemental sulphur shall be finely ground horticultural grade material containing at least 95 percent purity. Material shall be delivered in unopened containers containing manufacturer's warranty analysis.
- C. Bark Mulch

Mulch material shall be finely shredded, fibrous hardwood bark mulch, free from other foreign material and partially decomposed, passing a 1 1/2 inch screen and free of growth or germination inhibiting ingredients supplied by Living Earth Technology. 713-581-3290.

- D. Filter fabric shall be DeWitt Pro5, or approved equal.
- E. Staking and Guying Materials
 - 1. Tree support stakes shall be lodgepole pine or steel T- posts 8 feet in length, green.
 - 2. Wire stays for tree supports shall be pliable, No. 12 to 14 gauge galvanized wire.
 - 3. Hose for chafing guards shall be new or used two-ply fiber-reinforced garden hose of not less than 1/2 inch inside diameter. Factory seconds and rejects are acceptable. Use one color throughout job.
 - 4. Cable for guying trees shall be 3/16 inch diameter, 7 strand, and cadmium-plated steel.
 - 5. Cable clamps and turnbuckles shall be heavy galvanized, strong forged steel. Turnbuckles shall be 3/8 inch eye with 6-inch opening.
 - 6. Flags for marking guys shall be 18-inch sections of white 1-inch diameter PVC pipe.
 - 7. Earth anchor kits may replace guying materials above as approved by the Owner and Landscape Architect. Earth anchors shall be cast alloy conforming to ASTM B26-72 with

1/8 inch x 7 x 7 galvanized high strength cable tag line. Holding power in normal soil shall be a minimum 1,100 pounds. Anchor shall be Duckbill Model 68 by Foresight Industries or approved equal.

- F. Tree Wrap: Not Allowed. Damaged or injured trees will be rejected.
- G. Tree Paint: Tree paint shall be waterproof, asphalt base paint with antiseptic properties for use on existing tree wounds only and shall be TREE KOTE, Sherwin Williams Pruning Compound, or approved equal. Damaged or injured new trees will be rejected.
- H. Herbicide and soil fumigant products and rates of application shall conform to registered uses.
 - 1. All sides are made watertight with durable 1/4" thick heat seals.
 - 2. The bag is secured to the tree with heavy-duty nylon zippers on sewn on to each side.
 - 3. Drip holes are cored through both ply of material to allow for adjustable drip times.
- 2.2 SOIL MIXES (Delivery tickets shall be provided by contractor for measuring of quantities.)
 - A. Tree pit-planting mix:
 - 1. Tree pit back fill shall be 100% existing, native soil. Rock will not be considered native, backfill soil and should be substituted with approved planting mix.
 - B. Shrub, ground cover and seasonal color beds shall have a 4" layer of enriched compost comprised of organic matter and sand tilled into the entire planting bed. Depth of bed as detailed in plans. Screened for maximum 1" particle size and blended for a uniform mixture, containing a minimum 45% organic material, supplied by Living Earth Technology, 713-581-3290.

2.3 ANTIDESICCANT

- A. Antidesiccant shall be an emulsion specifically manufactured for plant protection, which provides a protective film over plant surfaces, which is permeable enough to permit transpiration. Antidesiccant shall be delivered in manufacturer's sealed containers and shall contain manufacturer's printed instructions for use.
- B. Antidesiccant shall be equal to the following:

Product	Manufacturer
Wilt-Pruf	Wilt-Pruf Products, Inc. P.O. Box 4280
	Greenwich, CT 06830

2.4 FUNGICIDE

A. Fungicide shall be "Bordeaux Mix," manufactured by Hi-Yield or approved equal.

2.5 EDGING

- A. Steel edging shall be Col-Met Commercial Grade Edging, manufactured by Col-Met, Garland, TX 75042, (972) 494-3900 or (800) 829-8225 or an approved equal. Steel edging shall be shop fabricated, 3/16 in. thick x 4 or 6 in. deep, galvanized steel, primed, and painted green. Edging shall be furnished in 20 ft. lengths.
 - 1. Steel edging shall have slotted holes for staking steel edging every 30 in. o.c.
 - 2. Steel stakes shall be 16 in. long, tapered.
- B. V cut trench edge as detailed.

2.6 RIVER ROCK AND BOULDERS

- A. Small River Rock shall vary in size from 1" to 3" rock lengths.
- B. Large River Rock shall vary in size from 3" to 6" rock lengths.
- C. Moss Boulders shall be generally dark brown to rustic in color as to contrast with the river rock. Size, shape and installation method of the boulders shall be as indicated in the detail drawings.

PART 3 - EXECUTION

3.1 VEGETATION REMOVAL

- A. Strip existing aggregates, granites, edging, plant material, grass and weeds, including roots, from all bed areas, leaving the soil surface one inch below finished grade.
- B. Herbicides: Apply specific herbicide to eradicate vegetation within bed areas.

3.2 PLANTING

- A. Excavation
 - 1. Rocks and other underground obstructions shall be removed to a depth necessary to permit proper planting according to plans and specifications. If underground utilities or other structural obstructions are encountered, the Landscape Architect will determine alternate planting locations.
 - 2. Plant pits shall be dug only by methods approved by the Landscape Architect.
 - a. Spread compost across the planting bed area to a 4" depth and till to depths detailed and described in the planting plans.
 - b. Planting pits shall be round, with vertical sides and flat bottoms, and sized in accordance with outlines and dimensions shown on the drawings.
 - c. If rotating augers or other mechanical diggers are used to excavate holes, the vertical sides of the pits shall be scarified, fractured, or otherwise broken down to eliminate impervious surfaces.
 - d. Loosen or scarify in the bottom of all plant pits to a depth of 4 inches.
 - e. Over excavate the tree pits to remove an additional 12 inches of impervious materials.
- 3. Excavated material that is not conductive to plant growth will not be used for backfill in any planter or planting pit and shall be removed to an area designated by the Owner or Owner Representative.
- 4. PERCOLATION TESTS: Dig each tree and plant pit in accordance with the required details. Fill each hole with water and wait for 24 hours. If the planting pit is absent of water after the 24 hour waiting period, planting may commence. If not, notify the Owner and Landscape Architect. Additional drainage elements may be required.
- B. Planting
 - Trees: Place a compacted planting mixture in the bottom of the pit or to depth necessary 1 to set the plant 2 inches above finished grade to insure that the root flare is not covered. Set the plant in the pit to the proper grade and position, faced to give the best appearance or relationship to one another and adjacent structures. Cut away burlap, rope, wire, or other wrapping materials from the top of the ball and remove. Do not remove burlap or ties from sides or bottom of ball. If plastic wrap or other non-degradable materials are used in lieu of burlap, completely remove them before placing of backfill. Cleanly cut off broken or frayed roots and sever the sides of the root ball of container-grown trees in several places. Slowly move away wrapping roots from the tree flare or ball and direct root away from tree. Place native soil or planting mixture (in cases of rock) around the ball and carefully compact to avoid injury to the roots and to fill the voids. After backfilling planting pit approximately two-thirds full, add water and allow planting mixture to settle. After the water has been absorbed, fill the planting pit with additional native soil or planting mixture. Tamp lightly to grade, place a 1-inch layer of organic matter over planting mixture, and form a watering basin of the size indicated on the drawings. Do not cover the tree root flare.
 - 2. Container-grown shrubs, ground cover, and vines: Remove containers before planting and sever the sides of root ball in several places, loosening the roots on the outside of the ball sufficiently to encourage rapid root extension into the surrounding soil and to prevent girding of root mass.
- C. Mulching
 - 1. Mulching shall take place within 48 hours after planting.
 - 2. Mulch plant beds, tree, and shrub planting pits to a uniform depth of 3 inches.
 - 3. Mulch shall be kept out of the crowns of shrubs, away from tree trunks, and off buildings, sidewalks, light standards, and other structures.
- D. Pruning
 - 1. Trees
 - a. Prune trees by removing all dead wood, badly formed crossing limbs, and any other growth to insure healthy and symmetrical growth of new wood. Up to one-third of the branches may be removed. The proportion is, in all cases, subject to the approval of the Owner and Landscape Architect.
 - b. In the case of multiple leaders, preserve the one which will best promote the symmetry of the tree, and remove or cut back the remainder so that they will not compete with the selected leader. Cut back surrounding top branches to conform to the leader.
 - c. Paint cut surfaces over one inch in diameter with tree wound dressing.
 - 2. Shrubs
 - a. Prune shrubs by removing all dead wood and broken branches, thinning out canes and cutting back or removing unsymmetrical branches. Pruning shall result in a

loose outline conforming to the general shape of the shrub type. Do not use hedge shears.

- E. Wrapping: Not Allowed
- F. Guying and Staking
 - 1. Guying and staking operations shall be completed as shown on the drawing details immediately after planting.
 - 2. Stakes and guys shall be removed by and become the property of the Contractor at the end of the one year warranty period.
- G. Edging
 - 1. Steel edging shall be installed at locations indicated on the Drawings. Where required, edging shall be cut square and accurately to required length.
 - 2. Steel edging shall be securely staked in required position. Stakes shall be driven every 30 in. o.c. along length of edging.
 - 3. Adjacent lengths of edging shall overlap eight inches.
 - 4. Edging shall be set plumb and vertical at required line and grade. Straight sections shall not be wavy; curved sections shall be smooth and shall have no kinks or sharp bends.
 - 5. Top of edging shall be set in 3/4 in. above finished grade.
 - 6. All corners shall be of 1 piece. Minimum length of short leg shall be not less than 5 ft.
- H. Maintenance
 - 1. The maintenance period shall commence when the written Notice of Substantial Completion is issued and shall continue as required until the end of the warranty period.
 - 2. Plants shall be inspected at least once per week by the Contractor during the installation period and needed maintenance performed promptly. Monthly inspections should occur in the cool season and biweekly inspections in the warm season, during the one year warranty period.
 - 3. The Contractor shall irrigate all plants adequately to maintain optimum supply of moisture within the root zone; recurring overly dry or wet conditions shall be grounds for rejection of plant material. If the irrigation system is inoperative, hand watering shall be accomplished from a source approved by the Owner. Water shall not be applied with a force that will displace mulch or cause soil erosion and shall not be applied so quickly that it cannot be absorbed by the mulch and plants.
 - 4. Plants shall be pruned and mulch replaced as required.
 - 5. Stakes and guys shall be adjusted or replaced as required. Repair eroded or damaged plant saucers.
 - 6. Maintain all plant beds and saucers weed free at all times.
 - 7. Keep plants free of insects and disease. All insecticides and fungicides applied to control pests and maintain plants in a healthy growing condition shall be approved by the Owner.
 - 8. Fertilize plants at least twice during the warranty period. Fertilization shall be applied by topdressing 1 pounds per 100 square feet of bed area, and 1 to 2 pound each tree. Fertilizer for the application shall be a controlled release type used for the installation.
 - 9. Remove, at no cost to Owner, dead and unacceptable plants, as their condition becomes apparent. A dead or unacceptable plant is defined by more than 20% of the foliage or branches are dead.

3.3 APPLICATION OF FERTILIZER

A. Organic Fertilizer: Planting beds shall be fertilized two times per year (March and October) with Organic Fertilizer at a minimum rate of 10 lb. per 1,000 square ft. Rate of application shall be varied depending on fertilizer type used, weather conditions, and overall soil conditions to produce a consistent growth and color to the plantings. After application of fertilizer, planting beds shall be thoroughly watered.

3.4 CLEANUP AND PROTECTION

- A. Cleanup
 - 1. Excess and waste material shall be removed daily.
 - 2. When planting in an area has been completed, the area shall be cleared of all debris, soil piles, and containers.
 - 3. At least one paved pedestrian access route and one paved vehicular access route to each building shall be kept clean at all times. Other paving shall be cleaned when work in adjacent areas is completed.
- B. Repairs: Any damage to existing landscape, paving, or other such features because of work related to this contract shall be repaired and restored to its original condition.
- C. Protection: Protect landscape work and materials from damage due to landscape operations, operations by other Contractors, trades, and trespassers. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged landscape work as directed.

END OF SECTION 329000

THIS PAGE LEFT INTENTIONALLY BLANK

SECTION 329223 - SODDING

PART 1 - GENERAL

1.1 SUMMARY

A. This work includes all labor, materials, and equipment for soil preparation, fertilization, planting and other requirements regarding turfgrass planting areas shown on the plans.

1.2 RELATED WORK SPECIFIED ELSEWHERE:

- A. Section 310000 Earthwork.
- B. Section 329000 Planting

1.3 SUBMITTALS:

- A. Delivery Receipts and Invoices: All delivery receipts and copies of invoices for materials used for this work shall be subject to checking by the Owner or his representative and shall be subsequently delivered to the office of the Owner.
- B. Samples and Producers' Specifications: Various samples, certificates, and specifications of seed, fertilizer and other materials shall be submitted for approval as required by subsequent sections of this specification.

PART 2 - PRODUCTS

2.1 TURFGRASS:

- A. Common Bermuda Sod: Turfgrass sod shall be Cynodon dactylon (Common Bermudagrass) as specified on the plans. Sod shall consist of stolons, leaf blades, rhizomes, and roots with a healthy, virile system of dense, thickly matted roots throughout the soil of the sod for a thickness not less than three-quarters (3/4") inch. Sod shall be alive, healthy, vigorous, free of insects, disease, stones, and undesirable foreign materials and grasses. The grass shall have been mowed prior to sod cutting so that the height of the grass shall not exceed two (2") inches. Sod shall have been produced on growing beds of loam topsoil. Sod shall not be harvested or planted when its moisture condition is so excessively wet or dry that its survival will be affected. All sod is to be harvested, delivered, and planted within a twenty-four (24) hour period of time. Sod shall be protected from exposure to wind, sun, and freezing. If sod is stacked, it shall be kept moist and shall be stacked roots-to-roots and grass-to-grass.
 - 1. Dimensions: All sod shall have been machine cut to uniform soil thickness of one (1") inch plus or minus one-quarter (¼") inch. All sod shall be of the same thickness. Rectangular sections of sod may vary in length, but all shall be of equal width and of a size that permits the sod to be lifted, handled, and rolled without breaking. Broken pads and torn, uneven ends will be unacceptable.

2.2 FERTILIZER:

- A. General: Fertilizer shall be a commercial product, uniform in composition, free flowing, and suitable for application with approved equipment. Fertilizer shall be delivered to the site in fully labeled original containers. Fertilizer which has been exposed to high humidity and moisture, or has become caked or otherwise damaged making it unsuitable for use, will not be acceptable.
- B. Initial Planting Application: Fertilizer for the initial planting application shall be a starter fertilizer with a N-P-K ratio of 4-5-1 (19-26-5) or approved equal. The phosphorus component must be derived from monoammonium phosphate to stimulate vigorous development of new roots, stolons, and rhizomes. This initial application must be applied and incorporated into the soil immediately prior to sodding or sprigging and applied immediately after seedlings begin to emerge on seeded areas.
 - 1. Specification Submittal: Submit a sample label or specification of the fertilizer proposed to be used for the Owner's approval.
- C. Post Planting Application: Fertilizer for the post planting application will be a complete fertilizer of chemical base containing by weight the following percentages of nutrients: 27-3-4 +2% Fe (N-P-K) or approved equal from methylene urea or the nitrogen equivalent of 33-3-10. The application rate should provide one (1) pound of nitrogen per 1,000 square feet.
 - 1. Specification Submittal: Submit a sample label or specification of the fertilizer proposed to be used for the Owner's approval.

PART 3 - EXECUTION

3.1 GENERAL:

A. All turf operations are to be executed across the slope, parallel to finished grade contours.

3.2 SOIL PREPARATION:

- A. Tillage: Tillage shall be accomplished to loosen the soil, destroy existing vegetation, and prepare an acceptable sod area. All areas shall be tilled with a heavy duty disc or a chisel-type breaking plow, chisels set not more than ten (10") inches apart. Initial tillage shall be done in a crossing pattern for double coverage then followed by a disc harrow. Depth of tillage shall be five (5") inches.
- B. Cleaning: Soil shall be further prepared by the removal of debris, building materials, rubbish, weeds, and stones larger than three-quarter $(\frac{3}{4})$ inches in diameter.
- C. Fine Grading: After tillage and cleaning, all areas to be planted shall be leveled, fine graded, and drug with a weighted spike harrow or float drag. The required result shall be the elimination of ruts, depressions, humps, and objectionable soil clods. This shall be the final soil preparation step to be completed before the commencement of fertilizing and planting.
- D. Rock Removal: During the soil preparation process, a "Rock Pick" or other approved piece of machinery shall be used to gather surface stones as small as three-quarter (34") inch in diameter. The Contractor shall be responsible for the disposal of collected materials as waste per "Clean Up," Paragraph 3.12.

3.3 FERTILIZING:

- A. Initial Planting Application: The fertilizer shall be applied at the rate of one (1) pound of phosphorus per one thousand (1000) square feet.
 - 1. Timing: The initial planting application of fertilizer for all areas shall be applied after the soil preparation, but not more than two (2) days prior to turfgrass planting.
- B. Post Planting Application: Thirty (30) days after planting, turfgrass areas shall receive the specified post planting fertilizer at the rate of one (1) pound of nitrogen per one thousand (1,000) square feet.
 - 1. Timing: The Project Coordinator and Landscape Architect will determine if it is too late in the growing season for the post planting application. In the event that it is, the application shall be made in the spring of the next year, or the cost of the application may become a credit due to the Owner.
 - 2. Post Planting Maintenance: See Paragraph 3.9. Areas without a uniform stand (complete coverage) that must be maintained later than thirty (30) days after the initial planting shall receive subsequent applications of fertilizer, as described above, every thirty (30) days until a uniform stand is achieved.

3.4 PLANTING:

- A. Solid Sodding:
 - 1. Prior to laying the sod, the planting bed shall be raked smooth to true grade and moistened to a depth of four (4") inches, but not to the extent causing puddling. The sod shall be laid smoothly, tightly butted edge to edge, and with staggered joints. The sod shall be pressed firmly into contact with the sod bed by rolling or by hand tamping with an approved tamper so as to eliminate all air pockets, provide a true and even surface, and insure knitting without displacement of the sod or deformation of the surfaces of sodded areas. Following compaction, fine screened soil of good quality shall be used to fill all cracks between sods. Excess soil shall be worked into the grass with suitable equipment and shall be well watered. The quantity of fill soil shall be such that it will cause no smothering of the grass.
 - 2. All sodded areas shall be flush with the finish grade of adjacent grassed areas.
 - 3. All sod on slopes that exceed a 3:1 slope and all sod in drainage channels shall be held to the slope with 4" length biodegradable stakes or staples driven through the sod and into the underlying soil. Stake each piece in at least 3 places to prevent slippage. Stakes should be spaced and set in from the sod stripes edges by at least 6" 8".

3.5 **PROTECTION**:

A. No heavy equipment shall be moved over the planted turf area unless the soil is again prepared, graded, leveled, and replanted. It will be the responsibility of this Contractor to protect all paving surfaces, curbs, utilities, plant materials, and any other existing improvements from damage. Any damages shall be repaired or replaced at no cost to the Owner. This Contractor will also locate and stake all irrigation heads, valve risers, etc., prior to beginning any soil preparation work.

3.6 IRRIGATION SYSTEM:

- A. The proposed irrigation system must be complete in <u>all</u> respects and must be completely operational before turfgrass planting may begin. After planting, any breakdowns in the irrigation system attributable to warranty items must be immediately repaired by the Contractor. Otherwise, the cost of replacing the lost turf caused by the Contractor's failure to promptly repair the irrigation system will be fully borne by the Contractor.
- B. All turf areas not covered by the proposed irrigation systems must be irrigated with a temporary above-ground irrigation system. The above-ground temporary irrigation system shall remain in place until all non-irrigated turf areas have established an acceptable stand of turfgrass. Contractor shall be responsible for installation, operation and removal of the temporary system. All cost associated with the temporary system shall be borne by the Contractor.

3.7 ESTABLISHMENT AND ACCEPTANCE:

- A. Regardless of unseasonable climatic conditions or other adverse conditions affecting planting operations and the growth of the turfgrass, it shall be the sole responsibility of the Contractor to establish a uniform stand of turfgrass as herein specified. When adverse conditions such as drought, cold weather, high winds, excessive precipitation, or other factors prevail to such an extent that satisfactory results are unlikely, the Owner may, at his own discretion, stop any phase of the work until conditions change to favor the establishment of turfgrass.
- B. A uniform stand with complete coverage of the specified grass shall be defined as not less than 90% coverage in a ten foot square area for seeded and sprigged areas. Growing plants shall be defined as healthy grass plants at least 1 ¹/₂" inches tall.
- C. Complete coverage in sodded areas is defined as no visible joints showing or felt between individual sections of sod.

3.8 POST-PLANTING MAINTENANCE:

- A. Maintenance shall begin immediately after each grass area is planted. All planted areas will be protected and maintained by watering, weed control, and replanting as necessary for at least thirty (30) days after initial planting and for as long as necessary to establish a UNIFORM STAND OF THE SPECIFIED GRASS and until the entire project has been accepted by the Owner. It is anticipated that a minimum of one (1) mowing will occur before the grass areas are accepted by the Owner. All areas which are not completely covered with the specified grass at the end of thirty (30) days will continue to be replanted and maintained by the Contractor until complete coverage and acceptance are achieved.
- B. Water: Apply at least one-half (1/2") inch of water over the entire planted area every three days. Contractor shall water thoroughly and infrequently once grass is established to encourage deep root growth.
- C. Mowing: Once grass is established the planted area shall be mowed at least once a week during the growing season. Grass shall be mowed to a height of two inches. Mowing during dormant season will be done as necessary.

- D. Weed Control: No sooner than 45 days after grass has germinated any weed growth shall be arrested over the entire planted area. Eliminate weed growth that continues to grow after the initial application. All weed growth during the dormant season will be controlled with spot applications of "Round-Up." "Round-Up" will not be used until the grass is totally dormant.
- E. Replanting: All areas that do not produce a UNIFORM STAND OF GRASS must be replanted until a UNIFORM STAND OF GRASS is established.
- F. Edging: All turf areas adjacent to paved areas shall be edged to maintain a neat appearance.

3.9 GRADING:

A. All grading and placing of topsoil on any given area will be done prior to the turfgrass installation. It will be this Contractor's responsibility to maintain the existing grades and leave them in a true and even condition after planting turfgrass.

3.10 EROSION CONTROL:

A. Throughout the project and the maintenance period for turfgrass, it is the Contractor's responsibility to maintain the topsoil in place at specified grades. Topsoil and turfgrass losses due to erosion will be replaced by the Contractor until establishment and acceptance is achieved.

3.11 CLEAN UP:

A. This Contractor shall remove any excess material or debris brought onto the site or unearthed as a result of his turfgrass operations.

3.12 GUARANTEE:

A. This Contractor shall guarantee all materials used for this work to be the type, quality, and quantity specified.

END OF SECTION 329223

THIS PAGE LEFT INTENTIONALLY BLANK